Valoración mediante resonancia magnética del Glioblastoma
dc.contributor.author | Medelo Ballesteros, Hebert | |
dc.contributor.author | Espinosa-Castro, Jhon-Franklin | |
dc.contributor.author | Rodríguez, Johel E. | |
dc.contributor.author | Pazmiño Calero, Alejandra | |
dc.contributor.author | Palacios Serrano, Susana | |
dc.contributor.author | Pérez Granja, Ana | |
dc.contributor.author | Ruiz Chávez, Paul | |
dc.contributor.author | Añez, Roberto | |
dc.contributor.author | Bermúdez, Valmore | |
dc.date.accessioned | 2020-01-28T15:44:07Z | |
dc.date.available | 2020-01-28T15:44:07Z | |
dc.date.issued | 2019 | |
dc.description.abstract | El glioblastoma es el tumor cerebral primario maligno más común, su incidencia continúa aumentando en los adultos mayores debido a que este grupo está creciendo más rápido que cualquier otro segmento de la población. La imagenología por resonancia magnética se ha convertido en una herramienta esencial para la adquisición de imágenes en tiempo real del cerebro y por lo tanto para la valoración y la estadificación de los tumores cerebrales. La evaluación no invasiva, basada en imágenes por resonancia magnética, de la malignidad del tumor y el estado molecular ofrece la oportunidad de poder predecir el pronóstico y seleccionar pacientes que puedan ser candidatos para terapias individualizadas dirigidas, lo que proporciona herramientas más sensibles para el seguimiento del cáncer. | spa |
dc.description.abstract | The most common malignant primary brain tumor is the glioblastoma; its incidence is increasing in older adults faster than any other population segment. Magnetic resonance imaging has become an essential tool for the acquisition of real-time brain images and therefore, for the assessment of the staging of brain tumors. Noninvasive evaluation based on magnetic resonance imaging of tumor malignancy and molecular status offers the opportunity to predict prognosis and furthermore it allows us to select patients who may be candidates for targeted individualized therapies, which provides more sensitive tools for cancer follow-up. | eng |
dc.format.mimetype | spa | |
dc.identifier.issn | 26107988 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12442/4562 | |
dc.language.iso | spa | |
dc.publisher | Sociedad Venezolana de Farmacología y Terapéutica | spa |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | eng |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.source | Archivos Venezolanos de Farmacología y Terapéutica AVFT | spa |
dc.source | Vol 38, No. 3 (2019) | spa |
dc.source.uri | http://saber.ucv.ve/ojs/index.php/rev_aavft/article/view/16826 | |
dc.subject | Glioblastoma | spa |
dc.subject | Tumores cerebrales | spa |
dc.subject | Imagenología | spa |
dc.subject | Resonancia magnética | spa |
dc.title | Valoración mediante resonancia magnética del Glioblastoma | spa |
dc.title.alternative | Magnetic resonance assessment of glioblastoma | spa |
dc.type | article | spa |
dcterms.references | Atlas, S.W. (2009). Magnetic Resonance Imaging of the Brain and Spine, 4ta edición. Vol. 1, Lippincott Williams & Wilkins. | eng |
dcterms.references | Bottomley, P.A., Hardy, C.J., Argersinger, R.E. y Allen‐Moore, G. (1987). A review of 1H nuclear magnetic resonance relaxation in pathology: Are T1 and T2 diagnostic? Medical Physics, 14(1): 1-37. | eng |
