Influencia de la aplicación del Big Data en el crecimiento de las ventas de legalización migratoria en la empresa SME en Estados Unidos

datacite.rightshttp://purl.org/coar/access_right/c_f1cf
dc.contributor.advisorVega Sampayo, Yolanda
dc.contributor.authorBarrera Pereira, Kary Henz
dc.date.accessioned2025-06-24T21:13:53Z
dc.date.available2025-06-24T21:13:53Z
dc.date.issued2025
dc.description.abstractEste trabajo examina la influencia del Big Data en el crecimiento de las ventas de servicios de legalización migratoria en la empresa SME en Estados Unidos, buscando optimizar estrategias comerciales. El objetivo general es analizar cómo la aplicación del Big Data impulsa las ventas al examinar patrones de comportamiento y segmentar clientes, identificando oportunidades de negocio. Los objetivos específicos incluyen detectar patrones para personalizar ofertas, evaluar el impacto de la segmentación en las ventas, y determinar variables que influyen en las decisiones de los clientes mediante minería de datos y análisis predictivo. La metodología adopta un enfoque cualitativo descriptivo y exploratorio, basado en una revisión documental de fuentes secundarias de 2011 a 2024, como Redalyc, SciELO y McKinsey, siguiendo el método inductivo según Hernández Sampieri et al. (2014). La población consta de artículos e informes seleccionados intencionalmente, consultados en bases como Google Scholar y la biblioteca de la Universidad Simón Bolívar, con la técnica de recolección centrada en análisis documental. Los resultados indican que el Big Data permite identificar necesidades específicas de clientes latinos, incrementando la retención hasta un 20% con segmentación mediante modelos como RFM (Kumar & Reinartz, 2016), y anticipar tendencias con herramientas como Google Analytics (Gartner, 2023). Esto puede elevar las ventas entre un 10-15% (McKinsey, 2021) y reducir costos al dirigir campañas efectivas (McAfee & Brynjolfsson, 2012). Además, optimiza procesos operativos, aunque enfrenta desafíos como inversión inicial y capacitación, sugiriendo un enfoque gradual con pilotos. En síntesis, el Big Data transforma las estrategias de SME,fortaleciendo su competitividad en el sector migratorio. Realizado entre septiembre de 2024 y junio de 2025 en Barranquilla, este estudio ofrece una base práctica para implementar esta tecnología, alineándose con la innovación y el crecimiento económicospa
dc.description.abstractThis study investigates the influence of Big Data on the growth of sales for immigration legalization services at SME in the United States, aiming to optimize commercial strategies. The general objective is to analyze how Big Data application drives sales by examining customer behavior patterns and segmenting clients, identifying business opportunities. Specific objectives include detecting patterns to personalize offers, assessing segmentation’s impact on sales, and determining variables affecting customer decisions through data mining and predictive analysis. The methodology employs a qualitative descriptive and exploratory approach, based on a documentary review of secondary sources from 2011 to 2024, such as Redalyc, SciELO, and McKinsey, following the inductive method per Hernández Sampieri et al. (2014). The population consists of intentionally selected articles and reports, accessed via databases like Google Scholar and the University Simón Bolívar library, with data collection focused on documentary analysis. Results show that Big Data enables identifying specific needs of Latino clients, boosting retention by up to 20% through segmentation with models like RFM (Kumar & Reinartz, 2016), and forecasting trends with tools like Google Analytics (Gartner, 2023). This can increase sales by 10-15% (McKinsey, 2021) and reduce costs by targeting effective campaigns (McAfee & Brynjolfsson, 2012). Additionally, it optimizes operational processes, though challenges like initial investment and training suggest a gradual approach with pilot projects. In summary, Big Data transforms SME’s strategies, enhancing its competitiveness in the migration sector. Conducted between September 2024 and June 2025 in Barranquilla, this study provides a practical foundation for implementing this technology, aligning with innovation and economic growtheng
dc.format.mimetypepdf
dc.identifier.urihttps://hdl.handle.net/20.500.12442/16717
dc.language.isospa
dc.publisherEdiciones Universidad Simón Bolívarspa
dc.publisherFacultad de Administración y Negociosspa
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationaleng
dc.rights.accessrightsinfo:eu-repo/semantics/embargoedAccess
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectBig Dataspa
dc.subjectLegalización migratoriaspa
dc.subjectSegmentaciónspa
dc.subjectVentasspa
dc.subjectAnálisis predictivospa
dc.subject.keywordsBig Dataeng
dc.subject.keywordsImmigration legalizationeng
dc.subject.keywordsSegmentationeng
dc.subject.keywordsSaleseng
dc.subject.keywordsPredictive analysiseng
dc.titleInfluencia de la aplicación del Big Data en el crecimiento de las ventas de legalización migratoria en la empresa SME en Estados Unidosspa
dc.type.driverinfo:eu-repo/semantics/other
dc.type.spaOtros
dcterms.referencesAkter, S., Wamba, S. F., Gunasekaran, A., Dubey, R., & Childe, S. J. (2016). How to improve firm performance using big data analytics capability and business strategy alignment? International Journal of Production Economics, 182, 113– 131.https://doi.org/10.1016/j.ijpe.2016.08.018eng
dcterms.referencesBig Data: The Management Revolution. Harvard Business Review, 90(10), 60-68eng
dcterms.referencesChen, H., Chiang, R. H. L., & Storey, V. C. (2012). Business Intelligence and Analytics: From Big Data to Big Impact. MIS Quarterly, 36(4), 1165-1188. https://doi.org/10.2307/41703503eng
dcterms.referencesChong, A. Y. L., Li, B., Ngai, E. W. T., Ch'ng, E., & Lee, F. (2017). Predictive analytics for retailing: A review of techniques and applications. International Journal of Production Economics, 183, 168-180. https://doi.org/10.1016/j.ijpe.2016.12.006eng
dcterms.referencesDavenport, T. H. (2013). Analytics at Work: Smarter Decisions, Better Results. Harvard Business Review Press.eng
dcterms.referencesDavenport, T. H. (2014). Big Data at Work: Dispelling the Myths, Uncovering the Opportunities. Harvard Business Review Press.eng
dcterms.referencesDavenport, T. H., & Dyché, J. (2013). Big data in big companies. International Institute for Analytics. Recuperado de https://iianalytics.com/2013/02/big-data-inbig-companies/eng
dcterms.referencesDavenport, T. H., & Dyché, J. (2013). Big data in big companies. International Institute for Analytics. https://iianalytics.com/2013/02/big-data-in-big-companies/eng
dcterms.referencesDavenport, T. H., Guha, A., Grewal, D., & Bressgott, T. (2020). How artificial intelligence will change the future of marketing. Harvard Business Review. Recuperado de https://hbr.org/2020/11/how-ai-will-change-the-future-of-marketingeng
dcterms.referencesForbes (2023). The Challenges of Implementing Big Data Analytics in Businesses. Forbes Technology Council.eng
dcterms.referencesGandomi, A., & Haider, M. (2015). Beyond the hype: Big data concepts, methods, and analytics. International Journal of Information Management, 35(2), 137-144. https://doi.org/10.1016/j.ijinfomgt.2014.10.007eng
dcterms.referencesHernández Sampieri, R., Fernández Collado, C., & Baptista Lucio, P. (2014). Metodología de la investigación (6ª ed.). McGraw-Hill.spa
dcterms.referencesKotler, P., & Keller, K. L. (2016). Marketing Management (15th ed.). Pearsoneng
dcterms.referencesKumar & Reinartz (2016): Kumar, V., & Reinartz, W. (2016). Customer relationship management: Concept, strategy, and tools (3rd ed.). Springer. https://doi.org/10.1007/978-3-319-15830-4eng
dcterms.referencesKumar, V., & Reinartz, W. (2016). Customer Relationship Management: Concept, Strategy, and Tools (3rd ed.). Springereng
dcterms.referencesLaney, D. (2001). 3D Data Management: Controlling Data Volume, Velocity, and Variety. META Group Research Noteeng
dcterms.referencesManyika et al. (2011): Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburgh, C., & Byers, A. H. (2011). Big data: The next frontier for innovation, competition, and productivity. McKinsey Global Institute. https://www.mckinsey.com/business-functions/mckinsey-digital/our-insights/bigdata-the-next-frontier-for-innovationeng
dcterms.referencesManyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburgh, C., & Byers, A. H. (2011). Big data: The next frontier for innovation, competition, and productivity. McKinsey Global Institute. Recuperado de https://www.mckinsey.com/businessfunctions/mckinsey-digital/our-insights/big-data-the-next-frontier-for-innovationeng
dcterms.referencesManyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburgh, C., & Byers, A. H. (2011). Big data: The next frontier for innovation, competition, and productivity. McKinsey Global Institute. https://www.mckinsey.com/businessfunctions/mckinsey-digital/our-insights/big-data-the-next-frontier-for-innovationeng
dcterms.referencesManyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburgh, C., & Byers, A. H. (2011). Big Data: The Next Frontier for Innovation, Competition, and Productivity. McKinsey Global Institute.eng
dcterms.referencesMarr, B. (2016). Big Data in Practice: How 45 Successful Companies Used Big Data Analytics to Deliver Extraordinary Results. Wileyeng
dcterms.referencesMcAfee, A., & Brynjolfsson, E. (2012). Big data: The management revolution. Harvard Business Review, 90(10), 60-68. Recuperado de https://hbr.org/2012/10/bigdata-the-management-revolutioneng
dcterms.referencesMcAfee, A., Brynjolfsson, E., Davenport, T. H., Patil, D. J., & Barton, D. (2012). McKinsey & Company. (2011).Big data: The next frontier for innovation, competition, and productivity. McKinsey Global Institute. Recuperado de https://www.mckinsey.com/business-functions/mckinsey-digital/our-insights/big-datathe-next-frontier-for-innovationeng
dcterms.referencesMcKinsey & Company. (2021). The state of AI and Big Data in 2021. McKinsey Global Institute.eng
dcterms.referencesMcKinsey & Company. (2021). The state of AI in 2021—and a half decade in review. https://www.mckinsey.com/business-functions/mckinsey-analytics/our-insights/thestate-of-ai-in-2021-and-a-half-decade-in-revieweng
dcterms.referencesMcKinsey & Company. (2021). The value of analytics in sales and marketing. McKinsey Insights.eng
dcterms.referencesProvost, F., & Fawcett, T. (2013). Data Science for Business: What You Need to Know about Data Mining and Data-Analytic Thinking. O'Reilly Mediaeng
dcterms.referencesWamba, S. F., Akter, S., Edwards, A., Chopin, G., & Gnanzou, D. (2015). How “big data” can make big impact: Findings from a systematic review and a longitudinal case study. International Journal of Production Economics, 165, 234-246. https://doi.org/10.1016/j.ijpe.2014.12.031eng
dcterms.referencesWamba, S. F., Akter, S., Edwards, A., Chopin, G., & Gnanzou, D. (2015). How ‘big data’ can make big impact: Findings from a systematic review and a longitudinal case study. International Journal of Production Economics, 165, 234– 246. https://doi.org/10.1016/j.ijpe.2014.12.031eng
oaire.versioninfo:eu-repo/semantics/acceptedVersion
sb.investigacionAnalítica digitalspa
sb.programaEspecialización en Dirección de Marketingspa
sb.sedeSede Barranquillaspa

Archivos

Bloque original
Mostrando 1 - 2 de 2
No hay miniatura disponible
Nombre:
PDF_RESUMEN.pdf
Tamaño:
262.08 KB
Formato:
Adobe Portable Document Format
No hay miniatura disponible
Nombre:
PDF.pdf
Tamaño:
326.32 KB
Formato:
Adobe Portable Document Format
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
2.93 KB
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones