Integrability of stochastic birth-death processes via differential galois theory

dc.contributor.authorAcosta-Humánez, Primitivo B.
dc.contributor.authorCapitán, José A.
dc.contributor.authorMorales-Ruiz, Juan J.
dc.description.abstractStochastic birth-death processes are described as continuous-time Markov processes in models of population dynamics. A system of in nite, coupled ordinary diferential equations (the so- called master equation) describes the time-dependence of the probability of each system state. Using a generating function, the master equation can be transformed into a partial diferential equation. In this contribution we analyze the integrability of two types of stochastic birth-death processes (with polynomial birth and death rates) using standard diferential Galois theory.We discuss the integrability of the PDE via a Laplace transform acting over the temporal variable. We show that the PDE is not integrable except for the case in which rates are linear functions of the number of individuals.eng
dc.publisherEDP Scienceseng
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.sourceMathematical Modelling of Natural Phenomena. Math. Model. Nat. Phenom.eng
dc.sourceVol. 15, No. 70, (2020)
dc.subjectDiferential Galois theoryeng
dc.subjectStochastic processeseng
dc.subjectPopulation dynamicseng
dc.subjectLaplace transformeng
dc.titleIntegrability of stochastic birth-death processes via differential galois theoryeng
dc.type.spaArtículo científicospa
dcterms.referencesM. Abramowitz and I.A. Stegun, Handbook of mathematical functions: with formulas, graphs and mathematical tables. Dover Publications, New York (1965).eng
dcterms.referencesP. Acosta-Humánez and D. Blázquez-Sanz, Non-integrability of some hamiltonians with rational potentials. Discr. Continu. Dyn. Syst. B 10 (2008) 265{293.eng
dcterms.referencesP. Acosta-Humánez, J.T. Lázaro, J.J. Morales-Ruiz and C. Pantazi, Differential Galois theory and non-integrability of planar polynomial vector elds. J. Differ. Equ. 264 (2018) 7183{7212.eng
dcterms.referencesP. Acosta-Humánez, J.J. Morales-Ruiz and J.-A. Weil, Galoisian approach to integrability of Schr odinger equation. Rep. Math. Phys. 67 (2011) 305{374.eng
dcterms.referencesD. Alonso, R.S. Etienne and A.J. McKane, The merits of neutral theory. Trends Ecol. Evol. 21 (2006) 451{457.eng
dcterms.referencesD. Alonso, A.J. McKane and M. Pascual, Stochastic ampli cation in epidemics. J. R. Soc. Interface 4 (2007) 575{582.eng
dcterms.referencesJ.A. Capitán, S. Cuenda and D. Alonso, How similar can co-occurring species be in the presence of competition and ecological drift? J. R. Soc. Interface 12 (2015) 20150604.eng
dcterms.referencesJ.A. Capitán, S. Cuenda and D. Alonso, Stochastic competitive exclusion leads to a cascade of species extinctions. J. Theor. Biol. 419 (2017) 137{151.eng
dcterms.referencesT. Crespo and Z. Hajto, Algebraic Groups and Differential Galois Theory. In Vol. 122 of Graduate Studies in Mathematics. American Mathematical Society, Providence, Rhode Island (2011).eng
dcterms.referencesW. Feller, Die grundlagen der volterrschen theorie des kampfes ums dasein in wahrscheinlichkeitstheoretischer behandlung. Acta Biometrica 5 (1939) 11{40.eng
dcterms.referencesB. Haegeman, M. Loreau, A mathematical synthesis of niche and neutral theories in community ecology. J. Theor. Biol. 269 (2011) 150{165.eng
dcterms.referencesS.P. Hubbell, The Uni ed Theory of Biodiversity and Biogeography. Princeton University Press, Princeton (2001).eng
dcterms.referencesI. Kaplansky, An introduction to differential algebra. Hermann, Paris (1957).eng
dcterms.referencesS. Karlin and H.M. Taylor, A rst course in stochastic processes. Academic Press, New York (1975).eng
dcterms.referencesD.G. Kendall, On the generalized birth-and-death process. Ann. Math. Stat. 19 (1948) 1{15.eng
dcterms.referencesE. Kolchin, Differential Algebra and Algebraic Groups. Academic Press, New York (1973).eng
dcterms.referencesJ.J. Kovacic, An algorithm for solving second order linear homogeneous differential equations. J. Symbolic Comput. 2 (1986) 3{43.eng
dcterms.referencesA.G. McKendrick and M. Kesava, The rate of multiplication of micro-organisms: A mathematical study. Proc. R. Soc. Edinburgh 31 (1912) 649{653.eng
dcterms.referencesJ.J. Morales-Ruiz, Differential Galois Theory and Non-integrability of Hamiltonian Systems. In Vol. 179 of Progress in Mathematics series. Birkh ausser, Basel (1999).eng
dcterms.referencesR.M. Nisbet and W.C.S. Gurney, Modelling uctuating populations. The Blackburn Press, Caldwell, New Jersey (1982).eng
dcterms.referencesA.S. Novozhilov, G.P. Karev and E.V. Koonin, Biological applications of the theory of birth-and-death processes. Brief. Bioinform. 7 (2006) 70{85.eng
dcterms.referencesA. Ronveaux, Heun's differential equations. Oxford University Press, Oxford (1995).eng
dcterms.referencesG.U. Yule, A mathematical theory of evolution, based on the conclusions of Dr. J.C. Willis. Philos. Trans. R. Soc. Lond. B Biol. Sci. 213 (1924) 21{87.eng
dcterms.referencesM. van der Put and M. Singer, Galois theory of linear differential equations. In Vol. 328 of Grundlehren der mathematischen Wissenschaften. Springer Verlag, New York (2003).eng
dcterms.referencesT.L. Saati, Elements of queuing theory. McGraw-Hill, New York (1961).eng
dcterms.referencesV. Volterra, Variazioni e uttuazioni del numero d'individui in specie animali conviventi. Mem. Acad. Naz. Lincei 2 (1926) 31{113.eng


Bloque original
Mostrando 1 - 1 de 1
Integrability of stochastic birth-death processes.pdf
538.86 KB
Adobe Portable Document Format
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
381 B
Item-specific license agreed upon to submission