dcterms.references | Bulik, M., Kazda, T., Slampa, P., y Jancalek, R. (2015). The Diagnostic Ability of Follow-Up Imaging Biomarkers after Treatment of Glioblastoma in the Temozolomide Era: Implications from Proton MR Figura 1. Vista axial de MRI de un pacientes con Glioblastoma. 386 Spectroscopy and Apparent Diffusion Coefficient Mapping. BioMed Research International, 2015:641023. | eng |
dcterms.references | Buonocore, M. y Maddock, R. (2015). Magnetic resonance spectroscopy of the brain: a review of physical principles and technical methods. Reviews in the Neurosciences, 26(6):609-632. | eng |
dcterms.references | Buxton, R.B. (2002). Introduction to Functional Magnetic Resonance Imaging: Principles & Techniques. Cambridge, UK: Cambridge University Press. | eng |
dcterms.references | Callaghan, P.T. (1993). Principles of Nuclear Magnetic Resonance Microscopy. Clarendon Press, Oxford. | eng |
dcterms.references | Carlsson, S.K., Brothers, S.P. y Wahlestedt, C. (2014). Emerging treatment strategies for glioblastoma multiforme. EMBO Mol Med, 6(11), 1359-1370. | eng |
dcterms.references | Castellano, A., Cirillo, S., Bello, L., Riva, M. y Falini, A. (2017). Functional MRI for Surgery of Gliomas. Curr Treat Options Neurol, 19(10), 34. | eng |
dcterms.references | Cha, S., Lupo, J.M., Chen, M.H., Lamborn, K.R., McDermott, M.W., Berger, M.S., Nelson, S.J. y Dillon, W.P. (2007). Differentiation of Glioblastoma Multiforme and Single Brain Metastasis by Peak Height and Percentage of Signal Intensity Recovery Derived from Dynamic Susceptibility-Weighted Contrast-Enhanced Perfusion MR Imaging. AJNR Am J Neuroradiol, 28(6):1078-1084. | eng |
dcterms.references | Chiang, I.C., Kuo, Y.T., Lu, C.Y., Yeung, K.W., Lin, W.C., Sheu, F.O. y Liu, G.C. (2004). Distinction between high-grade gliomas and solitary metastases using peritumoral 3-T magnetic resonance spectroscopy, diffusion, and perfusion imagings, Neuroradiology, 46(8):619-627. | eng |
dcterms.references | Departamento Administrativo Nacional de Estadística. (2016). Estimaciones 1985-2005 y Proyecciones 2005- 2020 nacional y departamental desagregadas por sexo, área y grupos quinquenales de edad [Documento en línea]. Disponible en: https://www.dane. gov.co/files/investigaciones/poblacion/proyepobla06_20/ 7Proyecciones_ poblacion.pdf | spa |
dcterms.references | Gerstner, E.R. y Sorensen, A.G. (2011). Diffusion and diffusion tensor imaging in brain cancer. Semin Radiat Oncol, 21(2):141-146. | eng |
dcterms.references | Ghinda, D.C. (2018). How much is enough—Can resting state fMRI provide a demarcation for neurosurgical resection in glioma? Neurosci Biobehav Rev, 84, 245-261. | eng |
dcterms.references | Grisold, W. y Soffietti, R. (2012). Handbook of Clinical Neurology: Neuro-oncology, Part II, Editor Newnes. | eng |
dcterms.references | Haacke, E.M., Brown, R.W., Thompson, M.R. y Venkatesan, R. (1999). Magnetic resonance imaging: physical principles and sequence design. New York: John Wiley & Sons. | eng |
dcterms.references | Hennig, J., Speck, O., Koch, M.A., y Weiller, C. (2003). Functional magnetic resonance imaging: A review of methodological aspects and clinical applications. J Magn Reson Imaging, 18(1):1-15. | eng |
dcterms.references | Huisman, T.A. (2003). Diffusion-weighted imaging: basic concepts and application in cerebral stroke and head trauma, Eur Radiol, 13(10), 2283-2297. | eng |
dcterms.references | Huisman, T.A. (2010). Diffusion-weighted and diffusion tensor imaging of the brain, made easy. Cancer Imaging, 10(1A), S163-171. | eng |
dcterms.references | Instituto Nacional de Cancerología. (2017). Atlas de Mortalidad por Cáncer. [Documento en línea] Disponible: https:// www.cancer.gov. co/ATLAS_de_Mortalidad_por_cancer_en_Colombia.pdf | spa |
