Influencia de la aplicación del Big Data en el crecimiento de las ventas de legalización migratoria en la empresa SME en Estados Unidos
datacite.rights | http://purl.org/coar/access_right/c_f1cf | |
dc.contributor.advisor | Vega Sampayo, Yolanda | |
dc.contributor.author | Barrera Pereira, Kary Henz | |
dc.date.accessioned | 2025-06-24T21:13:53Z | |
dc.date.available | 2025-06-24T21:13:53Z | |
dc.date.issued | 2025 | |
dc.description.abstract | Este trabajo examina la influencia del Big Data en el crecimiento de las ventas de servicios de legalización migratoria en la empresa SME en Estados Unidos, buscando optimizar estrategias comerciales. El objetivo general es analizar cómo la aplicación del Big Data impulsa las ventas al examinar patrones de comportamiento y segmentar clientes, identificando oportunidades de negocio. Los objetivos específicos incluyen detectar patrones para personalizar ofertas, evaluar el impacto de la segmentación en las ventas, y determinar variables que influyen en las decisiones de los clientes mediante minería de datos y análisis predictivo. La metodología adopta un enfoque cualitativo descriptivo y exploratorio, basado en una revisión documental de fuentes secundarias de 2011 a 2024, como Redalyc, SciELO y McKinsey, siguiendo el método inductivo según Hernández Sampieri et al. (2014). La población consta de artículos e informes seleccionados intencionalmente, consultados en bases como Google Scholar y la biblioteca de la Universidad Simón Bolívar, con la técnica de recolección centrada en análisis documental. Los resultados indican que el Big Data permite identificar necesidades específicas de clientes latinos, incrementando la retención hasta un 20% con segmentación mediante modelos como RFM (Kumar & Reinartz, 2016), y anticipar tendencias con herramientas como Google Analytics (Gartner, 2023). Esto puede elevar las ventas entre un 10-15% (McKinsey, 2021) y reducir costos al dirigir campañas efectivas (McAfee & Brynjolfsson, 2012). Además, optimiza procesos operativos, aunque enfrenta desafíos como inversión inicial y capacitación, sugiriendo un enfoque gradual con pilotos. En síntesis, el Big Data transforma las estrategias de SME,fortaleciendo su competitividad en el sector migratorio. Realizado entre septiembre de 2024 y junio de 2025 en Barranquilla, este estudio ofrece una base práctica para implementar esta tecnología, alineándose con la innovación y el crecimiento económico | spa |
dc.description.abstract | This study investigates the influence of Big Data on the growth of sales for immigration legalization services at SME in the United States, aiming to optimize commercial strategies. The general objective is to analyze how Big Data application drives sales by examining customer behavior patterns and segmenting clients, identifying business opportunities. Specific objectives include detecting patterns to personalize offers, assessing segmentation’s impact on sales, and determining variables affecting customer decisions through data mining and predictive analysis. The methodology employs a qualitative descriptive and exploratory approach, based on a documentary review of secondary sources from 2011 to 2024, such as Redalyc, SciELO, and McKinsey, following the inductive method per Hernández Sampieri et al. (2014). The population consists of intentionally selected articles and reports, accessed via databases like Google Scholar and the University Simón Bolívar library, with data collection focused on documentary analysis. Results show that Big Data enables identifying specific needs of Latino clients, boosting retention by up to 20% through segmentation with models like RFM (Kumar & Reinartz, 2016), and forecasting trends with tools like Google Analytics (Gartner, 2023). This can increase sales by 10-15% (McKinsey, 2021) and reduce costs by targeting effective campaigns (McAfee & Brynjolfsson, 2012). Additionally, it optimizes operational processes, though challenges like initial investment and training suggest a gradual approach with pilot projects. In summary, Big Data transforms SME’s strategies, enhancing its competitiveness in the migration sector. Conducted between September 2024 and June 2025 in Barranquilla, this study provides a practical foundation for implementing this technology, aligning with innovation and economic growth | eng |
dc.format.mimetype | ||
dc.identifier.uri | https://hdl.handle.net/20.500.12442/16717 | |
dc.language.iso | spa | |
dc.publisher | Ediciones Universidad Simón Bolívar | spa |
dc.publisher | Facultad de Administración y Negocios | spa |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International | eng |
dc.rights.accessrights | info:eu-repo/semantics/embargoedAccess | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject | Big Data | spa |
dc.subject | Legalización migratoria | spa |
dc.subject | Segmentación | spa |
dc.subject | Ventas | spa |
dc.subject | Análisis predictivo | spa |
dc.subject.keywords | Big Data | eng |
dc.subject.keywords | Immigration legalization | eng |
dc.subject.keywords | Segmentation | eng |
dc.subject.keywords | Sales | eng |
dc.subject.keywords | Predictive analysis | eng |
dc.title | Influencia de la aplicación del Big Data en el crecimiento de las ventas de legalización migratoria en la empresa SME en Estados Unidos | spa |
dc.type.driver | info:eu-repo/semantics/other | |
dc.type.spa | Otros | |
dcterms.references | Akter, S., Wamba, S. F., Gunasekaran, A., Dubey, R., & Childe, S. J. (2016). How to improve firm performance using big data analytics capability and business strategy alignment? International Journal of Production Economics, 182, 113– 131.https://doi.org/10.1016/j.ijpe.2016.08.018 | eng |
dcterms.references | Big Data: The Management Revolution. Harvard Business Review, 90(10), 60-68 | eng |
dcterms.references | Chen, H., Chiang, R. H. L., & Storey, V. C. (2012). Business Intelligence and Analytics: From Big Data to Big Impact. MIS Quarterly, 36(4), 1165-1188. https://doi.org/10.2307/41703503 | eng |
dcterms.references | Chong, A. Y. L., Li, B., Ngai, E. W. T., Ch'ng, E., & Lee, F. (2017). Predictive analytics for retailing: A review of techniques and applications. International Journal of Production Economics, 183, 168-180. https://doi.org/10.1016/j.ijpe.2016.12.006 | eng |
dcterms.references | Davenport, T. H. (2013). Analytics at Work: Smarter Decisions, Better Results. Harvard Business Review Press. | eng |
dcterms.references | Davenport, T. H. (2014). Big Data at Work: Dispelling the Myths, Uncovering the Opportunities. Harvard Business Review Press. | eng |
dcterms.references | Davenport, T. H., & Dyché, J. (2013). Big data in big companies. International Institute for Analytics. Recuperado de https://iianalytics.com/2013/02/big-data-inbig-companies/ | eng |
dcterms.references | Davenport, T. H., & Dyché, J. (2013). Big data in big companies. International Institute for Analytics. https://iianalytics.com/2013/02/big-data-in-big-companies/ | eng |
dcterms.references | Davenport, T. H., Guha, A., Grewal, D., & Bressgott, T. (2020). How artificial intelligence will change the future of marketing. Harvard Business Review. Recuperado de https://hbr.org/2020/11/how-ai-will-change-the-future-of-marketing | eng |
dcterms.references | Forbes (2023). The Challenges of Implementing Big Data Analytics in Businesses. Forbes Technology Council. | eng |
dcterms.references | Gandomi, A., & Haider, M. (2015). Beyond the hype: Big data concepts, methods, and analytics. International Journal of Information Management, 35(2), 137-144. https://doi.org/10.1016/j.ijinfomgt.2014.10.007 | eng |
dcterms.references | Hernández Sampieri, R., Fernández Collado, C., & Baptista Lucio, P. (2014). Metodología de la investigación (6ª ed.). McGraw-Hill. | spa |
dcterms.references | Kotler, P., & Keller, K. L. (2016). Marketing Management (15th ed.). Pearson | eng |
dcterms.references | Kumar & Reinartz (2016): Kumar, V., & Reinartz, W. (2016). Customer relationship management: Concept, strategy, and tools (3rd ed.). Springer. https://doi.org/10.1007/978-3-319-15830-4 | eng |
dcterms.references | Kumar, V., & Reinartz, W. (2016). Customer Relationship Management: Concept, Strategy, and Tools (3rd ed.). Springer | eng |
dcterms.references | Laney, D. (2001). 3D Data Management: Controlling Data Volume, Velocity, and Variety. META Group Research Note | eng |
dcterms.references | Manyika et al. (2011): Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburgh, C., & Byers, A. H. (2011). Big data: The next frontier for innovation, competition, and productivity. McKinsey Global Institute. https://www.mckinsey.com/business-functions/mckinsey-digital/our-insights/bigdata-the-next-frontier-for-innovation | eng |
dcterms.references | Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburgh, C., & Byers, A. H. (2011). Big data: The next frontier for innovation, competition, and productivity. McKinsey Global Institute. Recuperado de https://www.mckinsey.com/businessfunctions/mckinsey-digital/our-insights/big-data-the-next-frontier-for-innovation | eng |
dcterms.references | Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburgh, C., & Byers, A. H. (2011). Big data: The next frontier for innovation, competition, and productivity. McKinsey Global Institute. https://www.mckinsey.com/businessfunctions/mckinsey-digital/our-insights/big-data-the-next-frontier-for-innovation | eng |
dcterms.references | Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburgh, C., & Byers, A. H. (2011). Big Data: The Next Frontier for Innovation, Competition, and Productivity. McKinsey Global Institute. | eng |
dcterms.references | Marr, B. (2016). Big Data in Practice: How 45 Successful Companies Used Big Data Analytics to Deliver Extraordinary Results. Wiley | eng |
dcterms.references | McAfee, A., & Brynjolfsson, E. (2012). Big data: The management revolution. Harvard Business Review, 90(10), 60-68. Recuperado de https://hbr.org/2012/10/bigdata-the-management-revolution | eng |
dcterms.references | McAfee, A., Brynjolfsson, E., Davenport, T. H., Patil, D. J., & Barton, D. (2012). McKinsey & Company. (2011).Big data: The next frontier for innovation, competition, and productivity. McKinsey Global Institute. Recuperado de https://www.mckinsey.com/business-functions/mckinsey-digital/our-insights/big-datathe-next-frontier-for-innovation | eng |
dcterms.references | McKinsey & Company. (2021). The state of AI and Big Data in 2021. McKinsey Global Institute. | eng |
dcterms.references | McKinsey & Company. (2021). The state of AI in 2021—and a half decade in review. https://www.mckinsey.com/business-functions/mckinsey-analytics/our-insights/thestate-of-ai-in-2021-and-a-half-decade-in-review | eng |
dcterms.references | McKinsey & Company. (2021). The value of analytics in sales and marketing. McKinsey Insights. | eng |
dcterms.references | Provost, F., & Fawcett, T. (2013). Data Science for Business: What You Need to Know about Data Mining and Data-Analytic Thinking. O'Reilly Media | eng |
dcterms.references | Wamba, S. F., Akter, S., Edwards, A., Chopin, G., & Gnanzou, D. (2015). How “big data” can make big impact: Findings from a systematic review and a longitudinal case study. International Journal of Production Economics, 165, 234-246. https://doi.org/10.1016/j.ijpe.2014.12.031 | eng |
dcterms.references | Wamba, S. F., Akter, S., Edwards, A., Chopin, G., & Gnanzou, D. (2015). How ‘big data’ can make big impact: Findings from a systematic review and a longitudinal case study. International Journal of Production Economics, 165, 234– 246. https://doi.org/10.1016/j.ijpe.2014.12.031 | eng |
oaire.version | info:eu-repo/semantics/acceptedVersion | |
sb.investigacion | Analítica digital | spa |
sb.programa | Especialización en Dirección de Marketing | spa |
sb.sede | Sede Barranquilla | spa |
Archivos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 2.93 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: