Efecto genotóxico y susceptibilidad genética asociada a la exposición crónica a partículas emitidas de la minería de carbón en la Loma-Cesar
datacite.rights | http://purl.org/coar/access_right/c_16ec | |
dc.contributor.advisor | León Mejía, Grethel | |
dc.contributor.advisor | Quintana Sosa, Milton | |
dc.contributor.author | Fiorillo Moreno, Ornella del Rosario | |
dc.date | 2050-25-04 | |
dc.date.accessioned | 2024-04-25T16:45:42Z | |
dc.date.available | 2024-04-25T16:45:42Z | |
dc.date.issued | 2024 | |
dc.description.abstract | La exposición al polvo de la minería del carbón representa un riesgo sustancial para la salud de las personas debido a la compleja mezcla de componentes liberados durante el proceso de extracción entre los que se emiten a la atmósfera grandes cantidades de cenizas, metales, óxidos y de hidrocarburos aromáticos policíclicos (HAP) lo que tiene diversos efectos a los ecosistemas naturales y las poblaciones humanas circundantes. Este estudio evalúo los efectos genotóxicos, longitud de telómeros y susceptibilidad genética asociada a la exposición crónica a partículas emitidas de minería de carbón en la Loma-Cesar. En esta investigación se incluyeron 150 personas expuestas al área de influencia a las minas de carbón de la Loma-Cesar y 120 personas que, por su tipo de trabajo, no están expuestas a fuentes industriales relacionadas con actividades de minería de carbón de la Ciudad de Barranquilla. Los resultados obtenidos en el ensayo cometa demuestran un mayor daño oxidativo en la población expuesta de la Loma-Cesar comparado con el grupo control; en el análisis de micronúcleos en linfocitos de sangre periférica fue encontrada una mayor formación de micronúcleos en el grupo expuesto, además, se evidenció telómeros significativamente más cortos en el grupo expuesto de la Loma-Cesar comparado con el grupo control. Se analizó mediante genotipificación por espectrometría de masas Maldi Tof, el polimorfismo ERCC2 Asp711Asp (rs1052555) de la vía de reparación de escisión de nucleótidos (NER), el polimorfismo del metabolismo AHR Arg554Lys (rs2066853), y los proinflamatorios IFNɣ G>A (rs2069705), Il12B T>G (rs3212227), CXCL8 A>T (rs4073). Así mismo, fue encontrado en el grupo expuesto una significativa correlación entre la presencia del polimorfismo del gen ERCC2 Asp711Asp y el daño oxidativo detectado con el ensayo cometa; los genes IL1-β-31T>C y ERCC2 Asp711Asp con la frecuencia de micronúcleos en linfocitos; y los genes IL1-B-31T>C, INFɣ G>A, CXCL8 A>T y AHR Arg554Lys en la longitud de telómeros. En los resultados del grupo control solo hubo una correlación significativa entre la presencia del polimorfismo del gen ERCC2 Asp711Asp y CXCL8 A>T y los niveles de daño oxidativo detectados con el ensayo cometa. Estos hallazgos pueden contribuir significativamente a la comprensión de los impactos de la minería del carbón en la salud humana y subrayan la importancia de estrategias preventivas y de intervención, lo cual a su vez tendría un impacto significativo en la salud pública y la calidad de vida de las personas expuestas. | spa |
dc.description.abstract | Exposure to coal mining dust represents a substantial risk to human health due to the complex mixture of components released during the extraction process among which large amounts of ash, metals, oxides and polycyclic aromatic hydrocarbons (PAHs) are emitted into the atmosphere with diverse effects on natural ecosystems and surrounding human populations. This study evaluated the genotoxic effects, telomere length and genetic susceptibility associated with chronic exposure to particulate matter emitted from coal mining in Loma-Cesar. This research included 150 people exposed to the area of influence of the coal mines of La Loma-Cesar and 120 people who, due to their type of work, are not exposed to industrial sources of coal mining activity in the city of Barranquilla. The results obtained in the comet assay show a greater oxidative damage in the exposed population of Loma-Cesar compared to the control group; in the analysis of micronuclei in peripheral blood lymphocytes, a greater formation of micronuclei was found in the exposed group; in addition, significantly shorter telomeres were evidenced in the exposed group of Loma-Cesar compared to the control group. The ERCC2 Asp711Asp (rs1052555) polymorphism of the nucleotide excision repair (NER) pathway was analyzed by Maldi Tof mass spectrometry genotyping, the AHR metabolism polymorphism Arg554Lys (rs2066853), and the proinflammatory IFNɣ G>A (rs2069705), Il-12B T>G (rs3212227), CXCL8 A>T (rs4073). Likewise, a significant correlation was found in the exposed group between the presence of the ERCC2 Asp711Asp gene polymorphism and oxidative damage detected with the comet assay; the IL1-β-31T>C and ERCC2 Asp711Asp genes with the frequency of micronuclei in lymphocytes; and the IL1- B-31T>C, INFɣ G>A, CXCL8 A>T and AHR Arg554Lys genes in telomere length. In the control group results there was only a significant correlation between the presence of the ERCC2 Asp711Asp and CXCL8 A>T gene polymorphism and the levels of oxidative damage detected with the comet assay. These findings may contribute significantly to the understanding of the impacts of coal mining on human health and underline the importance of preventive and intervention strategies, which in turn would have a significant impact on public health and the quality of life of exposed individuals | eng |
dc.format.mimetype | ||
dc.identifier.uri | https://hdl.handle.net/20.500.12442/14543 | |
dc.language.iso | spa | |
dc.publisher | Ediciones Universidad Simón Bolívar | spa |
dc.publisher | Facultad de Ciencias Básicas y Biomédicas | spa |
dc.rights.accessrights | info:eu-repo/semantics/restrictedAccess | |
dc.subject | Carbón | spa |
dc.subject | Emisiones de partículas de minas | spa |
dc.subject | Daño oxidativo | spa |
dc.subject | Telómeros | spa |
dc.subject | Polimorfismos | spa |
dc.subject | Material particulado | spa |
dc.subject | Coal | eng |
dc.subject | Mine particulate emissions | eng |
dc.subject | Oxidative damage | eng |
dc.subject | Telomeres | eng |
dc.subject | Polymorphisms | eng |
dc.subject | Particulate matter | eng |
dc.title | Efecto genotóxico y susceptibilidad genética asociada a la exposición crónica a partículas emitidas de la minería de carbón en la Loma-Cesar | |
dc.type.driver | info:eu-repo/semantics/doctoralThesis | |
dc.type.spa | Tesis de doctorado | |
dcterms.references | Maya Muñoz G. Cambio climático: ¿la humanidad culpable? Ens Econ. 2020 Jun;30(56):7–10. https://doi.org/10.15446/ede.v30n56.87109 | spa |
dcterms.references | Martínez Medina MA, López Monroy J, Díaz Godoy RV, Moreno Alcántara J, Martínez Medina MA, López Monroy J, et al. ESTUDIO ESPACIAL DEL CARBONO ELEMENTAL PRESENTE EN LA FRACCIÓN RESPIRABLE DE LAS PM2.5 MEDIANTE ESPECTROMETRÍA DE RETRODISPERSIÓN DE RUTHERFORD EN LA ZONA METROPOLITANA DEL VALLE DE TOLUCA. Rev Int Contam Ambient. 2020;36(4):893–905. https://doi.org/10.20937/RICA.53521 | spa |
dcterms.references | Ruiz-Bautista C. El impacto del carbón mineral en la salud humana - Carlota Ruiz-Bautista [Internet]. IIDMA. 2022 [cited 2023 Dec 17]. Available from: https://iidma.org/impacto-del-carbon-mineral-en-la-salud-humana/ | spa |
dcterms.references | Paz M, Magdaleno A, Tornello C, Balbis N, Moretton J. Genotoxicidad y determinación de compuestos tóxicos en un residuo líquido hospitalario de Buenos Aires, Argentina. Rev Int Contam Ambient. 2008 May;24(2):79 –87. http://www.scielo.org.mx/scielo.php?script=sci_abstract&pid=S0188 - 49992008000200004&lng=es&nrm=iso&tlng=es | spa |
dcterms.references | Rodríguez-Rey A, Noris-García E, Fundora Torres MT. Principios y relevancia del ensayo cometa. Rev Cuba Investig Bioméd. 2016 Jun;35(2):184– 94. http://scielo.sld.cu/scielo.php?script=sci_abstract&pid=S0864 - 03002016000200007&lng=es&nrm=iso&tlng=es | spa |
dcterms.references | Zalacain M, Sierrasesúmaga L, Patiño A. El ensayo de micronúcleos como medida de inestabilidad genética inducida por agentes genotóxicos. An Sist Sanit Navar. 2005 Aug;28(2):227–36. https://scielo.isciii.es/scielo.php?script=sci_abstract&pid=S11376627200500030 0007&lng=es&nrm=iso&tlng=es | spa |
dcterms.references | Torrades S. Diversidad del genoma humano: los polimorfismos. Offarm. 2002 May 1;21(5):122–5. https://www.elsevier.es/es-revista-offarm-4-articulodiversidad-del-genoma-humano-polimorfismos-13031745 | spa |
dcterms.references | Agencia Nacional de Minería ANM | Administración, Fomento, Promoción y Fiscalización de la Minería Nacional [Internet]. [cited 2023 Dec 16]. Available from: https://www.anm.gov.co/ | spa |
dcterms.references | M OUG, V RGM, G DFP. Condiciones de Seguridad y Salud en el Trabajo, una revisión teórica desde la minería colombiana. Rev Venez Gerenc [Internet]. 2019 [cited 2023 Dec 16];24(85). Available from: https://www.redalyc.org/articulo.oa?id=29058864013 | spa |
dcterms.references | Torres-Sandoval FA, Murcia-Hurtado DA. Riesgo por exposición a agentes químicos y atmósferas explosivas en minas de carbón de Tópaga, Colombia *. Entramado. 2021 Dec;17(2):292–304. | spa |
dcterms.references | Arteaga SS, Pérez LE, Sosa MQ. Efecto modulador del polimorfismo hOGG1Ser326Cys sobre la frecuencia de micronúcleos en poblaciones ocupacionalmente expuestas a residuos de minería de carbón. Salud UIS [Internet]. 2017 Mar 20 [cited 2023 Dec 15];49(1). Available from: https://revistas.uis.edu.co/index.php/revistasaluduis/article/view/6190 | spa |
dcterms.references | Sustancias químicas en la carne cocinada a altas temperaturas y el riesgo de cáncer - NCI [Internet]. 2018 [cited 2023 Dec 15]. Available from: https://www.cancer.gov/espanol/cancer/causasprevencion/riesgo/dieta/hoja-informativa-carne-cocinada | spa |
dcterms.references | Rodríguez Suárez MM. Cáncer de pulmón por hidrocarburos aromáticos policíclicos en la población del estudio CAPUA [Internet] [http://purl.org/dc/dcmitype/Text]. Universidad de Oviedo; 2011 [cited 2023 Dec 15]. Available from: https://dialnet.unirioja.es/servlet/tesis?codigo=98684 | spa |
dcterms.references | Zhao D, Yan M, Guo L, Liu D, Zhang R, Yan H, et al. Cooking stoves and risk of congenital heart disease in Northwest China: A case-control study. Sci Total Environ. 2022 Apr 10;816:151564. | eng |
dcterms.references | González X, Melo D. Historizar el lugar para resistir el desplazamiento por minería de carbón: una aproximación teórica al caso de la comunidad de Boquerón en el Cesar. Mem Soc. 2015 Sep 15;19(39):107–26. | spa |
dcterms.references | Rodríguez Aparicio J, Vergara Buitrago PA. Análisis ambiental de la minería de carbón en el ecosistema estratégico de páramo (Boyacá, Colombia). Sci Tech. 2021;26(3):398–405. | spa |
dcterms.references | Efectos tóxicos asociados con la exposición a contaminantes derivados de la minería de carbón [Internet]. [cited 2023 Dec 15]. Available from: https://repositorio.unicartagena.edu.co/handle/11227/4538 | spa |
dcterms.references | León J de C y. Naturaleza y origen del carbón [Internet]. Junta de Castilla y León; [cited 2023 Dec 15]. Available from: https://energia.jcyl.es/web/es/biblioteca/naturaleza-origen-carbon.html | spa |
dcterms.references | AreaCiencias. El Carbón [Internet]. Areaciencias. 2017 [cited 2023 Dec 15]. Available from: https://www.areaciencias.com/geologia/carbon/ | spa |
dcterms.references | Zapata RB, Bayer JFP, Jiménez CS. Carbones colombianos: clasificación y caracterización termoquímica para aplicaciones energéticas. Rev ION [Internet]. 2015 Jan 20 [cited 2023 Dec 15];27(2). Available from: https://revistas.uis.edu.co/index.php/revistaion/article/view/4589 | spa |
dcterms.references | Gallego Carmona E. Poder calorífico de carbones colombianos a partir de análisis próximo. 2015 [cited 2023 Dec 15]; Available from: https://bibliotecadigital.univalle.edu.co/entities/publication/b3ca69f5-9355- 4b37-879e-75b2ed7484f3 | spa |
dcterms.references | Acevedo S, Galicia L, Plaza E, Atencio R, Rodríguez A, González E. Carbón activado preparado a partir de carbón mineral bituminoso activado con hidróxido de potasio. Rev Téc Fac Ing Univ Zulia. 2016 Aug;39(2):064–70. | spa |
dcterms.references | Arzadún G, Cisternas ME, Cesaretti NN, Tomezzoli RN. Análisis de materia orgánica en niveles de carbón identificados en el pozo PANG0001, en la Formación Tunas (Pérmico de Gondwana), Cuenca de Claromecó, provincia de Buenos Aires. Rev Asoc Geológica Argent. 2016 Dec 30;73(4):538–51. | spa |
dcterms.references | Toro Cataño DA, Ramírez García J, Sepúlveda Mejía DL. Riesgos ambientales y de seguridad en calderas a carbón de las pequeñas y medianas empresas «PYME», ubicadas en el municipio de Itagüí, Antioquia. 2017 Jul 1 [cited 2023 Dec 15]; Available from: https://repositorio.unal.edu.co/handle/unal/65491 | spa |
dcterms.references | Parra Y, Esteves I, Escobar M, Portillo E, Rojas JA. Study of Maracaibo Lake water-coal interaction. Rev Téc Fac Ing Univ Zulia. 2008 Dec;31(Especial):12–21. | eng |
dcterms.references | Somoza A, Vázquez P, Somoza A, Vázquez P. Variación espacio temporal del stock de carbono orgánico y su relación con los cambios en el uso del suelo. Partido de Tandil, Región Pampeana Austral, Argentina. Rev Geográfica América Cent. 2023 Jun;(70):476–513 | spa |
dcterms.references | Cely-Andrade JL, García-Ubaque JC, Manrique-Abril F. Calidad de vida relacionada con la salud en población minera de Boyacá. Rev Salud Pública. 2017 Jun;19:362–7. | spa |
dcterms.references | Schins R. Mechanisms and Mediators in Coal Dust InducedToxicity: a Review. Ann Occup Hyg. 1999 Jan 2;43(1):7–33. | eng |
dcterms.references | Shi X, Ding M, Chen F, Wang L, Rojanasakul Y, Vallyathan V, et al. Reactive oxygen species and molecular mechanism of silica-induced lung injury. J Environ Pathol Toxicol Oncol Off Organ Int Soc Environ Toxicol Cancer. 2001;20 Suppl 1:85–93. | eng |
dcterms.references | Vallyathan V, Shi X, Castranova V. Reactive oxygen species: their relation to pneumoconiosis and carcinogenesis. Environ Health Perspect. 1998 Oct;106(suppl 5):1151–5. | eng |
dcterms.references | van Berlo D, Hullmann M, Schins RPF. Toxicology of ambient particulate matter. Exp Suppl 2012. 2012;101:165–217. | eng |
dcterms.references | Ahmad J, Akhter S, Rizwanullah M, Amin S, Rahman M, Ahmad MZ, et al. Nanotechnology-based inhalation treatments for lung cancer: state of the art. Nanotechnol Sci Appl. 2015 Nov 19;8:55–66. | eng |
dcterms.references | Heavy Metals in Foods and Beverages [Internet]. [cited 2023 Dec 15]. Available from: https://encyclopedia.pub/entry/50130 | eng |
dcterms.references | Shimada M. A. Nutrición animal. | spa |
dcterms.references | Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ. Heavy Metals Toxicity and the Environment. EXS. 2012;101:133–64. | eng |
dcterms.references | Rodríguez Heredia D. Intoxicación ocupacional por metales pesados. MEDISAN. 2017 Dec;21(12):3372–85. | spa |
dcterms.references | Koedrith P, Seo YR. Advances in carcinogenic metal toxicity and potential molecular markers. Int J Mol Sci. 2011;12(12):9576–95. | eng |
dcterms.references | Moulis JM. Cellular mechanisms of cadmium toxicity related to the homeostasis of essential metals. Biometals Int J Role Met Ions Biol Biochem Med. 2010 Oct;23(5):877–96. | eng |
dcterms.references | Leonard SS, Bower JJ, Shi X. Metal-induced toxicity, carcinogenesis, mechanisms and cellular responses. Mol Cell Biochem. 2004 Jan;255(1– 2):3–10. | eng |
dcterms.references | Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact. 2006 Mar 10;160(1):1–40. | eng |
dcterms.references | Chen F, Shi X. Intracellular signal transduction of cells in response to carcinogenic metals. Crit Rev Oncol Hematol. 2002 Apr 1;42(1):105–21. | eng |
dcterms.references | Nemmiche S, Chabane-Sari D, Kadri M, Guiraud P. Cadmium-induced apoptosis in the BJAB human B cell line: involvement of PKC/ERK1/2/JNK signaling pathways in HO-1 expression. Toxicology. 2012 Oct 28;300(3):103–11. | eng |
dcterms.references | Mattagajasingh SN, Misra BR, Misra HP. Carcinogenic chromium(VI)- induced protein oxidation and lipid peroxidation: implications in DNA-protein crosslinking. J Appl Toxicol JAT. 2008 Nov;28(8):987–97. | eng |
dcterms.references | Matés JM, Segura JA, Alonso FJ, Márquez J. Roles of dioxins and heavy metals in cancer and neurological diseases using ROS-mediated mechanisms. Free Radic Biol Med. 2010 Nov 15;49(9):1328–41. | eng |
dcterms.references | Matés JM, Segura JA, Alonso FJ, Márquez J. Oxidative stress in apoptosis and cancer: an update. Arch Toxicol. 2012 Nov;86(11):1649–65. | eng |
dcterms.references | Filipič . echanisms of cadmium induced genomic instabilit . utat Res. 2012 May 1;733(1–2):69–77 | eng |
dcterms.references | Chanda S, Dasgupta UB, Guhamazumder D, Gupta M, Chaudhuri U, Lahiri S, et al. DNA hypermethylation of promoter of gene p53 and p16 in arsenicexposed people with and without malignancy. Toxicol Sci Off J Soc Toxicol. 2006 Feb;89(2):431–7. | eng |
dcterms.references | Cer ak , Zingariello C, O’Brien T, atierno R. Induction of pro-apoptotic and cell cycle-inhibiting genes in chromium (VI)-treated human lung fibroblasts: lack of effect of ERK. Mol Cell Biochem. 2004 Jan;255(1–2):139– 49. | eng |
dcterms.references | León Regal M, Alvarado Borges A, de Armas García J, Miranda Alvarado L, Varens Cedeño J, Cuesta del Sol J. Respuesta inflamatoria aguda. Consideraciones bioquímicas y celulares: cifras alarmantes. Rev Finlay. 2015 Mar;5(1):47–62. | spa |
dcterms.references | Navarro-Aviñó JP, Alonso IA, López-Moya JR. Aspectos bioquímicos y genéticos de la tolerancia y acumulación de metales pesados en plantas: Ecosistemas [Internet]. 2007 [cited 2023 Dec 15];16(2). Available from: https://www.revistaecosistemas.net/index.php/ecosistemas/article/view/125 | spa |
dcterms.references | Ortiz-Salinas R, Cram S, Sommer I. Hidrocarburos aromáticos policíclicos (HAPs) en suelos de la llanura aluvial baja del estado de Tabasco, México. Univ Cienc.2012 Aug;28(2):131–44. http://www.scielo.org.mx/scielo.php?script=sci_abstract&pid=S0186 - 29792012000200003&lng=es&nrm=iso&tlng=es | spa |
dcterms.references | Andersen ME, Modak N, Winterrowd CK, Lee CW, Roberts WL, Wendt JOL, et al. Soot, organics, and ultrafine ash from air- and oxy-fired coal combustion. Proc Combust Inst. 2017;36(3):4029–37. doi:10.1016/j.proci.2016.08.073. | eng |
dcterms.references | Partanen T, Monge P, Wesseling C. Causas y prevención del cáncer ocupacional. Acta Médica Costarric. 2009 Dec;51(4):195–205. http://www.scielo.sa.cr/scielo.php?script=sci_abstract&pid=S0001- 60022009000400003&lng=en&nrm=iso&tlng=es | spa |
dcterms.references | Zainal PNS, Alang Ahmad SA, Abdul Aziz SFN, Rosly NZ. Polycyclic Aromatic Hydrocarbons: Occurrence, Electroanalysis, Challenges, and Future Outlooks. Crit Rev Anal Chem. 2022;52(4):878–96. doi:10.1080/10408347.2020.1839736. | eng |
dcterms.references | Negi S, Bala L, Shukla S, Chopra D. Tattoo inks are toxicological risks to human health: A systematic review of their ingredients, fate inside skin, toxicity due to polycyclic aromatic hydrocarbons, primary aromatic amines, metals, and overview of regulatory frameworks. Toxicol Ind Health. 2022 Jul;38(7):417–34. doi:10.1177/07482337221100870. | eng |
dcterms.references | Leachi HFL, Marziale MHP, Martins JT, Aroni P, Galdino MJQ, Ribeiro RP. Polycyclic aromatic hydrocarbons and development of respiratory and cardiovascular diseases in workers. Rev Bras Enferm. 2020;73(3):e20180965. doi:10.1590/0034-7167-2018-0965. | eng |
dcterms.references | Rosário Filho NA, Urrutia-Pereira M, D’Amato G, Cecchi L, Ansotegui IJ, Galán C, et al. Air pollution and indoor settings. World Allergy Organ J. 2021 Jan;14(1):100499. doi:10.1016/j.waojou.2020.100499. | eng |
dcterms.references | Boffetta P, Jourenkova N, Gustavsson P. Cancer risk from occupational and environmental exposure to polycyclic aromatic hydrocarbons. Cancer Causes Control CCC. 1997 May;8(3):444–72. doi:10.1023/a:1018465507029 | eng |
dcterms.references | Nadon L, Siemiatycki J, Dewar R, Krewski D, Gérin M. Cancer risk due to occupational exposure to polycyclic aromatic hydrocarbons. Am J Ind Med. 1995 Sep;28(3):303–24. doi:10.1002/ajim.4700280302 | eng |
dcterms.references | Shala NK, Stenehjem JS, Babigumira R, Liu FC, Berge LAM, Silverman DT, et al. Exposure to benzene and other hydrocarbons and risk of bladder cancer among male offshore petroleum workers. Br J Cancer. 2023 Sep;129(5):838 –51. doi:10.1038/s41416-023-02357-0. | eng |
dcterms.references | Krewski D, Thorslund T, Withey J. Carcinogenic risk assessment of complex mixtures. Toxicol Ind Health. 1989 Oct;5(5):851–67. doi:10.1177/074823378900500520. | eng |
dcterms.references | Jones SA, Moore LB, Shenk JL, Wisely GB, Hamilton GA, McKee DD, et al. The pregnane X receptor: a promiscuous xenobiotic receptor that has diverged during evolution. Mol Endocrinol Baltim Md. 2000 Jan;14(1):27–39. doi:10.1210/mend.14.1.0409 | eng |
dcterms.references | Denissenko MF, Pao A, Tang M, Pfeifer GP. Preferential formation of benzo[a]pyrene adducts at lung cancer mutational hotspots in P53. Science. 1996 Oct 18;274(5286):430–2. doi:10.1126/science.274.5286.430. | eng |
dcterms.references | Pérez-Morales López G, Morales Gómez P, Haza Duaso AI. Hidrocarburos aromáticos policíclicos (HAPs) (I): Toxicidad, exposición de la población y alimentos implicados. Rev Complut Cienc Vet. 2016;10(1):3–15. https://dialnet.unirioja.es/servlet/articulo?codigo=5674800 | spa |
dcterms.references | Aguilar Palacios YA. Daño reproductivo relacionado con el uso de plaguicidas Y/O Pesticidas en los trabajadores de la Industria Agricola: una revisión de los años 1990 a 2014 a nivel Internacional. 2015 [cited 2023 Dec 15]; Available from: https://digitk.areandina.edu.co/handle/areandina/4786 | spa |