dcterms.references | Jellinger, K. (1978). Glioblastoma multiforme: Morphology and biology, Acta Neurochir (Wien), 42(1-2), 5-32. | eng |
dcterms.references | Killiany, R.J. (2010). Are white matter signal abnormalities clinically relevant? Neurology, 74(13), 1014-1015. | eng |
dcterms.references | Kosteniuk, S.E., Lau, J.C. y Megyesi, J.F. (2016). Clinical fMRI in low grade glioma patients: impact on surgical decision making and patient outcomes. Neuro Oncol, 18(4), 62. | eng |
dcterms.references | Lapointe. S., Perry, A. y Butowski, N.A. (2018). Primary brain tumours in adults, The Lancet. 392(10145):432-446. | eng |
dcterms.references | Lara-Velazquez, M., Al-Kharboosh, R., Jeanneret, S., Vazquez-Ramos, C., Mahato, D., Tavanaiepour, D., Rahmathulla, G., Quinones- Hinojosa, A. (2017). Advances in Brain Tumor Surgery for Glioblastoma in Adults. Brain sciences, 7(12), 166. | eng |
dcterms.references | Larjavaara, S., Mäntylä, R., Salminen, T., Haapasalo, H., Raitanen, J., Jääskeläinen, J., y Auvinen, A. (2007). Incidence of gliomas by anatomic location. Neuro Oncol, 9(3), 319-25. | eng |
dcterms.references | Lasocki, A., Gaillard, F., Tacey, M., Drummond, K. y Stuckey, S. (2016). Multifocal and multicentric glioblastoma: Improved characterisation with FLAIR imaging and prognostic implications, J Clin Neurosci, 31:92-98. | eng |
dcterms.references | Lauterbur, P.C. (1973). Image formation by induced local interactions: examples employing nuclear. magnetic resonance. Nature 242:190-191. | eng |
dcterms.references | Lee, W.J., Choi, S.H., Park, C.K., Yi, K.S., Kim, T.M., Lee, S.H., Kim, J.H., Sohn, C.H., Park, S.H. y Kim, I.H. (2012). Diffusion-weighted MR imaging for the differentiation of true progression from pseudoprogression following concomitant radiotherapy with temozolomide in patients with newly diagnosed high-grade gliomas. Acad Radiol, 19(11), 1353-1361. | eng |
dcterms.references | Levitt, M. (2001). Spin dynamics: basics of nuclear magnetic resonance. New York: John Wiley & Sons. | eng |
dcterms.references | Liebelt, B.D., Boghani, Z., Takei, H., Fung, S.H. y Britz, G.W. (2015). Epithelioid glioblastoma presenting as massive intracerebral hemorrhage: Case report and review of the literature. Surg Neurol Int, 6(Suppl 2): S97-S100. | eng |
dcterms.references | Logothetis, N.K. y Pfeuffer, J. (2004). On the nature of the BOLD fMRI contrast mechanism. Magnetic Resonance Imaging, 22(10):1517-1531. | eng |
dcterms.references | Louis, D.N., Perry, A., Reifenberger, G., von Deimling, A., Figarella- Branger, D., Cavenee, W.K., Ohgaki, H. Wiestler, O.D., Kleihues, P. y Ellison, DW. (2016). The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol, 131(6), 803-820. | eng |
dcterms.references | Mansfield, P. y Grannell, P.K. (1973). NMR diffraction in solids. J. Phys C: Solid State Phys, 6(22), L422-L427. | eng |
dcterms.references | Milchenko, M.V., Rajderkar, D., LaMontagne, P., Massoumzadeh, P., Bogdasarian, R., Schweitzer, G., Benzinger, T., Marcus, D., Shimony, J.S. y Fouke, S.J. (2014). Comparison of perfusion- and diffusion- weighted imaging parameters in brain tumor studies processed using different software platforms. Acad Radiol, 21(10), 1294-303. | eng |
dcterms.references | Miranda-Filho, A., Piñeros, M., Soerjomataram, I., Deltour, I., y Bray, F. (2016). Cancers of the brain and CNS: global patterns and trends in incidence. Neuro Oncol, 19(2):270-280. | eng |
dcterms.references | Morris, P.G. (1986). NMR Imaging in Medicine and Biology. Oxford University Press, Oxford. | eng |
dcterms.references | National Cancer Institute. (2018). Karnofsky Performance Status, [Documento en línea]. Disponible en: https://www.cancer.gov/publications/ dictionaries/cancer-terms/def/karnofsky-performance-status, Consulta: 2018, Noviembre 19. | spa |
dcterms.references | Nelson, S.J. y Cha, S. (2003). Imaging Glioblastoma Multiforme, Cancer J, 9(2):134-145. | eng |
dcterms.references | NICE. Brain tumours (primary) and brain metastases in adults. 2018. Disponible: www.nice.org.uk/guidance/ng99. Consulta: 2019, junio 19. | eng |
dcterms.references | Ohgaki, H. y Kleihues, P. (2005). Epidemiology and etiology of gliomas. Acta Neuropathol, 109(1): 93-108. | eng |
dcterms.references | Omuro, A. y DeAngelis, L.M. (2013). Glioblastoma and Other Malignant Gliomas A Clinical Review. JAMA, 310(17), 1842-1850. | eng |
dcterms.references | Ozdemir-Kaynak, E., Qutub, A.A. y Yesil-Celiktas, O. (2018). Advances in Glioblastoma Multiforme Treatment: New Models for Nanoparticle Therapy. Front Physiol, 9, 170. | eng |
dcterms.references | Pierpaoli, C., Jezzard, P., Basser, P.J., Barnett, A., y Di Chiro, G. (1996). Diffusion tensor MR imaging of the human brain. Radiology, 201(3), 637-48. | eng |
dcterms.references | Piñeros, M, Sierra, M.S., Izarzugaza, M.I. y Forman, D. (2016). Descriptive epidemiology of brain and central nervous system cancers in Central and South America. Cancer Epidemiol, 44(Supp1), S141- S149. | eng |
dcterms.references | Plewes, D.B. y Kucharczyk, W. (2012). Physics of MRI: A primer. J Magn Reson Imaging, 35(5), 1038-1054. | eng |
dcterms.references | Rahman, A.U. (1986). Nuclear magnetic resonance: basic principles. New York: Springer. | eng |
dcterms.references | Salama, G.R., Heier, L.A., Patel, P., Ramakrishna, R., Magge, R., y Tsiouris, A.J. (2018). Diffusion Weighted/Tensor Imaging, Functional MRI and Perfusion Weighted Imaging in Glioblastoma-Foundations and Future. Front Neurol, 8, 660. | eng |
dcterms.references | Simpson, J.R., Horton, J., Scott, C., Curran, W.J., Rubin, P., Fischbach, J., Isaacson, S., Rotman, M., Asbell, S.O., Nelson, J.S., Weinstein, A.S. y Nelson, D.F. (1993). Influence of location and extent of surgical resection on survival of patients with glioblastoma multiforme: Results of three consecutive radiation therapy oncology group (RTOG) clinical trials. Int J Radiat Oncol Biol Phys, 26(2), 239-244. | eng |
dcterms.references | Swanson, L. (2014). Neuroanatomical Terminology: A Lexicon of Classical Origins and Historical Foundations, Oxford University Press. | eng |
dcterms.references | Vo-Dinh, T. (2003). Biomedical Photonics Handbook, CRC Press. | eng |
dcterms.references | Wang, W., Steward, C.E. y Desmond, P.M. (2009). Diffusion Tensor Imaging in Glioblastoma Multiforme and Brain Metastases: The Role of p, q, L, and Fractional Anisotropy. AJNR Am J Neuroradiol, 30(1), 203-208. | eng |
dcterms.references | Wright, G. A. (1997). Magnetic resonance imaging. IEEE Signal Processing Magazine, 2(1), 56–66. | eng |
dcterms.references | Zülgh, K.J. (1969). Biology and Morphology of Glioblastoma Multiforme. Acta Radiologica: Therapy, Physics, Biology, 8(1-2), 65-77. | eng |
oaire.version | info:eu-repo/semantics/publishedVersion | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Valoracresonanmagnetglioblastoma.pdf
- Tamaño:
- 409.24 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 381 B
- Formato:
- Item-specific license agreed upon to submission
- Descripción: