A computational approach for Leishmania genus protozoa detection in bone marrow samples from patients with visceral Leishmaniasis

datacite.rightshttp://purl.org/coar/access_right/c_abf2eng
dc.contributor.authorIsaza-Jaimes, Angélica
dc.contributor.authorBérmudez, Valmore
dc.contributor.authorBravo, Antonio
dc.contributor.authorSierra Castrillo, Jhoalmis
dc.contributor.authorHernández Lalinde, Juan Diego
dc.contributor.authorFossi, Cleiver A.
dc.contributor.authorFlórez, Anderson
dc.contributor.authorRodríguez, Johel E.
dc.date.accessioned2022-03-30T14:12:03Z
dc.date.available2022-03-30T14:12:03Z
dc.date.issued2020
dc.description.abstractThis article reports a three-stage computational approach for the automatic detection of Leishmania protozoan in light microphotograph from bone marrow samples extracted from patients with visceral Leishmaniasis. The first stage corresponds to the pre-processing of the microscopy images, in which initially a low-pass filter or softener was applied to attenuate the undesired information associated with the images and preserve the edges in the objects contained in the images. The pre-processing stage concluded with the applica tion of consistent gradient operators to the smoothed images to emphasise the changes of the intensities associated with the protozoa edges by determining the gradient module. In the second stage, a procedure-oriented to the selection of regions of interest that were candidates to contain parasites in the pre-processed images was developed, based on the intensity analysis associated with a set of intensity profiles selected from the smoothed images. In the final stage, each region of interest containing protozoa was analysed on the gradient module by a technique based on polar maps, to clas sify its content as a parasite of the genus Leishmania or not. The application of the proposed computational approach to a set of samples of patients with Visceral Leishmaniasis generated a recognition parasite percentage of approximately 80%eng
dc.description.abstractEste artículo reporta un enfoque computacional en tres etapas para la detección automática de protozoos del género Leishmania en microfotografías a partir de muestras de médula ósea extraídas de pacientes con Leishmaniasis visceral. La primera etapa correspondió al preprocesamiento de las imágenes de microscopía, en la que inicialmente se aplicó un filtro de paso bajo para atenuar la información no deseada asociada a las imágenes y preservar los bordes en los objetos. La etapa de preprocesamiento concluyó con la aplicación de operadores de gradiente a las imágenes suavizadas para enfatizar los cambios de las intensidades asociadas con los bordes de los protozoos. En la segunda etapa se elaboró un procedimiento orientado a la selección de las regiones de interés candidatas a contener parásitos, sobre la base del análisis de intensidad asociado a un conjunto de perfiles seleccionados a partir de las imágenes suavizadas. En la etapa final, cada región de interés que contenía protozoos fue analizada en el módulo de gradiente mediante una técnica basada en mapas polares de forma de clasificar su contenido como parásito del género Leishmania. La aplicación del enfoque computacional propuesto generó un porcentaje de reconocimiento del parásito de aproximadamente el 80%spa
dc.format.mimetypepdfspa
dc.identifier.doihttp://doi.org/10.5281/zenodo.4426403
dc.identifier.issn26107988
dc.identifier.urihttps://hdl.handle.net/20.500.12442/9491
dc.identifier.urlhttp://saber.ucv.ve/ojs/index.php/rev_aavft/article/view/21140
dc.language.isoengspa
dc.publisherSaber UCV, Universidad Central de Venezuelaspa
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacionaleng
dc.rights.accessrightsinfo:eu-repo/semantics/openAccesseng
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourceRevista AVFT - Archivos Venezolanos de Farmacología y Terapéuticaspa
dc.sourceVol 39, No 7 (2020)
dc.subjectProtozoaneng
dc.subjectLeishmaniaeng
dc.subjectmicrographicseng
dc.subjectanisotropic diffusioneng
dc.subjectgradient operatoreng
dc.subjectintensity profileseng
dc.subjectProtozoariospa
dc.subjectmicrografíaspa
dc.subjectdifusión anisotrópicaspa
dc.subjectoperador de gradientespa
dc.subjectperfiles de intensidadspa
dc.titleA computational approach for Leishmania genus protozoa detection in bone marrow samples from patients with visceral Leishmaniasiseng
dc.title.translatedUn enfoque computacional para la detección de protozoos del género Leishmania en muestras de médula ósea de pacientes con leishmaniasis visceralspa
dc.type.driverinfo:eu-repo/semantics/articleeng
dc.type.spaArtículo científicospa
dcterms.referencesNavarro-Pérez JJ, Pastor-Seller E. Factores dinámicos en el comportamiento de delincuentes juveniles con perfil de ajuste social. Un estudio de reincidencia. Psychosoc Interv. 2017;26(1):19-27.spa
dcterms.referencesGradoni L. A Brief Introduction to Leishmaniasis Epidemiology. In: The Leishmaniases: Old Neglected Tropical Diseases [Internet]. Cham: Springer International Publishing; 2018 [cited 2019 Apr 28]. p. 1–13. Available from: http://link.springer.com/10.1007/978-3-319-eng
dcterms.referencesSalgado-Almario J, Hernández CA, Ovalle CE. Distribución geográfica de las especies de Leishmania en Colombia, 1985-2017. Bio- médica [Internet]. 2019 [cited 2019 Apr 28];39(Sp.2):1–10. Available from: https://www.revistabiomedica.org/index.php/biomedica/article/ view/4312spa
dcterms.referencesMakerere Medical School. A, Yinusa W, Giwa S. African health sciences. [Internet]. Vol. 11, African Health Sciences. Faculty of Medicine, Makerere University; 2001 [cited 2019 Apr 28].1329– 1337 p. Available from: https://www.ajol.info/index.php/ahs/article/ view/18559eng
dcterms.referencesCardona Arias JA, Patiño-Martinez DA, López Carvajal L. Evaluaciones económicas en Leishmaniasis cutánea: revisión sistemática de literatura 1980-2014. Rev Econ del Caribe [Internet]. 2017 [cited 2019 Apr 21];2(20):52–70. Available from: http://rcientificas.uninorte. edu.co/index.php/economia/article/view/8580/html_398spa
dcterms.referencesWHO | Epidemiological situation. WHO [Internet]. 2018 [cited 2019 Apr 28]; Available from: https://www.who.int/leishmaniasis/burden/ en/.eng
dcterms.referencesStark CG, Vidyashankar C. Leishmaniasis [Internet]. Medscape. [cited 2019 Apr 28]. p. 1–8. Available from: https://emedicine.med- scape.com/article/220298-workupeng
dcterms.referencesSundar S, Rai M. Laboratory Diagnosis of Visceral Leishmani- asis. Clin Diagn Lab Immunol [Internet]. 2002 [cited 2019 Apr 21];9(5):951–8. Available from: https://www.ncbi.nlm.nih.gov/pmc/ articles/PMC120052/pdf/0013.pdfeng
dcterms.referencesManual de procedimientos para la vigilancia y control de las leish- maniasis [Internet]. [cited 2019 Apr 21]. Available from: www.paho. orgspa
dcterms.referencesGonzález-Marcano E, Kato H, Concepción JL, Márquez ME, Mon- dolfi AP. Polymerase Chain Reaction Diagnosis of Leishmaniasis: A Species-Specific Approach. In: Methods in molecular biology (Clif- ton, NJ) [Internet]. 2016 [cited 2019 Apr 21]. p. 113–24. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26843051eng
dcterms.referencesPaul Bird, Imaging in the Mobile Domain, Rheumatic Disease Clinics of North America, Volume 45, Issue 2, 2019, [cited 2019 Apr 21], Pages 291-302, ISBN 9780323678629, https://doi.org/10.1016/j. rdc.2019.01.002eng
dcterms.referencesNamakforoosh, M., Metodología de la investigación. Editorial Limusa, México, 2000spa
dcterms.referencesCegarra, J., Metodología de la investigación científica y técnológica. Ediciones Díaz de Santos, España, 2011.spa
dcterms.referencesM. Farahi, H. Rabbani, A. Mehri, "Automatic Boundary Extraction of Leishman Bodies in Bone Marrow Samples from Patients with Visceral Leishmaniasis", Journal of Isfahan Medical School, vol. 32, no. 286, 3rd week, July 2014. Dataset: https://sites.google.com/site/ hosseinrabbanikhorasgani/datasets-1/dataset-of-leishmania-para-eng
dcterms.referencesPressman, R., Ingeniería de software un enfoque práctico. McGraw Hill, España 2005.spa
dcterms.referencesHunt, R.W.: The Reproduction of Colour, Series in Imaging Science and Technology, 6ta edición, John Wiley & Sons, 2005eng
dcterms.referencesCañero, C., Radeva, P.: Vesselness enhancement diffusion. Pattern 914 www.revistaavft.com Recognition Letters 24(16): 3141–3151, 2003.eng
dcterms.referencesMeijering, H.: Image Enhancement in Digital X–Ray Angiography. Tesis de Doctorado, Utrecht University, 2000.eng
dcterms.referencesFrangi, A., Niessen, W., Vincken, K., Viergever, M.: Multi-scale ves- sel enhancement filtering. In: Proceedings International Conference on Medical Image Computing and Computer Assisted Intervention. Lecture Notes in Computer Science, Germany, 130–137, 1998.eng
dcterms.referencesSchroeder, W. The Visualization Toolkit: an object–oriented approach to 3D graphics. Kitware, Clifton Park, N.Y, 2006.eng
dcterms.referencesSchroeder, W. The Visualization Toolkit: an object–oriented ap- proach to 3D graphics. Kitware, Clifton Park, N.Y, 2006.eng
dcterms.referencesPauwels, E., Frederix, G. Finding salient regions in images: Non- parametric clustering for images segmentation and grouping. Computer Vision and Image Understanding 75(1-2):73-85, 1999.eng
dcterms.referencesLiu, Y. Study on Automatic Threshold Selection Algorithm of Sensor Images, Physics Procedia, 25:1769-1775, 2012.eng
dcterms.referencesQian, X., Brennan, M., Dione D., Dobrucki, W., Jackowski, M., Breuer, C., Sinusas, A. y Papademetris, X. A non-parametric vessel detection method for complex vascular structures. Medical Image Analysis, 13(1): 46-61, 2008.eng
dcterms.referencesReport of the Interregional meeting on Leishmaniasis among neigh- bouring endemic countries in the Eastern Mediterranean, African and European regions, Amman, Jordan, 23–25 September 2018. [cited 2019 Apr 22]; Available from: https://www.who.int/leishmani- asis/resources/who-em-ctd-081-e/en/eng
dcterms.referencesManual of procedures for surveillance and control of Leishmaniasis in the Americas (in Spanish). [cited 2019 Apr 21]; Available from: https://www.who.int/leishmaniasis/resources/978-92-75-32063-1/eng
dcterms.referencesManual of procedures for surveillance and control of Leishmaniasis in the Americas (in Spanish). [cited 2019 Apr 21]; Available from: https://www.who.int/leishmaniasis/resources/978-92-75-32063-1/eng
dcterms.referencesEssential leishmaniasis maps. [cited 2019 Apr 22]; Available from: https://www.who.int/leishmaniasis/leishmaniasis_maps/en/eng
dcterms.referencesPoostchi M, Silamut K, Maude RJ, Jaeger S, Thoma G. Im- age analysis and machine learning for detecting malaria. Transl Res; 194(2018):36–55. Available from: https://doi.org/10.1016/j. trsl.2017.12.004eng
dcterms.referencesSaeed MA, Jabbara A. "Smart diagnosis" of parasitic diseases by use of smartphones. J Clin Microbiol; [cited 2019 Apr 21];56(1):e01469- 17. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29046408eng
dcterms.referencesCoulibaly JT, Ouattara M, D'Ambrosio M V., Fletcher DA, Keiser J, Utzinger J, et al. Accuracy of Mobile Phone and Handheld Light Mi- croscopy for the Diagnosis of Schistosomiasis and Intestinal Proto- zoa Infections in Côte d'Ivoire. Hsieh MH, editor. PLoS Negl Trop Dis; [cited 2019 Apr 21];10(6):e0004768. Available from: https:// dx.plos.org/10.1371/journal.pntd.0004768eng
dcterms.referencesDallet C, Kareem S, Kale I. Real time blood image processing application for malaria diagnosis using mobile phones. In: International Conference on Circuits and Systems. IEEE;2014. p. 2405–2408.eng
dcterms.referencesRosado L, Da Costa JMC, Elias D, Cardoso JS. Automated Detection of Malaria Parasites on Thick Blood Smears via Mobile Devices. In: Procedia Computer Science [cited 2019 Apr 21].p.138–44. Available from: https://www.sciencedirect.com/science/article/pii/ S1877050916312029eng
dcterms.referencesFarahi M, Rabbani H, Talebi A, Sarrafzadeh O, Ensafi S. Automatic segmentation of Leishmania parasite in microscopic images using a modified CV level set method. Seventh Int Conf Graph Image Pro- cess (ICGIP 2015). 2015;9817(January 2016):98170K.eng
oaire.versioninfo:eu-repo/semantics/acceptedVersioneng

Archivos

Bloque original
Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
PDF.pdf
Tamaño:
568.59 KB
Formato:
Adobe Portable Document Format
Descripción:
PDF
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
381 B
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones