Alactic base excess (ABE): a novel internal milieu parameter—its concept and clinical importance
datacite.rights | http://purl.org/coar/access_right/c_abf2 | eng |
dc.contributor.author | Hoque, Md | |
dc.contributor.author | Nagourney, Jason | |
dc.contributor.author | Pawlowski, Thomas | |
dc.contributor.author | Cantos, Joaquin | |
dc.contributor.author | Aroca‑Martinez, Gustavo | |
dc.contributor.author | Huespe, Ivan | |
dc.contributor.author | Musso, Carlos G. | |
dc.date.accessioned | 2024-02-14T15:44:02Z | |
dc.date.available | 2024-02-14T15:44:02Z | |
dc.date.issued | 2024 | |
dc.description.abstract | Inspired by the Stewart-Figge acid–base approach, Gattinoni et al. recently introduced a new internal milieu parameter known as alactic base excess (ABE). The authors defined ABE as the sum of lactate and standard base excess. In the context of sepsis, ABE has been proposed as a valuable marker to discern between metabolic acidosis resulting from the accumulation of lactate and the retention of fixed acids, which can occur in cases of renal failure. Multiple studies have demonstrated that a negative ABE value (<−3 mmol/L) represents an early marker of renal dysfunction, and significantly correlates with higher mortality rates in septic patients. In conclusion, ABE is a simple and useful parameter that can be used to better interpret a patient’s acid–base status, assess renal function, and general prognosis in sepsis. By incorporating ABE into clinical practice, healthcare professionals can enhance their understanding of the complex acid–base imbalances in their patients and tailor more individualized, effective treatment plans. | eng |
dc.format.mimetype | spa | |
dc.identifier.citation | Hoque, M., Nagourney, J., Pawlowski, T. et al. Alactic base excess (ABE): a novel internal milieu parameter—its concept and clinical importance. Int Urol Nephrol (2024). https://doi.org/10.1007/s11255-024-03949-2 | |
dc.identifier.doi | https://doi.org/10.1007/s11255-024-03949-2 | |
dc.identifier.issn | 03011623 | |
dc.identifier.issn | 15732584 (Electrónico) | |
dc.identifier.uri | https://hdl.handle.net/20.500.12442/14127 | |
dc.identifier.url | https://link.springer.com/article/10.1007/s11255-024-03949-2 | |
dc.language.iso | eng | spa |
dc.publisher | International Urology and Nephrology | eng |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | eng |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | eng |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.source | International Urology and Nephrology | eng |
dc.source | Int Urol Nephrol | eng |
dc.subject | Alactic base excess | spa |
dc.subject | Strong ion difference | eng |
dc.subject | Sepsis | eng |
dc.subject | Biomarker | eng |
dc.subject | Acute kidney injury | eng |
dc.title | Alactic base excess (ABE): a novel internal milieu parameter—its concept and clinical importance | eng |
dc.type.driver | info:eu-repo/semantics/article | eng |
dc.type.spa | Artículo científico | spa |
dcterms.references | Cantos J, Huespe IA, Sinner JF, Prado EM, Roman ES, Rolón NC et al (2023) Alactic base excess is an independent predictor of death in sepsis: a propensity score analysis. J Crit Care 74:154248 | eng |
dcterms.references | Gunnerson K, Saul M, He S, Kellum J (2006) Lactate versus nonlactate metabolic acidosis: a retrospective outcome evaluation of critically ill patients. Critical care (London, England) 10:R22 | eng |
dcterms.references | Musso CG, Cordoba JP, Aroca-Marinez G, Terrasa S, Barriga- Moreno AP, Lozano-Sanchez M et al (2022) Negative alactic base excess is reversed by hemoperfusion in septic patients. G Clin Nefrol Dial 34:122–124 | eng |
dcterms.references | Gucyetmez B, Atalan HK (2016) Non-lactate strong ion difference: a clearer picture. J Anesth 30(3):391–396 | eng |
dcterms.references | Figge J, Bellomo R, Egi M (2018) Quantitative relationships among plasma lactate, inorganic phosphorus, albumin, unmeasured anions and the anion gap in lactic acidosis. J Crit Care 44:101–110 | eng |
dcterms.references | Musso CG, Vilas MF (2019) Water, electrolyte, and acid-base disorders in the elderly. In: Musso CG, Jauregui JR, Macías-Núñez JF, Covic A (eds) Clinical nephrogeriatrics. Springer, Cham, pp 43–62 | eng |
dcterms.references | Gattinoni L, Vasques F, Camporota L, Meessen J, Romitti F, Pasticci I et al (2019) Understanding lactatemia in human sepsis. Potential impact for early management. Am J Respir Crit Care Med 200(5):582–589 | eng |
dcterms.references | Ratnam S, Kaehny W, Schapiro J (2011) Pathogenesis and treatment of metabolic acidosis and alkalosis. In: Schrier R (ed) Renal and electrolyte disorders. Wolters Kluwer, Philadelphia, pp 86–121 | eng |
dcterms.references | Gattinoni L, Carlesso E, Cadringher P, Caironi P (2006) Strong ion difference in urine: new perspectives in acid-base assessment. Crit Care 10(2):137. https:// doi. org/ 10. 1186/ cc4890 | eng |
oaire.version | info:eu-repo/semantics/acceptedVersion | eng |