dcterms.references | Bekki K, Toriba A, Tang N, Kameda T, Hayakawa K. Biological effects of polycyclic aromatic hydrocarbon derivatives. J UOEH. 2013 Mar 1;35(1):17 –24. doi:10.7888/juoeh.35.17. | eng |
dcterms.references | Meléndez Gélvez I, Quijano Vargas MJ, Quijano Parra A, Meléndez Gélvez I, Quijano Vargas MJ, Quijano Parra A. Actividad mutagénica inducida por hidrocarburos aromáticos policíclicos en muestras de PM 2.5 en un sector residencial de Villa del Rosario-norte de Santander, Colombia. Rev Int Contam Ambient. 2016 Nov;32(4):435–44. doi:10.20937/RICA.2016.32.04.07. | spa |
dcterms.references | Xue W, Warshawsky D. Metabolic activation of polycyclic and heterocyclic aromatic hydrocarbons and DNA damage: a review. Toxicol Appl Pharmacol. 2005 Aug 1;206(1):73–93. doi:10.1016/j.taap.2004.11.006. | eng |
dcterms.references | Tsuji G, Takahara M, Uchi H, Takeuchi S, Mitoma C, Moroi Y, et al. An environmental contaminant, benzo(a)pyrene, induces oxidative stress-mediated interleukin-8 production in human keratinocytes via the aryl hydrocarbon receptor signaling pathway. J Dermatol Sci. 2011 Apr 1;62(1):42–9. doi:10.1016/j.jdermsci.2010.10.017. | eng |
dcterms.references | Moléculas | Texto completo gratuito | Mecanismo de formación del benzo(a)pireno: uno de los hidrocarburos aromáticos policíclicos (HAP) más cancerígenos [Internet]. [cited 2023 Dec 15]. Available from: https://www.mdpi.com/1420-3049/24/6/1040 | spa |
dcterms.references | Zuo J, Brewer DS, Arlt VM, Cooper CS, Phillips DH. Benzo pyrene-induced DNA adducts and gene expression profiles in target and non-target organs for carcinogenesis in mice. BMC Genomics. 2014 Oct 8;15(1):880. doi:10.1186/1471- 2164-15-880. | eng |
dcterms.references | Baird WM, Hooven LA, Mahadevan B. Carcinogenic polycyclic aromatic hydrocarbon-DNA adducts and mechanism of action. Environ Mol Mutagen. 2005;45(2–3):106–14. doi:10.1002/em.20095. | eng |
dcterms.references | Shi S, Yoon DY, Hodge-Bell KC, Bebenek IG, Whitekus MJ, Zhang R, et al. The aryl hydrocarbon receptor nuclear translocator (Arnt) is required for tumor initiation by benzo[a]pyrene. Carcinogenesis. 2009 Nov;30(11):1957 –61. doi:10.1093/carcin/bgp201. | eng |
dcterms.references | Costa C, Catania S, De Pasquale R, Stancanelli R, Scribano GM, Melchini A. Exposure of human skin to benzo[a]pyrene: Role of CYP1A1 and aryl hydrocarbon receptor in oxidative stress generation. Toxicology. 2010 May 27;271(3):83–6. doi:10.1016/j.tox.2010.02.014. | eng |
dcterms.references | Park JH, Mangal D, Frey AJ, Harvey RG, Blair IA, Penning TM. Aryl hydrocarbon receptor facilitates DNA strand breaks and 8-oxo-2’- deoxyguanosine formation by the aldo-keto reductase product benzo[a]pyrene7,8-dione. J Biol Chem. 2009 Oct 23;284(43):29725–34. doi:10.1074/jbc.M109.042143 | eng |
dcterms.references | Tekpli X, Rissel M, Huc L, Catheline D, Sergent O, Rioux V, et al. Membrane remodeling, an early event in benzo[a]pyrene-induced apoptosis. Toxicol Appl Pharmacol. 2010 Feb 15;243(1):68–76. doi:10.1016/j.taap.2009.11.014 | eng |
dcterms.references | Iwano S, Ichikawa M, Takizawa S, Hashimoto H, Miyamoto Y. Identification of AhR-regulated genes involved in PAH-induced immunotoxicity using a highlysensitive DNA chip, 3D-Gene Human Immunity and Metabolic Syndrome 9k. Toxicol Vitro Int J Publ Assoc BIBRA. 2010 Feb;24(1):85–91. doi:10.1016/j.tiv.2009.08.030. | eng |
dcterms.references | Métodos de control para evitar la silicosis por exposición a sílice cristalina en trabajadores de la industria manufacturera [Internet]. [cited 2023 Dec 15]. Available from: https://repository.javeriana.edu.co/handle/10554/54950?localeattribute=de | spa |
dcterms.references | Abú- Shams K, Fanlo P, Lorente MP. Silicosis. An Sist Sanit Navar. 2005;28:83–9. https://scielo.isciii.es/scielo.php?script=sci_abstract&pid=S1137 - 66272005000200011&lng=es&nrm=iso&tlng=es | eng |
dcterms.references | Sílice (Resumen y evaluación de IARC, volumen 68, 1997) [Internet]. [cited 2023 Dec 15]. Available from: https://www.inchem.org/documents/iarc/vol68/silica.html | spa |
dcterms.references | Martínez-Aguilar NE, Vargas-Camaño ME, Hernández-Pliego RR, ChaiaSemerena GM, Pérez-Chavira M del R, Martínez-Aguilar NE, et al. Inmunopatología de la enfermedad pulmonar obstructiva crónica. Rev Alerg México. 2017 Sep;64(3):327–46. doi:10.29262/ram.v64i3.263. | spa |
dcterms.references | Cui X, Zhang Y, Lu Y, Xiang M. ROS and Endoplasmic Reticulum Stress in Pulmonary Disease. Front Pharmacol. 2022 Apr 26;13:879204. doi:10.3389/fphar.2022.879204 | eng |
dcterms.references | Valavanidis A, Vlachogianni T, Fiotakis K, Loridas S. Pulmonary Oxidative Stress, Inflammation and Cancer: Respirable Particulate Matter, Fibrous Dusts and Ozone as Major Causes of Lung Carcinogenesis through Reactive Oxygen Species Mechanisms. Int J Environ Res Public Health. 2013 Aug 27;10(9):3886– 907. doi:10.3390/ijerph10093886. | eng |
dcterms.references | Zhang Y, Liang J, Cao N, Gao J, Song L, Tang X. Coal dust nanoparticles induced pulmonary fibrosis by promoting inflammation and epithelialmesenchymal transition via the NF-κB/NLRP3 pathway driven by IGF1/ROSmediated AKT/GSK3β signals. Cell Death Discov. 2022 Dec 29;8(1):500. doi:10.1038/s41420-022-01291-z. | eng |
dcterms.references | Hirota K, Ter H. Endocytosis of Particle Formulations by Macrophages and Its Application to Clinical Treatment. In: Ceresa B, editor. Molecular Regulation of Endocytosis [Internet]. InTech; 2012 [cited 2023 Dec 6]. Available from: http://www.intechopen.com/books/molecular-regulation-ofendocytosis/endocytosis-of-particle-formulations-by-macrophages-and-itsapplication-to-clinical-treatment | eng |
dcterms.references | Murphy J, Summer R, Wilson AA, Kotton DN, Fine A. The Prolonged LifeSpan of Alveolar Macrophages. Am J Respir Cell Mol Biol. 2008 Apr;38(4):380 – 5. doi:10.1165/rcmb.2007-0224RC | eng |
dcterms.references | Perlman H, Pagliari LJ, Georganas C, Mano T, Walsh K, Pope RM. FliceInhibitory Protein Expression during Macrophage Differentiation Confers Resistance to FAS-Mediated Apoptosis. J Exp Med. 1999 Dec 6;190(11):1679– 88. doi:10.1084/jem.190.11.1679. | eng |
dcterms.references | Butnor KJ, Roggli VL. 10 - Pneumoconioses. In: Leslie KO, Wick MR, editors. Practical Pulmonary Pathology: A Diagnostic Approach (Third Edition) [Internet]. Elsevier; 2018 [cited 2023 Dec 16]. p. 335-364.e3. Available from: https://www.sciencedirect.com/science/article/pii/B9780323442848000107 | eng |
dcterms.references | José Zocche J, Dimer Leffa D, Paganini Damiani A, Carvalho F, Avila Mendonça R, Dos Santos CEI, et al. Heavy metals and DNA damage in blood cells of insectivore bats in coal mining areas of Catarinense coal basin, Brazil. Environ Res. 2010 Oct;110(7):684–91. doi:10.1016/j.envres.2010.06.003. | eng |
dcterms.references | Ling SH, McDonough JE, Gosselink JV, Elliott WM, Hayashi S, Hogg JC, et al. Patterns of Retention of Particulate Matter in Lung Tissues of Patients With COPD. Chest. 2011 Dec;140(6):1540–9. doi:10.1378/chest.10-2281. | eng |
dcterms.references | Kirby AC, Coles MC, Kaye PM. Alveolar Macrophages Transport Pathogens to Lung Draining Lymph Nodes. J Immunol. 2009 Aug 1;183(3):1983 – 9. doi:10.4049/jimmunol.0901089. | eng |
dcterms.references | Hogg JC, Van Eeden S. Pulmonary and systemic response to atmospheric pollution. Respirology. 2009 Apr;14(3):336–46. doi:10.1111/j.1440- 1843.2009.01497.x. | eng |
dcterms.references | van EEDEN SF, Tan WC, Suwa T, Mukae H, Terashima T, Fujii T, et al. Cytokines Involved in the Systemic Inflammatory Response Induced by Exposure to Particulate Matter Air Pollutants (PM 10 ). Am J Respir Crit Care Med. 2001 Sep 1;164(5):826–30. doi:10.1164/ajrccm.164.5.2010160. | eng |
dcterms.references | Eeden SFV, Hogg JC. SYSTEMIC INFLAMMATORY RESPONSE INDUCED BY PARTICULATE MATTER AIR POLLUTION: THE IMPORTANCE OF BONE-MARROW STIMULATION. J Toxicol Environ Health A. 2002 Oct 12;65(20):1597–613. doi:10.1080/00984100290071685. | eng |
dcterms.references | Fujii T, Hayashi S, Hogg JC, Mukae H, Suwa T, Goto Y, et al. Interaction of Alveolar Macrophages and Airway Epithelial Cells Following Exposure to Particulate Matter Produces Mediators that Stimulate the Bone Marrow. Am J Respir Cell Mol Biol. 2002 Jul 1;27(1):34–41. doi:10.1165/ajrcmb.27.1.4787. | eng |
dcterms.references | Alexis N, Lay J, Zeman K, Bennett W, Peden D, Soukup J, et al. Biological material on inhaled coarse fraction particulate matter activates airway phagocytes in vivo in healthy volunteers. J Allergy Clin Immunol. 2006 Jun;117(6):1396 –403. doi:10.1016/j.jaci.2006.02.030. | eng |
dcterms.references | Fröhlich E, Salar-Behzadi S. Toxicological Assessment of Inhaled Nanoparticles: Role of in Vivo, ex Vivo, in Vitro, and in Silico Studies. Int J Mol Sci. 2014 Mar 18;15(3):4795–822. doi:10.3390/ijms15034795. | eng |
dcterms.references | Camelo A, Dunmore R, Sleeman MA, Clarke DL. The epithelium in idiopathic pulmonary fibrosis: breaking the barrier. Front Pharmacol [Internet]. 2014 [cited 2023 Dec 6];4. Available from: http://journal.frontiersin.org/article/10.3389/fphar.2013.00173/abstract | eng |
dcterms.references | Sziksz E, Pap D, Lippai R, Béres NJ, Fekete A, Szabó AJ, et al. Fibrosis Related Inflammatory Mediators: Role of the IL-10 Cytokine Family. Mediators Inflamm. 2015;2015:1–15. doi:10.1155/2015/764641. | eng |
dcterms.references | Serrano-Mollar A. La célula epitelial como factor etiopatogénico de la fibrosis pulmonar. Arch Bronconeumol. 2012 Jan;48:2–6. doi:10.1016/S0300- 2896(12)70044-3. | spa |
dcterms.references | Davies DE. Epithelial Barrier Function and Immunity in Asthma. Ann Am Thorac Soc. 2014 Dec;11(Supplement 5):S244–51. doi:10.1513/AnnalsATS.201407-304AW. | eng |
dcterms.references | Strieter RM, Mehrad B. New mechanisms of pulmonary fibrosis. Chest. 2009 Nov;136(5):1364–70. doi:10.1378/chest.09-0510 | eng |
dcterms.references | Hewlett JC, Kropski JA, Blackwell TS. Idiopathic pulmonary fibrosis: Epithelial-mesenchymal interactions and emerging therapeutic targets. Matrix Biol. 2018 Oct;71–72:112–27. doi:10.1016/j.matbio.2018.03.021. | eng |
dcterms.references | Meyer KC. Pulmonary fibrosis, part I: epidemiology, pathogenesis, and diagnosis. Expert Rev Respir Med. 2017 Apr 10;1–17. doi:10.1080/17476348.2017.1312346. | eng |
dcterms.references | Kendall RT, Feghali-Bostwick CA. Fibroblasts in fibrosis: novel roles and mediators. Front Pharmacol [Internet]. 2014 May 27 [cited 2023 Dec 6];5. Available from: http://journal.frontiersin.org/article/10.3389/fphar.2014.00123/abstract | eng |
dcterms.references | Hoyles RK, Derrett-Smith EC, Khan K, Shiwen X, Howat SL, Wells AU, et al. An Essential Role for Resident Fibroblasts in Experimental Lung Fibrosis Is Defined by Lineage-Specific Deletion of High-Affinity Type II Transforming Growth Factor β Receptor. Am J Respir Crit Care Med. 2011 Jan 15;183(2):249– 61. doi:10.1164/rccm.201002-0279OC. | eng |
dcterms.references | Liu G, Cooley MA, Jarnicki AG, Borghuis T, Nair PM, Tjin G, et al. Fibulin1c regulates transforming growth factor–β activation in pulmonary tissue fibrosis. JCI Insight. 2019 Aug 22;4(16):e124529. doi:10.1172/jci.insight.124529. | eng |
dcterms.references | Beckett EL, Stevens RL, Jarnicki AG, Kim RY, Hanish I, Hansbro NG, et al. A new short-term mouse model of chronic obstructive pulmonary disease identifies a role for mast cell tryptase in pathogenesis. J Allergy Clin Immunol. 2013 Mar;131(3):752-762.e7. doi:10.1016/j.jaci.2012.11.053. | eng |
dcterms.references | Hallstrand, T.S.; Hackett, T.L.; Altemeier, W.A.; Matute-Bello, G.; Hansbro, P.M.; Knight, D.A. Airway Epithelial Regulation of Pulmonary Immune Homeostasis and Inflammation. Clin. Immunol. 2014, 151, 1–15, doi:10.1016/j.clim.2013.12.003. | eng |
dcterms.references | Liu, J.; Song, H.Y.; Zhu, B.L.; Pan, L.P.; Qian, X.L. The Effect of Silica Dust Exposure on the Serum Clara Cell Protein 16 Levels in Chinese Workers. Biomed. Environ. Sci. BES 2019, 32, 47–50, doi:10.3967/bes2019.007. | eng |
dcterms.references | Manning, C.M.; Johnston, C.J.; Hernady, E.; Miller, J.H.; Reed, C.K.; Lawrence, B.P.; Williams, J.P.; Finkelstein, J.N. Exacerbation of Lung Radiation Injury by Viral Infection: The Role of Clara Cells and Clara Cell Secretory Protein. Radiat. Res. 2013, 179, 617–629, doi:10.1667/RR3279.1. doi: 10.1667/RR3279.1 | eng |
dcterms.references | Briana, D.D.; Gourgiotis, D.; Boutsikou, M.; Baka, S.; Marmarinos, A.; Liosi, S.; Hassiakos, D.; Malamitsi-Puchner, A. Clara Cell Protein in Full-Term Pregnancies: The Influence of Intrauterine Growth Restriction. Pediatr. Pulmonol. 2010, 45, 1186–1191, doi:10.1002/ppul.21305. | eng |
dcterms.references | Zhang, S.; Jia, Q.; Song, J.; Tan, Q.; Yu, G.; Guo, X.; Zhang, H. Clinical Significance of CC16 and IL-12 in Bronchoalveolar Lavage Fluid of Various Stages of Silicosis. Ann. Palliat. Med. 2020, 9, 3848–3856, doi:10.21037/apm- 20- 1838. | eng |
dcterms.references | Naha, N.; Muhamed, JaseerC.J.; Pagdhune, A.; Sarkar, B.; Sarkar, K. Club Cell Protein 16 as a Biomarker for Early Detection of Silicosis. Indian J. Med. Res. 2020, 151, 319, doi:10.4103/ijmr.IJMR_1799_18. | eng |
dcterms.references | Sarkar, K.; Dhatrak, S.; Sarkar, B.; Ojha, U.C.; Raghav, P.; Pagdhune, A. Secondary Prevention of Silicosis and Silico‐tuberculosis by Periodic Screening of Silica Dust Exposed Workers Using Serum Club Cell Protein 16 as a Proxy Marker. Health Sci. Rep. 2021, 4, e373, doi:10.1002/hsr2.373. | eng |
dcterms.references | La Naturaleza de La Obstrucción de Las Vías Respiratorias Pequeñas En La Enfermedad Pulmonar Obstructiva Crónica | NEJM Available online: https://www.nejm.org/doi/full/10.1056/NEJMoa032158 (accessed on 16 December 2023). | spa |
dcterms.references | Hodge, G.; Jersmann, H.; Tran, H.B.; Holmes, M.; Reynolds, P.N.; Hodge, S. Lymphocyte Senescence in COPD Is Associated with Loss of Glucocorticoid Receptor Expression by Pro-Inflammatory/Cytotoxic Lymphocytes. Respir. Res. 2015, 16, 2, doi:10.1186/s12931-014-0161-7. | eng |
dcterms.references | Immunologic Aspects of Chronic Obstructive Pulmonary Disease | NEJM Available online: https://www.nejm.org/doi/full/10.1056/NEJMra0804752 (accessed on 16 December 2023). | eng |
dcterms.references | Linfocitos T CD8+ En Las Vías Respiratorias Periféricas de Fumadores Con Enfermedad Pulmonar Obstructiva Crónica | Revista Estadounidense de Medicina Respiratoria y de Cuidados Críticos Available online: https://www.atsjournals.org/doi/10.1164/ajrccm.157.3.9709027 (accessed on 16 December 2023). | spa |
dcterms.references | Inflammation and Immune Response in COPD: Where Do We Stand? Available online: https://www.hindawi.com/journals/mi/2013/413735/ (accessed on 16 December 2023). | eng |
dcterms.references | Litsiou, E.; Semitekolou, M.; Galani, I.E.; Morianos, I.; Tsoutsa, A.; Kara, P.; Rontogianni, D.; Bellenis, I.; Konstantinou, M.; Potaris, K.; et al. CXCL13 Production in B Cells via Toll-like Receptor/Lymphotoxin Receptor Signaling Is Involved in Lymphoid Neogenesis in Chronic Obstructive Pulmonary Disease. Am. J. Respir. Crit. Care Med. 2013, 187, 1194–1202, doi:10.1164/rccm.201208- 1543OC. | eng |
dcterms.references | Bracke, K.R.; Verhamme, F.M.; Seys, L.J.M.; Bantsimba-Malanda, C.; Cunoosamy, D.M.; Herbst, R.; Hammad, H.; Lambrecht, B.N.; Joos, G.F.; Brusselle, G.G. Role of CXCL13 in Cigarette Smoke–Induced Lymphoid Follicle Formation and Chronic Obstructive Pulmonary Disease. Am. J. Respir. Crit. Care Med. 2013, 188, 343–355, doi:10.1164/rccm.201211-2055OC. | eng |
dcterms.references | Brusselle, G.G.; Demoor, T.; Bracke, K.R.; Brandsma, C.-A.; Timens, W. Lymphoid Follicles in (Very) Severe COPD: Beneficial or Harmful? Eur. Respir. J. 2009, 34, 219–230, doi:10.1183/09031936.00150208. | eng |
dcterms.references | Øvrevik, J.; Refsnes, M.; Låg, M.; Holme, J.; Schwarze, P. Activation of Proinflammatory Responses in Cells of the Airway Mucosa by Particulate Matter: Oxidant- and Non-Oxidant-Mediated Triggering Mechanisms. Biomolecules 2015, 5, 1399–1440, doi:10.3390/biom5031399. | eng |
dcterms.references | Zhang, J.-M.; An, J. Cytokines, Inflammation, and Pain. Int. Anesthesiol. Clin. 2007, 45, 27–37, doi:10.1097/AIA.0b013e318034194e. | eng |
dcterms.references | Rimal, B.; Greenberg, A.K.; Rom, W.N. Basic Pathogenetic Mechanisms in Silicosis: Current Understanding: Curr. Opin. Pulm. Med. 2005, 11, 169 –173, doi:10.1097/01.mcp.0000152998.11335.24. | eng |
dcterms.references | Bonner, J.C. Lung Fibrotic Responses to Particle Exposure. Toxicol. Pathol. 2007, 35, 148–153, doi:10.1080/01926230601060009. | eng |
dcterms.references | Ates, I.; Yucesoy, B.; Yucel, A.; Suzen, S.H.; Karakas, Y.; Karakaya, A. Possible Effect of Gene Polymorphisms on the Release of TNFα and IL1 Cytokines in Coal Workers’ Pneumoconiosis. Exp. Toxicol. Pathol. 2011, 63, 175– 179, doi:10.1016/j.etp.2009.11.006. | eng |
dcterms.references | Chung, K.F. Cytokines in Chronic Obstructive Pulmonary Disease. Eur. Respir. J. 2001, 18, 50–59, doi:10.1183/09031936.01.00229701. | eng |
dcterms.references | Lukacs, N.W.; Ward, P.A. Inflammatory Mediators, Cytokines, and Adhesion Molecules in Pulmonary Inflammation and Injury. In Advances in Immunology; Elsevier, 1996; Vol. 62, pp. 257–304 ISBN 978-0-12-022462-3. https://linkinghub.elsevier.com/retrieve/pii/S0065277608604320 | eng |
dcterms.references | Gulumian, M.; Borm, P.J.A.; Vallyathan, V.; Castranova, V.; Donaldson, K.; Nelson, G.; Murray, J. Mechanistically Identified Suitable Biomarkers of Exposure, Effect, and Susceptibility for Silicosis and Coal-Worker’S Pneumoconiosis: A Comprehensive Review. J. Toxicol. Environ. Health Part B 2006, 9, 357–395, doi:10.1080/15287390500196537. | eng |
dcterms.references | Vanhée, D.; Gosset, P.; Boitelle, A.; Wallaert, B.; Tonnel, A.B. Cytokines and Cytokine Network in Silicosis and Coal Workers’ Pneumoconiosis. Eur. Respir. J. 1995, 8, 834–842 | eng |
dcterms.references | Schins, R.P.; Borm, P.J. Epidemiological Evaluation of Release of Monocyte TNF-Alpha as an Exposure and Effect Marker in Pneumoconiosis: A Five Year Follow up Study of Coal Workers. Occup. Environ. Med. 1995, 52, 441– 450, doi:10.1136/oem.52.7.441. | eng |
dcterms.references | Khan, M.M. Role of Cytokines. In Immunopharmacology; Springer US: Boston, MA, 2008; pp. 33–59 ISBN 978-0-387-77975-1. | eng |
dcterms.references | Goldbach‐Mansky, R. Blocking Interleukin‐1 in Rheumatic Diseases: Its Initial Disappointments and Recent Successes in the Treatment of Autoinflammatory Diseases. Ann. N. Y. Acad. Sci. 2009, 1182, 111–123, doi:10.1111/j.1749-6632.2009.05159.x. | eng |
dcterms.references | Hannum, C.H.; Wilcox, C.J.; Arend, W.P.; Joslin, F.G.; Dripps, D.J.; Heimdal, P.L.; Armes, L.G.; Sommer, A.; Eisenberg, S.P.; Thompson, R.C. Interleukin-1 Receptor Antagonist Activity of a Human Interleukin-1 Inhibitor. Nature 1990, 343, 336–340, doi:10.1038/343336a0. | eng |
dcterms.references | Dinarello, C.A. Biologic Basis for Interleukin-1 in Disease. Blood 1996, 87, 2095–2147. https://www.sciencedirect.com/science/article/pii/S0006497120652077?via%3Di hub | eng |
dcterms.references | Arend, W.P. The Balance between IL-1 and IL-1Ra in Disease. Cytokine Growth Factor Rev. 2002, 13, 323–340, doi:10.1016/S1359-6101(02)00020-5. | eng |
dcterms.references | Pétrilli, V.; Dostert, C.; Muruve, D.A.; Tschopp, J. The Inflammasome: A Danger Sensing Complex Triggering Innate Immunity. Curr. Opin. Immunol. 2007, 19, 615–622, doi:10.1016/j.coi.2007.09.002 | eng |
dcterms.references | Hacham, M.; Argov, S.; White, R.M.; Segal, S.; Apte, R.N. Distinct Patterns of IL-Lα and IL-Lβ Organ Distribution-A Possible Basis for Organ Mechanisms of Innate Immunity. In The Biology and Pathology of Innate Immunity Mechanisms; Keisari, Y., Ofek, I., Eds.; Advances in Experimental Medicine and Biology; Springer US: Boston, MA, 2002; Vol. 479, pp. 185 –202 ISBN 978-0-306-46409-6. https://link.springer.com/10.1007/0-306-46831-X_16 | eng |
dcterms.references | Cassel, S.L.; Eisenbarth, S.C.; Iyer, S.S.; Sadler, J.J.; Colegio, O.R.; Tephly, L.A.; Carter, A.B.; Rothman, P.B.; Flavell, R.A.; Sutterwala, F.S. The Nalp3 Inflammasome Is Essential for the Development of Silicosis. Proc. Natl. Acad. Sci. 2008, 105, 9035–9040, doi:10.1073/pnas.0803933105. | eng |
dcterms.references | Dostert, C.; Pétrilli, V.; Van Bruggen, R.; Steele, C.; Mossman, B.T.; Tschopp, J. Innate Immune Activation Through Nalp3 Inflammasome Sensing of Asbestos and Silica. Science 2008, 320, 674–677, doi:10.1126/science.1156995. | eng |
dcterms.references | Shambhoo Sharan Tripathi, H.P.P. Overview of Cytokines and Receptors in Silicosis; https://www.researchgate.net/publication/215575332_Overview_of_cytokines_a nd_receptors_in_Silicosis | eng |
dcterms.references | Yucesoy, B.; Vallyathan, V.; Landsittel, D.P.; Simeonova, P.; Luster, M.I. Cytokine Polymorphisms in Silicosis and Other Pneumoconioses. Mol. Cell. Biochem. 2002, 234–235, 219–224. https://pubmed.ncbi.nlm.nih.gov/12162437/ | eng |
dcterms.references | Braz, N.F.T.; Carneiro, A.P.S.; De Avelar, N.C.P.; De Miranda, A.S.; Lacerda, A.C.R.; Teixeira, M.M.; Teixeira, A.L.; Mendonça, V.A. Influence of Cytokines and Soluble Receptors in the Quality of Life and Functional Capacity of Workers Exposed to Silica. J. Occup. Environ. Med. 2016, 58, 272–276, doi:10.1097/JOM.0000000000000606. | eng |
dcterms.references | Yucesoy, B.; Vallyathan, V.; Landsittel, D.P.; Simeonova, P.; Luster, M.I. Polimorfismos de Citocinas En Silicosis y Otras Neumoconiosis. Mol. Cell. Biochem. 2002, 234/235, 219–224, doi:10.1023/A:1015987007360. | eng |
dcterms.references | Căluțu, I.-M.; Smărăndescu, R.-A.; Rașcu, A. Biomonitoring Exposure and Early Diagnosis in Silicosis: A Comprehensive Review of the Current Literature. Biomedicines 2022, 11, 100, doi:10.3390/biomedicines11010100. | eng |
dcterms.references | Könczöl, M.; Ebeling, S.; Goldenberg, E.; Treude, F.; Gminski, R.; Gieré, R.; Grobéty, B.; Rothen-Rutishauser, B.; Merfort, I.; Mersch-Sundermann, V. Cytotoxicity and Genotoxicity of Size-Fractionated Iron Oxide (Magnetite) in A549 Human Lung Epithelial Cells: Role of ROS, JNK, and NF-κB. Chem. Res. Toxicol. 2011, 24, 1460–1475, doi:10.1021/tx200051s. | eng |
dcterms.references | Chen, Y.; Li, C.; Lu, Y.; Zhuang, H.; Gu, W.; Liu, B.; Liu, F.; Sun, J.; Yan, B.; Weng, D.; et al. IL-10-Producing CD1dhiCD5+ Regulatory B Cells May Play a Critical Role in Modulating Immune Homeostasis in Silicosis Patients. Front. Immunol. 2017, 8, doi:10.3389/fimmu.2017.00110. | eng |
dcterms.references | Michael, S.; Montag, M.; Dott, W. Pro-Inflammatory Effects and Oxidative Stress in Lung Macrophages and Epithelial Cells Induced by Ambient Particulate Matter. Environ. Pollut. 2013, 183, 19–29, doi:10.1016/j.envpol.2013.01.026. | eng |
dcterms.references | Orona, N.S.; Astort, F.; Maglione, G.A.; Saldiva, P.H.N.; Yakisich, J.S.; Tasat, D.R. Direct and Indirect Air Particle Cytotoxicity in Human Alveolar Epithelial Cells. Toxicol. In Vitro 2014, 28, 796–802, doi:10.1016/j.tiv.2014.02.011. | eng |
dcterms.references | Yang, H.; Liu, C.; Yang, D.; Zhang, H.; Xi, Z. Comparative Study of Cytotoxicity, Oxidative Stress and Genotoxicity Induced by Four Typical Nanomaterials: The Role of Particle Size, Shape and Composition. J. Appl. Toxicol. 2009, 29, 69–78, doi:10.1002/jat.1385 | eng |
dcterms.references | León-Mejía, G.; Silva, L.F.O.; Civeira, M.S.; Oliveira, M.L.S.; Machado, M.; Villela, I.V.; Hartmann, A.; Premoli, S.; Corrêa, D.S.; Da Silva, J.; et al. Cytotoxicity and Genotoxicity Induced by Coal and Coal Fly Ash Particles Samples in V79 Cells. Environ. Sci. Pollut. Res. 2016, 23, 24019–24031, doi:10.1007/s11356-016-7623-z. | eng |
dcterms.references | Roesslein, M.; Hirsch, C.; Kaiser, J.-P.; Krug, H.; Wick, P. Comparability of in Vitro Tests for Bioactive Nanoparticles: A Common Assay to Detect Reactive Oxygen Species as an Example. Int. J. Mol. Sci. 2013, 14, 24320 –24337, doi:10.3390/ijms141224320. | eng |
dcterms.references | Castranova, V.; Vallyathan, V. Silicosis and Coal Workers’ Pneumoconiosis. Environ. Health Perspect. 2000, 108, 675–684, doi:10.1289/ehp.00108s4675. | eng |
dcterms.references | Jan M. S. Van Maanen, Paul J. A. Bo IN VITRO EFFECTS OF COAL FLY ASHES: Hydroxyl Radical Generation, Iron Release, and DNA Damage and Toxicity in Rat Lung Epithelial Cells. Inhal. Toxicol. 1999, 11, 1123–1141, doi:10.1080/089583799196628. | eng |
dcterms.references | Pinho, R.A.; Bonatto, F.; Andrades, M.; Frota, M.L.C.; Ritter, C.; Klamt, F.; Dal-Pizzol, F.; Uldrich-Kulczynski, J.M.; Moreira, J.C.F. Lung Oxidative Response after Acute Coal Dust Exposure. Environ. Res. 2004, 96, 290–297, doi:10.1016/j.envres.2003.10.006. | eng |
dcterms.references | Cohn, C.A.; Laffers, R.; Simon, S.R.; O’Riordan, T.; Schoonen, M.A.A. Role of Pyrite in Formation of Hydroxyl Radicals in Coal: Possible Implications for Human Health. Part. Fibre Toxicol. 2006, 3, 16, doi:10.1186/1743-8977-3-16. | eng |
dcterms.references | Cohn, C.A.; Mueller, S.; Wimmer, E.; Leifer, N.; Greenbaum, S.; Strongin, D.R.; Schoonen, M.A. Pyrite-Induced Hydroxyl Radical Formation and Its Effect on Nucleic Acids. Geochem. Trans. 2006, 7, 3, doi:10.1186/1467-4866-7-3. | eng |
dcterms.references | Dalal, N.S.; Newman, J.; Pack, D.; Leonard, S.; Vallyathan, V. Hydroxyl Radical Generation by Coal Mine Dust: Possible Implication to Coal Workers’ Pneumoconiosis (CWP). Free Radic. Biol. Med. 1995, 18, 11–20, doi:10.1016/0891-5849(94)E0094-Y. | eng |
dcterms.references | Schoonen, M.A.A.; Harrington, A.D.; Laffers, R.; Strongin, D.R. Role of Hydrogen Peroxide and Hydroxyl Radical in Pyrite Oxidation by Molecular Oxygen. Geochim. Cosmochim. Acta 2010, 74, 4971–4987, doi:10.1016/j.gca.2010.05.028. | eng |
dcterms.references | Borish, L.C.; Steinke, J.W. 2. Cytokines and Chemokines. J. Allergy Clin. Immunol. 2003, 111, S460-475, doi:10.1067/mai.2003.108. | eng |
dcterms.references | Hiraiwa, K.; Van Eeden, S.F. Contribution of Lung Macrophages to the Inflammatory Responses Induced by Exposure to Air Pollutants. Mediators Inflamm. 2013, 2013, 1–10, doi:10.1155/2013/619523. | eng |
dcterms.references | Vanka, K.S.; Shukla, S.; Gomez, H.M.; James, C.; Palanisami, T.; Williams, K.; Chambers, D.C.; Britton, W.J.; Ilic, D.; Hansbro, P.M.; et al. Understanding the Pathogenesis of Occupational Coal and Silica Dust-Associated Lung Disease. Eur. Respir. Rev. 2022, 31, 210250, doi:10.1183/16000617.0250-2021 | eng |
dcterms.references | Gutiérrez, M.G.; Mariño, L.D.; Buitrago, R.A.; Duran-Galvis, J. Análisis de la producción de carbón para su actividad exportadora en Norte de Santander. Reflex. Contab. UFPS 2021, 4, 63–73, doi:10.22463/26655543.3554. | spa |
dcterms.references | León, G.; Pérez, L.E.; Linares, J.C.; Hartmann, A.; Quintana, M. Genotoxic Effects in Wild Rodents (Rattus Rattus and Mus Musculus) in an Open Coal Mining Area. Mutat. Res. 2007, 630, 42–49, doi:10.1016/j.mrgentox.2007.02.007. | eng |
dcterms.references | León-Mejía, G.; Espitia-Pérez, L.; Hoyos-Giraldo, L.S.; Da Silva, J.; Hartmann, A.; Henriques, J.A.P.; Quintana, M. Assessment of DNA Damage in Coal Open-Cast Mining Workers Using the Cytokinesis-Blocked Micronucleus Test and the Comet Assay. Sci. Total Environ. 2011, 409, 686–691, doi:10.1016/j.scitotenv.2010.10.049. | eng |
dcterms.references | Cabarcas-Montalvo, M.; Olivero-Verbel, J.; Corrales-Aldana, H. Genotoxic Effects in Blood Cells of Mus Musculus and Iguana Iguana Living near Coal Mining Areas in Colombia. Sci. Total Environ. 2012, 416, 208–214, doi:10.1016/j.scitotenv.2011.11.080. | eng |
dcterms.references | Quiroz-Arcentales, L.; Hernández-Flórez, L.J.; Agudelo Calderón, C.A.; Medina, K.; Robledo-Martínez, R.; Osorio-García, S.D. [PM10 exposure-related respiratory symptoms and disease in children living in and near five coal-mining areas in the Cesar department of Colombia]. Rev. Salud Publica Bogota Colomb. 2013, 15, 66–79. https://pubmed.ncbi.nlm.nih.gov/24892572/ | eng |
dcterms.references | Guerrero-Castilla, A.; Olivero-Verbel, J. Altered Gene Expression in HepG2 Cells Exposed to a Methanolic Coal Dust Extract. Environ. Toxicol. Pharmacol. 2014, 38, 742–750, doi:10.1016/j.etap.2014.09.003. | eng |
dcterms.references | Torres Rey, C.H.; Ibañez Pinilla, M.; Briceño Ayala, L.; Checa Guerrero, D.M.; Morgan Torres, G.; Groot de Restrepo, H.; Varona Uribe, M. Underground Coal Mining: Relationship between Coal Dust Levels and Pneumoconiosis, in Two Regions of Colombia, 2014. BioMed Res. Int. 2015, 2015, 647878, doi:10.1155/2015/647878 | eng |
dcterms.references | Espitia-Pérez, L.; Arteaga-Pertuz, M.; Soto, J.S.; Espitia-Pérez, P.; SalcedoArteaga, S.; Pastor-Sierra, K.; Galeano-Páez, C.; Brango, H.; da Silva, J.; Henriques, J.A.P. Geospatial Analysis of Residential Proximity to Open-Pit Coal Mining Areas in Relation to Micronuclei Frequency, Particulate Matter Concentration, and Elemental Enrichment Factors. Chemosphere 2018, 206, 203– 216, doi:10.1016/j.chemosphere.2018.04.049. | eng |
dcterms.references | Guerrero-Castilla, A.; Olivero-Verbel, J.; Sandoval, I.T.; Jones, D.A. Toxic Effects of a Methanolic Coal Dust Extract on Fish Early Life Stage. Chemosphere 2019, 227, 100–108, doi:10.1016/j.chemosphere.2019.04.012. | eng |
dcterms.references | León-Mejía, G.; Rueda, R.A.; Pérez Pérez, J.; Miranda-Guevara, A.; Moreno, O.F.; Quintana-Sosa, M.; Trindade, C.; De Moya, Y.S.; Ruiz-Benitez, M.; Lemus, Y.B.; et al. Analysis of the Cytotoxic and Genotoxic Effects in a Population Chronically Exposed to Coal Mining Residues. Environ. Sci. Pollut. Res. Int. 2023, 30, 54095–54105, doi:10.1007/s11356-023-26136-9. | eng |
dcterms.references | Miranda-Guevara, A.; Muñoz-Acevedo, A.; Fiorillo-Moreno, O.; AcostaHoyos, A.; Pacheco-Londoño, L.; Quintana-Sosa, M.; De Moya, Y.; Dias, J.; de Souza, G.S.; Martinez-Lopez, W.; et al. The Dangerous Link between Coal Dust Exposure and DNA Damage: Unraveling the Role of Some of the Chemical Agents and Oxidative Stress. Environ. Geochem. Health 2023, 45, 7081–7097, doi:10.1007/s10653-023-01697-3 | eng |
dcterms.references | Poblete-Naredo, I.; Albores, A. Molecular Biomarkers to Assess Health Risks Due to Environmental Contaminants Exposure. Biomed. Rev. Inst. Nac. Salud 2016, 36, 309–335, doi:10.7705/biomedica.v36i3.2998. | eng |
dcterms.references | Gajski, G.; Gerić, M.; Oreščanin, V.; Garaj-Vrhovac, V. Cytokinesis-Block Micronucleus Cytome Assay Parameters in Peripheral Blood Lymphocytes of the General Population: Contribution of Age, Sex, Seasonal Variations and Lifestyle Factors. Ecotoxicol. Environ. Saf. 2018, 148, 561–570, doi:10.1016/j.ecoenv.2017.11.003. | eng |
dcterms.references | Urrego, R.A.; Pareja, A.; Vásquez, N.A.; Márquez, M.E. El Ensayo Cometa: Una Técnica Para Evaluar Genotoxicidad En El ADN de Oocitos Bovinos. Rev. Colomb. Cienc. Pecu. 2005, 18, 6–6, doi:10.17533/udea.rccp.324014. | spa |
dcterms.references | Introducción a Técnicas de Segmentación de Células del Ensayo Cometa | Ingeniería Revista Académica de la Facultad de Ingeniería Universidad Autónoma de Yucatán. https://www.revista.ingenieria.uady.mx/ojs/index.php/ingenieria/article/view/131 | spa |
dcterms.references | Cook, P.R.; Brazell, I.A.; Jost, E. Characterization of Nuclear Structures Containing Superhelical DNA. J. Cell Sci. 1976, 22, 303–324, doi:10.1242/jcs.22.2.303. | eng |
dcterms.references | Azqueta, A.; Slyskova, J.; Langie, S.A.S.; O’Neill Gaivão, I.; Collins, A. Comet Assay to Measure DNA Repair: Approach and Applications. Front. Genet. 2014, 5, 288, doi:10.3389/fgene.2014.00288. | eng |
dcterms.references | Collins, A.R. The Comet Assay for DNA Damage and Repair: Principles, Applications, and Limitations. Mol. Biotechnol. 2004, 26, 249–261, doi:10.1385/MB:26:3:249. | eng |
dcterms.references | Azqueta, A.; Ladeira, C.; Giovannelli, L.; Boutet-Robinet, E.; Bonassi, S.; Neri, M.; Gajski, G.; Duthie, S.; Del Bo’, C.; Riso, P.; et al. Application of the Comet Assay in Human Biomonitoring: An hCOMET Perspective. Mutat. Res. Rev. Mutat. Res. 2020, 783, 108288, doi:10.1016/j.mrrev.2019.108288. | eng |
dcterms.references | Terradas, M.; Martín, M.; Tusell, L.; Genescà, A. Genetic Activities in Micronuclei: Is the DNA Entrapped in Micronuclei Lost for the Cell? Mutat. Res. 2010, 705, 60–67, doi:10.1016/j.mrrev.2010.03.004. | eng |
dcterms.references | Braham, R.P.; Blazer, V.S.; Shaw, C.H.; Mazik, P.M. Micronuclei and Other Erythrocyte Nuclear Abnormalities in Fishes from the Great Lakes Basin, USA. Environ. Mol. Mutagen. 2017, 58, 570–581, doi:10.1002/em.22123. | eng |
dcterms.references | Holland, N.; Fucic, A.; Merlo, D.F.; Sram, R.; Kirsch-Volders, M. Micronuclei in Neonates and Children: Effects of Environmental, Genetic, Demographic and Disease Variables. Mutagenesis 2011, 26, 51–56, doi:10.1093/mutage/geq064. | eng |
dcterms.references | Kapka-Skrzypczak, L.; Cyranka, M.; Skrzypczak, M.; Kruszewski, M. Biomonitoring and Biomarkers of Organophosphate Pesticides Exposure - State of the Art. Ann. Agric. Environ. Med. AAEM 2011, 18, 294–303. https://www.aaem.pl/Biomonitoring-and-biomarkers-of-organophosphatepesticides-exposure-state-of-the,71703,0,2.html | eng |
dcterms.references | Silva, I.R.; Ramos, M.C.A.S.; Arantes, L.M.R.B.; Lengert, A.V.H.; Oliveira, M.A.; Cury, F.P.; Martins Pereira, G.; Santos, A.G.; Barbosa, F.; Vasconcellos, P.C.; et al. Evaluation of DNA Methylation Changes and Micronuclei in Workers Exposed to a Construction Environment. Int. J. Environ. Res. Public. Health 2019, 16, 902, doi:10.3390/ijerph16060902. | eng |
dcterms.references | Ladeira, C.; Smajdova, L. The Use of Genotoxicity Biomarkers in Molecular Epidemiology: Applications in Environmental, Occupational and Dietary Studies. AIMS Genet. 2017, 04, 166–191, doi:10.3934/genet.2017.3.166. | eng |
dcterms.references | Nersesyan, A.; Fenech, M.; Bolognesi, C.; Mišík, M.; Setayesh, T.; Wultsch, G.; Bonassi, S.; Thomas, P.; Knasmüller, S. Use of the Lymphocyte Cytokinesis-Block Micronucleus Assay in Occupational Biomonitoring of Genome Damage Caused by in Vivo Exposure to Chemical Genotoxins: Past, Present and Future. Mutat. Res. Rev. Mutat. Res. 2016, 770, 1–11, doi:10.1016/j.mrrev.2016.05.003. | eng |
dcterms.references | Peixoto, M.S.; de Oliveira Galvão, M.F.; Batistuzzo de Medeiros, S.R. Cell Death Pathways of Particulate Matter Toxicity. Chemosphere 2017, 188, 32 –48, doi:10.1016/j.chemosphere.2017.08.076. | eng |
dcterms.references | Espitia-Pérez, L.; Da Silva, J.; Espitia-Pérez, P.; Brango, H.; SalcedoArteaga, S.; Hoyos-Giraldo, L.S.; De Souza, C.T.; Dias, J.F.; Agudelo-Castañeda, D.; Valdés Toscano, A.; et al. Cytogenetic Instability in Populations with Residential Proximity to Open-Pit Coal Mine in Northern Colombia in Relation to PM10 and PM2.5 Levels. Ecotoxicol. Environ. Saf. 2018, 148, 453–466, doi:10.1016/j.ecoenv.2017.10.044. | eng |
dcterms.references | Da Silva, F.M.R.; Tavella, R.A.; Fernandes, C.L.F.; Dos Santos, M. Genetic Damage in Coal and Uranium Miners. Mutat. Res. Toxicol. Environ. Mutagen. 2021, 866, 503348, doi:10.1016/j.mrgentox.2021.503348. | eng |
dcterms.references | Vimercati, L.; Bisceglia, L.; Cavone, D.; Caputi, A.; De Maria, L.; Delfino, M.C.; Corrado, V.; Ferri, G.M. Environmental Monitoring of PAHs Exposure, Biomarkers and Vital Status in Coke Oven Workers. Int. J. Environ. Res. Public. Health 2020, 17, 2199, doi:10.3390/ijerph17072199. | eng |
dcterms.references | Shoeb, M.; Mustafa, G.M.; Kodali, V.K.; Smith, K.; Roach, K.A.; Boyce, G.; Meighan, T.; Roberts, J.R.; Erdely, A.; Antonini, J.M. A Possible Relationship between Telomere Length and Markers of Neurodegeneration in Rat Brain after Welding Fume Inhalation Exposure. Environ. Res. 2020, 180, 108900, doi:10.1016/j.envres.2019.108900. | eng |
dcterms.references | Torres-Bugarín, O.; Ramos-Ibarra, M.L. Utilidad de La Prueba de Micronúcleos y Anormalidades Nucleares En Células Exfoliadas de Mucosa Oral En La Evaluación de Daño Genotóxico y Citotóxico. Int. J. Morphol. 2013, 31, 650– 657, doi:10.4067/S0717-95022013000200050. | spa |
dcterms.references | Turner, K.J.; Vasu, V.; Griffin, D.K. Telomere Biology and Human Phenotype. Cells 2019, 8, 73, doi:10.3390/cells8010073. | eng |
dcterms.references | Sławińska, N.; Krupa, R. Molecular Aspects of Senescence and Organismal Ageing-DNA Damage Response, Telomeres, Inflammation and Chromatin. Int. J. Mol. Sci. 2021, 22, 590, doi:10.3390/ijms22020590. | eng |
dcterms.references | Marti, A.; Echeverría, R.; Morell-Azanza, L.; Ojeda-Rodríguez, A. Telómeros y Calidad de La Dieta. Nutr. Hosp. 2017, 34, 1226–1245, doi:10.20960/nh.1181. | spa |
dcterms.references | De Souza, M.R.; Kahl, V.F.S.; Rohr, P.; Kvitko, K.; Cappetta, M.; Lopes, W.M.; Da Silva, J. Shorter Telomere Length and DNA Hypermethylation in Peripheral Blood Cells of Coal Workers. Mutat. Res. Toxicol. Environ. Mutagen. 2018, 836, 36–41, doi:10.1016/j.mrgentox.2018.03.009. | eng |
dcterms.references | Coluzzi, E.; Buonsante, R.; Leone, S.; Asmar, A.J.; Miller, K.L.; Cimini, D.; Sgura, A. Transient ALT Activation Protects Human Primary Cells from Chromosome Instability Induced by Low Chronic Oxidative Stress. Sci. Rep. 2017, 7, 43309, doi:10.1038/srep43309. | eng |
dcterms.references | Singh, A.; Kukreti, R.; Saso, L.; Kukreti, S. Oxidative Stress: Role and Response of Short Guanine Tracts at Genomic Locations. Int. J. Mol. Sci. 2019, 20, 4258, doi:10.3390/ijms20174258. | eng |
dcterms.references | Salpea, K.D.; Talmud, P.J.; Cooper, J.A.; Maubaret, C.G.; Stephens, J.W.; Abelak, K.; Humphries, S.E. Association of Telomere Length with Type 2 Diabetes, Oxidative Stress and UCP2 Gene Variation. Atherosclerosis 2010, 209, 42–50, doi:10.1016/j.atherosclerosis.2009.09.070. | eng |
dcterms.references | Córdoba-Lanús, E.; Cazorla-Rivero, S.; Espinoza-Jiménez, A.; de-Torres, J.P.; Pajares, M.J.; Aguirre-Jaime, A.; Celli, B.; Casanova, C. Telomere Shortening and Accelerated Aging in COPD: Findings from the BODE Cohort. Respir. Res. 2017, 18, 59, doi:10.1186/s12931-017-0547-4. | eng |
dcterms.references | Ormseth, M.J.; Solus, J.F.; Oeser, A.M.; Bian, A.; Gebretsadik, T.; Shintani, A.; Raggi, P.; Stein, C.M. Telomere Length and Coronary Atherosclerosis in Rheumatoid Arthritis. J. Rheumatol. 2016, 43, 1469 –1474, doi:10.3899/jrheum.151115. | eng |
dcterms.references | Feldser, D.M.; Hackett, J.A.; Greider, C.W. Telomere Dysfunction and the Initiation of Genome Instability. Nat. Rev. Cancer 2003, 3, 623–627, doi:10.1038/nrc1142. | eng |
dcterms.references | Zhang, X.; Lin, S.; Funk, W.E.; Hou, L. Environmental and Occupational Exposure to Chemicals and Telomere Length in Human Studies. Occup. Environ. Med. 2013, 70, 743–749, doi:10.1136/oemed-2012-101350. | eng |
dcterms.references | Kahl, V.F.S.; Simon, D.; Salvador, M.; Branco, C. dos S.; Dias, J.F.; da Silva, F.R.; de Souza, C.T.; da Silva, J. Telomere Measurement in Individuals Occupationally Exposed to Pesticide Mixtures in Tobacco Fields. Environ. Mol. Mutagen. 2016, 57, 74–84, doi:10.1002/em.21984. | eng |
dcterms.references | Li, H.; Åkerman, G.; Lidén, C.; Alhamdow, A.; Wojdacz, T.K.; Broberg, K.; Albin, M. Alterations of Telomere Length and DNA Methylation in Hairdressers: A Cross-Sectional Study. Environ. Mol. Mutagen. 2016, 57, 159–167, doi:10.1002/em.21991. | eng |
dcterms.references | Marshall, C.J.; Santangelo, T.J. Archaeal DNA Repair Mechanisms. Biomolecules 2020, 10, 1472, doi:10.3390/biom10111472. | eng |
dcterms.references | Hoeijmakers, J.H.J. Genome Maintenance Mechanisms for Preventing Cancer. Nature 2001, 411, 366–374, doi:10.1038/35077232. | eng |
dcterms.references | Mladenov, E.; Iliakis, G. The Pathways of Double-Strand Break Repair. In DNA Repair - On the Pathways to Fixing DNA Damage and Errors; Storici, F., Ed.; InTech, 2011 ISBN 978-953-307-649-2. http://www.intechopen.com/books/dna-repair-on-the-pathways-to-fixing-dnadamage-and-errors/the-pathways-of-double-strand-break-repair | eng |
dcterms.references | Croteau, D.L.; Bohr, V.A. Repair of Oxidative Damage to Nuclear and Mitochondrial DNA in Mammalian Cells. J. Biol. Chem. 1997, 272, 25409–25412, doi:10.1074/jbc.272.41.25409. | eng |
dcterms.references | De Boer, J.; Hoeijmakers, J.H.J. Nucleotide Excision Repair and Human Syndromes. Carcinogenesis 2000, 21, 453–460, doi:10.1093/carcin/21.3.453. | eng |
dcterms.references | Deriano, L.; Roth, D.B. Modernizing the Nonhomologous End-Joining Repertoire: Alternative and Classical NHEJ Share the Stage. Annu. Rev. Genet. 2013, 47, 433–455, doi:10.1146/annurev-genet-110711-155540. | eng |
dcterms.references | Jones, J.A.; Casey, R.C.; Karouia, F. Ionizing Radiation as a Carcinogen*. In Comprehensive Toxicology; Elsevier, 2010; pp. 181–228 ISBN 978-0-08- 046884-6. https://linkinghub.elsevier.com/retrieve/pii/B9780080468846014111 | eng |
dcterms.references | Krokan, H.E.; Bjørås, M. Base Excision Repair. Cold Spring Harb. Perspect. Biol. 2013, 5, a012583, doi:10.1101/cshperspect.a012583. | eng |
dcterms.references | Pawar, S.; Kutay, U. The Diverse Cellular Functions of Inner Nuclear Membrane Proteins. Cold Spring Harb. Perspect. Biol. 2021, 13, a040477, doi:10.1101/cshperspect.a040477. | eng |
dcterms.references | Dianov, G.L.; Hübscher, U. Mammalian Base Excision Repair: The Forgotten Archangel. Nucleic Acids Res. 2013, 41, 3483–3490, doi:10.1093/nar/gkt076. | eng |
dcterms.references | Huffman, J.L.; Sundheim, O.; Tainer, J.A. DNA Base Damage Recognition and Removal: New Twists and Grooves. Mutat. Res. 2005, 577, 55 –76, doi:10.1016/j.mrfmmm.2005.03.012. | eng |
dcterms.references | Sancar, A.; Rupp, W.D. A Novel Repair Enzyme: UVRABC Excision Nuclease of Escherichia Coli Cuts a DNA Strand on Both Sides of the Damaged Region. Cell 1983, 33, 249–260, doi:10.1016/0092-8674(83)90354-9. | eng |
dcterms.references | Guzder, S.N.; Habraken, Y.; Sung, P.; Prakash, L.; Prakash, S. Reconstitution of Yeast Nucleotide Excision Repair with Purified Rad Proteins, Replication Protein A, and Transcription Factor TFIIH. J. Biol. Chem. 1995, 270, 12973–12976, doi:10.1074/jbc.270.22.12973. | eng |
dcterms.references | Svoboda, D.L.; Taylor, J.S.; Hearst, J.E.; Sancar, A. DNA Repair by Eukaryotic Nucleotide Excision Nuclease. Removal of Thymine Dimer and Psoralen Monoadduct by HeLa Cell-Free Extract and of Thymine Dimer by Xenopus Laevis Oocytes. J. Biol. Chem. 1993, 268, 1931–1936. https://pubmed.ncbi.nlm.nih.gov/8420966/ | eng |
dcterms.references | Kemp, M.G. Damage Removal and Gap Filling in Nucleotide Excision Repair. The Enzymes 2019, 45, 59–97, doi:10.1016/bs.enz.2019.06.001. 226. Lehmann, A.R. DNA Polymerases and Repair Synthesis in NER in Human Cells. DNA Repair 2011, 10, 730–733, doi:10.1016/j.dnarep.2011.04.023. | eng |
dcterms.references | Zhang, X.; Yin, M.; Hu, J. Nucleotide Excision Repair: A Versatile and Smart Toolkit. Acta Biochim. Biophys. Sin. 2022, 54, 807–819, doi:10.3724/abbs.2022054. | eng |
dcterms.references | Spivak, G. Nucleotide Excision Repair in Humans. DNA Repair 2015, 36, 13–18, doi:10.1016/j.dnarep.2015.09.003. | eng |
dcterms.references | Blackford, A.N.; Jackson, S.P. ATM, ATR, and DNA-PK: The Trinity at the Heart of the DNA Damage Response. Mol. Cell 2017, 66, 801–817, doi:10.1016/j.molcel.2017.05.015. | eng |
dcterms.references | Salzano, M.; Sanz-García, M.; Monsalve, D.M.; Moura, D.S.; Lazo, P.A. VRK1 Chromatin Kinase Phosphorylates H2AX and Is Required for Foci Formation Induced by DNA Damage. Epigenetics 2015, 10, 373–383, doi:10.1080/15592294.2015.1028708 | eng |
dcterms.references | Beck, C.; Robert, I.; Reina-San-Martin, B.; Schreiber, V.; Dantzer, F. Poly(ADP-Ribose) Polymerases in Double-Strand Break Repair: Focus on PARP1, PARP2 and PARP3. Exp. Cell Res. 2014, 329, 18–25, doi:10.1016/j.yexcr.2014.07.003. | eng |
dcterms.references | Ray Chaudhuri, A.; Nussenzweig, A. The Multifaceted Roles of PARP1 in DNA Repair and Chromatin Remodelling. Nat. Rev. Mol. Cell Biol. 2017, 18, 610– 621, doi:10.1038/nrm.2017.53. | eng |
dcterms.references | Rulten, S.L.; Fisher, A.E.O.; Robert, I.; Zuma, M.C.; Rouleau, M.; Ju, L.; Poirier, G.; Reina-San-Martin, B.; Caldecott, K.W. PARP-3 and APLF Function Together to Accelerate Nonhomologous End-Joining. Mol. Cell 2011, 41, 33–45, doi:10.1016/j.molcel.2010.12.006. | eng |
dcterms.references | Sancar, A.; Lindsey-Boltz, L.A.; Ünsal-Kaçmaz, K.; Linn, S. Molecular Mechanisms of Mammalian DNA Repair and the DNA Damage Checkpoints. Annu. Rev. Biochem. 2004, 73, 39–85, doi:10.1146/annurev.biochem.73.011303.073723. | eng |
dcterms.references | Dueva, R.; Iliakis, G. Alternative Pathways of Non-Homologous End Joining (NHEJ) in Genomic Instability and Cancer. 2013 2013, 2, 163 –177. https://tcr.amegroups.org/article/view/1152 | eng |
dcterms.references | Ingram, S.P.; Warmenhoven, J.W.; Henthorn, N.T.; Smith, E.A.K.; Chadwick, A.L.; Burnet, N.G.; Mackay, R.I.; Kirkby, N.F.; Kirkby, K.J.; Merchant, M.J. Mechanistic Modelling Supports Entwined Rather than Exclusively Competitive DNA Double-Strand Break Repair Pathway. Sci. Rep. 2019, 9, 6359, doi:10.1038/s41598-019-42901-8. | eng |
dcterms.references | Kochan, J.A.; Desclos, E.C.B.; Bosch, R.; Meister, L.; Vriend, L.E.M.; van Attikum, H.; Krawczyk, P.M. Meta-Analysis of DNA Double-Strand Break Response Kinetics. Nucleic Acids Res. 2017, 45, 12625–12637, doi:10.1093/nar/gkx1128. | eng |
dcterms.references | Oizumi, T.; Ohno, R.; Yamabe, S.; Funayama, T.; Nakamura, A.J. Repair Kinetics of DNA Double Strand Breaks Induced by Simulated Space Radiation. Life 2020, 10, 341, doi:10.3390/life10120341. | eng |
dcterms.references | Shen, W.; Ma, Y.; Qi, H.; Wang, W.; He, J.; Xiao, F.; Zhu, H.; He, S. Kinetics Model of DNA Double-Strand Break Repair in Eukaryotes. DNA Repair 2021, 100, 103035, doi:10.1016/j.dnarep.2020.103035. | eng |
dcterms.references | Reyes Reyes, E.; Rodeiro Guerra, I.; Alfredo Herrera, J.; Cuétara Lugo, E.; Reyes Reyes, E.; Rodeiro Guerra, I.; Alfredo Herrera, J.; Cuétara Lugo, E. Polimorfismos En Genes de Reparación Del Daño al Material Genético y Cáncer de Pulmón. Rev. Cuba. Med. Mil. 2022, 51. http://scielo.sld.cu/scielo.php?script=sci_abstract&pid=S0138- 65572022000100021&lng=es&nrm=iso&tlng=es | eng |
dcterms.references | Maulén, N.P.; Cifuentes O., L.; Maulén, N.P.; Cifuentes O., L. Polimorfismos Genéticos Asociados a La Inmunidad Innata y La Susceptibilidad Genética a La Tuberculosis. Rev. Chil. Enfermedades Respir. 2018, 34, 226 –235, doi:10.4067/S0717-73482018000400226 | spa |
dcterms.references | Yang, Y.; Zheng, Z.; Chen, Y.; Wang, X.; Wang, H.; Si, Z.; Meng, R.; Wu, J. A Case Control Study on the Relationship between Occupational Stress and Genetic Polymorphism and Dyslipidemia in Coal Miners. Sci. Rep. 2023, 13, 2321, doi:10.1038/s41598-023-29491-2. | eng |
dcterms.references | Recke, A.; Recke, K.-G.; Ibrahim, S.; Möller, S.; Vonthein, R. HardyWeinberg Equilibrium Revisited for Inferences on Genotypes Featuring Allele and Copy-Number Variations. Sci. Rep. 2015, 5, 9066, doi:10.1038/srep09066. | eng |
dcterms.references | Chen, J.; Kang, G.; Vanderweele, T.; Zhang, C.; Mukherjee, B. Efficient Designs of Gene-Environment Interaction Studies: Implications of HardyWeinberg Equilibrium and Gene-Environment Independence. Stat. Med. 2012, 31, 2516–2530, doi:10.1002/sim.4460. | eng |
dcterms.references | Zhou, J.J.; Lange, K.; Papp, J.C.; Sinsheimer, J.S. A HeterozygoteHomozygote Test of Hardy-Weinberg Equilibrium. Eur. J. Hum. Genet. EJHG 2009, 17, 1495–1500, doi:10.1038/ejhg.2009.57. | eng |
dcterms.references | Stark, A.E. Stable Populations and Hardy-Weinberg Equilibrium. Hereditas 2023, 160, 19, doi:10.1186/s41065-023-00284-x. | eng |
dcterms.references | Abramovs, N.; Brass, A.; Tassabehji, M. Hardy-Weinberg Equilibrium in the Large Scale Genomic Sequencing Era. Front. Genet. 2020, 11, 210, doi:10.3389/fgene.2020.00210. | eng |
dcterms.references | Royo, J.L. Hardy Weinberg Equilibrium Disturbances in Case-Control Studies Lead to Non-Conclusive Results. Cell J. 2021, 22, 572–574, doi:10.22074/cellj.2021.7195. | eng |
dcterms.references | Benafif, S.; Ni Raghallaigh, H.; McHugh, J.; Eeles, R. Genetics of Prostate Cancer and Its Utility in Treatment and Screening. Adv. Genet. 2021, 108, 147 – 199, doi:10.1016/bs.adgen.2021.08.006. | eng |
dcterms.references | Sameer, A.S.; Nissar, S. XPD-The Lynchpin of NER: Molecule, Gene, Polymorphisms, and Role in Colorectal Carcinogenesis. Front. Mol. Biosci. 2018, 5, 23, doi:10.3389/fmolb.2018.00023. | eng |
dcterms.references | Benhamou, S.; Sarasin, A. ERCC2/XPD Gene Polymorphisms and Cancer Risk. Mutagenesis 2002, 17, 463–469, doi:10.1093/mutage/17.6.463. | eng |
dcterms.references | Baden, H.P.; DiGiovanna, J.J. Chapter 146 - Ichthyosiform Dermatoses. In Emery and Rimoin’s Principles and Practice of Medical Genetics (Sixth Edition); Rimoin, D., Pyeritz, R., Korf, B., Eds.; Academic Press: Oxford, 2013; pp. 1 –26 ISBN 978-0-12-383834-6. https://www.sciencedirect.com/science/article/pii/B9780123838346001555 | eng |
dcterms.references | Zhu, M.-L.; He, J.; Wang, M.; Sun, M.-H.; Jin, L.; Wang, X.; Yang, Y.-J.; Wang, J.-C.; Zheng, L.; Xiang, J.-Q.; et al. Potentially Functional Polymorphisms in the ERCC2 Gene and Risk of Esophageal Squamous Cell Carcinoma in Chinese Populations. Sci. Rep. 2014, 4, 6281, doi:10.1038/srep06281. | eng |
dcterms.references | Agolini, E.; Botta, E.; Lodi, M.; Digilio, M.C.; Rinelli, M.; Bellacchio, E.; Alesi, V.; Nardo, T.; Zambruno, G.; Orioli, D.; et al. Expansion of the Clinical and Molecular Spectrum of an XPD-Related Disorder Linked to Biallelic Mutations in ERCC2 Gene. Clin. Genet. 2021, 99, 842–848, doi:10.1111/cge.13957 | eng |
dcterms.references | Moreira, D.J.S.; Fonseca, J.B.D.; Rossi, K.; Vasconcelos, S.D.S.; Oliveira, V.F.L.D.; Dias, C.A.G.D.M.; Oliveira, E.D.; Dendasck, C.V.; Araújo, M.H.M.D.; Brito, M.V.; et al. Aspectos generales del xeroderma pigmentoso: una revisión. Rev. Científica Multidiscip. Núcleo Conhecimento 2020, 114–126, doi:10.32749/nucleodoconhecimento.com.br/salud/xeroderma-pigmentoso | eng |
dcterms.references | Pérez-Elizondo, A.D.; del Pino-Rojas, G.T.; García-Hernández, J.F. Xeroderma Pigmentoso. Breve Revisión: De Lo Molecular a Lo Clínico. Rev. Argent. Dermatol. 2014, 95, 23–28. http://www.scielo.org.ar/scielo.php?script=sci_abstract&pid=S1851 - 300X2014000100005&lng=es&nrm=iso&tlng=es | eng |
dcterms.references | Mastandrea, C.; Chichizola, C.; Ludueña, B.; Sánchez, H.; Álvarez, H.; Gutiérrez, A. Hidrocarburos Aromáticos Policíclicos.Riesgos Para La Salud y Marcadores Biológicos. Acta Bioquímica Clínica Latinoam. 2005, 39, 27–36. http://www.scielo.org.ar/scielo.php?script=sci_abstract&pid=S0325 - 29572005000100006&lng=es&nrm=iso&tlng=es | spa |
dcterms.references | Bravo-Ferrer Álvarez-Sala, I. Papel del receptor de hidrocarburos aromáticos en el envejecimiento cerebral. 2019. https://hdl.handle.net/20 500.14352/16868 | spa |
dcterms.references | Mecanismos de Acción Del Receptor de Hidrocarburos de Arilos En El Metabolismo Del Benzo[a]Pireno y El Desarrollo de Tumores Available online: https://www.scielo.org.mx/scielo.php?pid=S1405- 888X2016000100054&script=sci_arttext (accessed on 14 December 2023). | spa |
dcterms.references | Batool, A.I.; Naveed, N.H.; Aslam, M.; da Silva, J.; Rehman, M.F. ur Coal Dust-Induced Systematic Hypoxia and Redox Imbalance among Coal Mine Workers. ACS Omega 2020, 5, 28204–28211, doi:10.1021/acsomega.0c03977. | eng |
dcterms.references | Mendoza Velasco, A. Evaluación del potencial de riesgo genotóxico de jales mineros en Pachuca de Soto, Hidalgo. Biología. 2023. http://200.57.56.70:8080/xmlui/handle/231104/2965 | spa |
dcterms.references | Safe, S.; Lee, S.-O.; Jin, U.-H. Role of the Aryl Hydrocarbon Receptor in Carcinogenesis and Potential as a Drug Target. Toxicol. Sci. Off. J. Soc. Toxicol. 2013, 135, 1–16, doi:10.1093/toxsci/kft128. | eng |
dcterms.references | Su, J.-M.; Lin, P.; Chang, H. Prognostic Value of Nuclear Translocation of Aryl Hydrocarbon Receptor for Non-Small Cell Lung Cancer. Anticancer Res. 2013, 33, 3953–3961. | eng |
dcterms.references | Predisposición Genética En El Melanoma Cutáneo | Actas DermoSifiliográficas Available online: https://www.actasdermo.org/es-predisposiciongenetica-el-melanoma-cutaneo-articulo-13089327 (accessed on 18 January 2024). | eng |
dcterms.references | Green, A.C.; Olsen, C.M. Cutaneous Squamous Cell Carcinoma: An Epidemiological Review. Br. J. Dermatol. 2017, 177, 373–381, doi:10.1111/bjd.15324. | eng |
dcterms.references | Shih, H.-P.; Ding, J.-Y.; Sotolongo Bellón, J.; Lo, Y.-F.; Chung, P.-H.; Ting, H.-T.; Peng, J.-J.; Wu, T.-Y.; Lin, C.-H.; Lo, C.-C.; et al. Pathogenic Autoantibodies to IFN-γ Act through the Impedance of Receptor Assembly and Fc-Mediated Response. J. Exp. Med. 2022, 219, e20212126, doi:10.1084/jem.20212126. | eng |
dcterms.references | Peng, Z.; Duan, M.; Tang, Y.; Wu, J.; Zhao, K.; Zhong, Y.; He, Z.; Meng, J.; Chen, F.; Xiao, X.; et al. Impaired Interferon-γ Signaling Promotes the Development of Silicosis. iScience 2022, 25, 104647, doi:10.1016/j.isci.2022.104647. | eng |
dcterms.references | Yu, J.; Tang, Y.; Xu, J. Effects of Indoor Coal Fine Particulate Matter on the Expression Levels of Inflammatory Factors in Ovalbumin-Induced Mice. Toxicol. Res. 2019, 8, 57–66, doi:10.1039/C8TX00221E. | eng |
dcterms.references | Ringshausen, F.C.; Nienhaus, A.; Schablon, A.; Torres Costa, J.; Knoop, H.; Hoffmeyer, F.; Bünger, J.; Merget, R.; Harth, V.; Schultze-Werninghaus, G.; et al. Frequent Detection of Latent Tuberculosis Infection among Aged Underground Hard Coal Miners in the Absence of Recent Tuberculosis Exposure. PLoS ONE 2013, 8, e82005, doi:10.1371/journal.pone.0082005. | eng |
dcterms.references | Herrera, M.T.; González, Y.; Juárez, E.; Herrera, M.T.; González, Y.; Juárez, E. El IFN-γ induce LL-37 pero no controla el crecimiento de M. tuberculosis en macrófagos alveolares. Neumol. Cir. Tórax 2018, 77, 267 –275. http://www.scielo.org.mx/scielo.php?script=sci_abstract&pid=S0028 - 37462018000400267&lng=es&nrm=iso&tlng=es | spa |
dcterms.references | Bam, M.; Yang, X.; Zhou, J.; Ginsberg, J.P.; Leyden, Q.; Nagarkatti, P.S.; Nagarkatti, M. Evidence for Epigenetic Regulation of Pro-Inflammatory Cytokines, Interleukin-12 and Interferon Gamma, in Peripheral Blood Mononuclear Cells from PTSD Patients. J. Neuroimmune Pharmacol. Off. J. Soc. NeuroImmune Pharmacol. 2016, 11, 168–181, doi:10.1007/s11481-015-9643-8. | eng |
dcterms.references | Zheng, Y.; Wang, M.; Tian, T.; Liu, K.; Liu, X.; Zhai, Y.; Lin, S.; Yang, P.; Li, S.; Dai, Z.; et al. Role of Interleukin-12 Gene Polymorphisms in the Onset Risk of Cancer: A Meta-Analysis. Oncotarget 2017, 8, 29795–29807, doi:10.18632/oncotarget.16080. | eng |
dcterms.references | Zhao, H.; Qian, Y.; Qian, H. Interleukin‐12B Gene Rs6887695 and Rs2288831 Polymorphisms Are Associated with an Increased Risk of Ulcerative Colitis Development in Chinese Han Population: A Case‐control Study. J. Clin. Lab. Anal. 2020, 34, e23472, doi:10.1002/jcla.23472. | eng |
dcterms.references | Karimi-Zarchi, M.; Abbasi, H.; Javaheri, A.; Hadadan, A.; Meibod, B.; Tabatabaei, R.S.; Ghelmani, Y.; Neamatzadeh, H. Association of IL-12B Rs3212227 and IL-6 Rs1800795 Polymorphisms with Susceptibility to Cervical Cancer: A Systematic Review and Meta-Analysis. Asian Pac. J. Cancer Prev. APJCP 2020, 21, 1197–1206, doi:10.31557/APJCP.2020.21.5.1197. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7541893/ | eng |
dcterms.references | Sun, Y.; Li, Y.; Zhang, J. The Causal Relationship between Psoriasis, Psoriatic Arthritis, and Inflammatory Bowel Diseases. Sci. Rep. 2022, 12, 20526, doi:10.1038/s41598-022-24872-5. | eng |
dcterms.references | Lee, H.W.; Chung, S.H.; Moon, C.M.; Che, X.; Kim, S.W.; Park, S.J.; Hong, S.P.; Kim, T.I.; Kim, W.H.; Cheon, J.H. The Correlation of Serum IL-12B Expression With Disease Activity in Patients With Inflammatory Bowel Disease. Medicine (Baltimore) 2016, 95, e3772, doi:10.1097/MD.0000000000003772. | eng |
dcterms.references | Chan, A.S.L.; Lau, W.W.I.; Szeto, A.C.H.; Wang, J.; Wong, Y.H. Differential Regulation of CXCL8 Production by Different G Protein Subunits with Synergistic Stimulation by Gi- and Gq-Regulated Pathways. J. Mol. Biol. 2016, 428, 3869– 3884, doi:10.1016/j.jmb.2016.03.026. | eng |
dcterms.references | Cambier, S.; Gouwy, M.; Proost, P. The Chemokines CXCL8 and CXCL12: Molecular and Functional Properties, Role in Disease and Efforts towards Pharmacological Intervention. Cell. Mol. Immunol. 2023, 20, 217–251, doi:10.1038/s41423-023-00974-6. | eng |
dcterms.references | Hautamäki, A.; Seitsonen, S.; Holopainen, J.M.; Moilanen, J.A.; Kivioja, J.; Onkamo, P.; Järvelä, I.; Immonen, I. The Genetic Variant Rs4073 A→T of the Interleukin-8 Promoter Region Is Associated with the Earlier Onset of Exudative Age-Related Macular Degeneration. Acta Ophthalmol. (Copenh.) 2015, 93, 726– 733, doi:10.1111/aos.12799. | eng |
dcterms.references | Xiong, X.; Liao, X.; Qiu, S.; Xu, H.; Zhang, S.; Wang, S.; Ai, J.; Yang, L. CXCL8 in Tumor Biology and Its Implications for Clinical Translation. Front. Mol. Biosci. 2022, 9. https://www.frontiersin.org/articles/10.3389/fmolb.2022.723846 | eng |
dcterms.references | Carrano, A.V.; Natarajan, A.T. Considerations for Population Monitoring Using Cytogenetic Techniques. Mutat. Res. Toxicol. 1988, 204, 379–406, doi:10.1016/0165-1218(88)90036-5. | eng |
dcterms.references | Singh, N.P.; McCoy, M.T.; Tice, R.R.; Schneider, E.L. A Simple Technique for Quantitation of Low Levels of DNA Damage in Individual Cells. Exp. Cell Res. 1988, 175, 184–191, doi:10.1016/0014-4827(88)90265-0. | eng |
dcterms.references | O’Callaghan, N.J.; Fenech, M. A Quantitative PCR Method for Measuring Absolute Telomere Length. Biol. Proced. Online 2011, 13, 3, doi:10.1186/1480 - 9222-13-3. | eng |
dcterms.references | Feng, H.; Zhou, J.; Chai, B.; Zhou, A.; Li, J.; Zhu, H.; Chen, H.; Su, D. Groundwater Environmental Risk Assessment of Abandoned Coal Mine in Each Phase of the Mine Life Cycle: A Case Study of Hongshan Coal Mine, North China. Environ. Sci. Pollut. Res. 2020, 27, 42001–42021, doi:10.1007/s11356-020- 10056-z | eng |
dcterms.references | Sinitsky, M.Y.; Minina, V.I.; Asanov, M.A.; Yuzhalin, A.E.; Ponasenko, A.V.; Druzhinin, V.G. Association of DNA Repair Gene Polymorphisms with Genotoxic Stress in Underground Coal Miners. Mutagenesis 2017, 32, 501–509, doi:10.1093/mutage/gex018. | eng |
dcterms.references | Souza, M.R.D.; Hilário Garcia, A.L.; Dalberto, D.; Martins, G.; Picinini, J.; Souza, G.M.S.D.; Chytry, P.; Dias, J.F.; Bobermin, L.D.; Quincozes-Santos, A.; et al. Environmental Exposure to Mineral Coal and By-Products: Influence on Human Health and Genomic Instability. Environ. Pollut. 2021, 287, 117346, doi:10.1016/j.envpol.2021.117346. | eng |
dcterms.references | Ullah, I.; Zahid, M.; Jawad, M.; Arsh, A. Assessment of DNA Damage and Oxidative Stress among Traffic Conductors and Coal Miners. Pak. J. Med. Sci. 2021, 37, doi:10.12669/pjms.37.2.2848. | eng |
dcterms.references | Espitia-Pérez, L.; Da Silva, J.; Brango, H.; Espitia-Pérez, P.; Pastor-Sierra, K.; Salcedo-Arteaga, S.; De Souza, C.T.; Dias, J.F.; Hoyos-Giraldo, L.S.; GómezPérez, M.; et al. Genetic Damage in Environmentally Exposed Populations to Open-Pit Coal Mining Residues: Analysis of Buccal Micronucleus Cytome (BMNCyt) Assay and Alkaline, Endo III and FPG High-Throughput Comet Assay. Mutat. Res. Toxicol. Environ. Mutagen. 2018, 836, 24–35, doi:10.1016/j.mrgentox.2018.06.002. | eng |
dcterms.references | Coppedè, F.; Migliore, L. DNA Damage in Neurodegenerative Diseases. Mutat. Res. Mol. Mech. Mutagen. 2015, 776, 84–97, doi:10.1016/j.mrfmmm.2014.11.010 | eng |
dcterms.references | Bonassi, S.; El-Zein, R.; Bolognesi, C.; Fenech, M. Micronuclei Frequency in Peripheral Blood Lymphocytes and Cancer Risk: Evidence from Human Studies. Mutagenesis 2011, 26, 93–100, doi:10.1093/mutage/geq075. | eng |
dcterms.references | Kahl, V.F.S.; da Silva, J. Inorganic Elements in Occupational Settings: A Review on the Effects on Telomere Length and Biology. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2021, 872, 503418, doi:10.1016/j.mrgentox.2021.503418. | eng |
dcterms.references | Tacheva, T.; Zienolddiny-Narui, S.; Dimov, D.; Vlaykova, D.; Miteva, I.; Vlaykova, T. The Leucocyte Telomere Length, GSTM1 and GSTT1 Null Genotypes and the Risk of Chronic Obstructive Pulmonary Disease. Curr. Issues Mol. Biol. 2022, 44, 3757–3769, doi:10.3390/cimb44080257. | eng |
dcterms.references | Kahl, V.F.S.; da Silva, F.R.; Alves, J. da S.; da Silva, G.F.; Picinini, J.; Dhillon, V.S.; Fenech, M.; de Souza, M.R.; Dias, J.F.; de Souza, C.T.; et al. Role of PON1, SOD2, OGG1, XRCC1, and XRCC4 Polymorphisms on Modulation of DNA Damage in Workers Occupationally Exposed to Pesticides. Ecotoxicol. Environ. Saf. 2018, 159, 164–171, doi:10.1016/j.ecoenv.2018.04.052. | eng |
dcterms.references | Ko, J.-L.; Cheng, Y.-J.; Liu, G.-C.; Hsin, I.-L.; Chen, H.-L. The Association of Occupational Metals Exposure and Oxidative Damage, Telomere Shortening in Fitness Equipments Manufacturing Workers. Ind. Health 2017, 55, 345 –353, doi:10.2486/indhealth.2016-0148. | eng |
dcterms.references | Acortamiento de Los Telómeros En Enfermedades Humanas - Kong - 2013 - The FEBS Journal - Wiley Online Library Available online: https://febs.onlinelibrary.wiley.com/doi/full/10.1111/febs.12326 (accessed on 18 January 2024). | spa |
dcterms.references | Telomere Shortening and Alzheimer’s Disease | NeuroMolecular Medicine Available online: https://link.springer.com/article/10.1007/s12017 -012-8207-9 (accessed on 18 January 2024). | eng |
dcterms.references | Fyhrquist, F.; Saijonmaa, O.; Strandberg, T. The Roles of Senescence and Telomere Shortening in Cardiovascular Disease. Nat. Rev. Cardiol. 2013, 10, 274– 283, doi:10.1038/nrcardio.2013.30. | eng |
dcterms.references | Barcelona, U.A. de Posible implicación de los genes MDM2 y TP53 en el riesgo a desarrollar neoplasias mieloides secundarias Available online: http://www.uab.cat/web/detalle-noticia/posible-implicacion-de-los-genes-mdm2- ytp53-en-el-riesgo-a-desarrollar-neoplasias-mieloides-secundarias1345680342040.html?noticiaid=1345795353391 (accessed on 18 January 2024). | eng |
dcterms.references | Octavio-Aguilar, P.; Ramos-Frías, J. Application of Population Genetics in the Field of Medicine. Biomédica 2014, 34, 171–179, doi:10.7705/biomedica.v34i2.1540. | eng |
dcterms.references | León-Mejía, G.; Quintana-Sosa, M.; de Moya Hernandez, Y.; Rodríguez, I.L.; Trindade, C.; Romero, M.A.; Luna-Carrascal, J.; Ortíz, L.O.; Acosta-Hoyos, A.; Ruiz-Benitez, M.; et al. DNA Repair and Metabolic Gene Polymorphisms Affect Genetic Damage Due to Diesel Engine Exhaust Exposure. Environ. Sci. Pollut. Res. Int. 2020, 27, 20516–20526, doi:10.1007/s11356-020-08533-6. | eng |
dcterms.references | Yáñez, J.M.; Martínez, V. Factores Genéticos Que Inciden En La Resistencia a Enfermedades Infecciosas En Salmónidos y Su Aplicación En Programas de Mejoramiento. Arch. Med. Vet. 2010, 42, 1–13, doi:10.4067/S0301- 732X2010000200002. | spa |
dcterms.references | McWilliams, R.; Cunningham, J.; Bamlet, W.; Rabe, K.; Tordsen, L.; Olswold, C.; de Andrade, M.; Petersen, G. ERCC2 Polymorphism Asp711Asp Is Associated with Risk of Young-Onset Pancreatic Cancer. J. Clin. Oncol. 2005, 23, 9688–9688, doi:10.1200/jco.2005.23.16_suppl.9688. | eng |
dcterms.references | Wu, W.; Li, H.; Wang, H.; Zhao, X.; Gao, Z.; Qiao, R.; Zhang, W.; Qian, J.; Wang, J.; Chen, H.; et al. Effect of Polymorphisms in XPD on Clinical Outcomes of Platinum-Based Chemotherapy for Chinese Non-Small Cell Lung Cancer Patients. PLoS ONE 2012, 7, e33200, doi:10.1371/journal.pone.0033200. | eng |
dcterms.references | Roco, Á.; Cayún, J.; Contreras, S.; Stojanova, J.; Quiñones, L. Can Pharmacogenetics Explain Efficacy and Safety of Cisplatin Pharmacotherapy? Front. Genet. 2014, 5, 391, doi:10.3389/fgene.2014.00391. | eng |
dcterms.references | Zheng, N.; Bi, Y.; Zheng, Y.; Zheng, R. Meta-Analysis of the Association of AhR Arg554Lys, AhRR Pro185Ala, and ARNT Val189Val Polymorphisms and Endometriosis Risk in Asians. J. Assist. Reprod. Genet. 2015, 32, 1135 –1144, doi:10.1007/s10815-015-0505-3. | eng |
dcterms.references | Fujisawa, T.X.; Nishitani, S.; Iwanaga, R.; Matsuzaki, J.; Kawasaki, C.; Tochigi, M.; Sasaki, T.; Kato, N.; Shinohara, K. Association of Aryl Hydrocarbon Receptor-Related Gene Variants with the Severity of Autism Spectrum Disorders. Front. Psychiatry 2016, 7. https://www.frontiersin.org/articles/10.3389/fpsyt.2016.00184 | eng |
dcterms.references | Helmig, S.; Seelinger, J.U.; Döhrel, J.; Schneider, J. RNA Expressions of AHR, ARNT and CYP1B1 Are Influenced by AHR Arg554Lys Polymorphism. Mol. Genet. Metab. 2011, 104, 180–184, doi:10.1016/j.ymgme.2011.06.009. | eng |
dcterms.references | Moorthy, B.; Chu, C.; Carlin, D.J. Polycyclic Aromatic Hydrocarbons: From Metabolism to Lung Cancer. Toxicol. Sci. 2015, 145, 5–15, doi:10.1093/toxsci/kfv040. | eng |
dcterms.references | Zhang, B.; Liu, L.; Guo, L.; Guo, S.; Zhao, X.; Liu, G.; Li, Q.; Jiang, L.; Pan, B.; Nie, J.; et al. Telomere Length Mediates the Association between Polycyclic Aromatic Hydrocarbons Exposure and Abnormal Glucose Level among Chinese Coke Oven Plant Workers. Chemosphere 2021, 266, 129111, doi:10.1016/j.chemosphere.2020.129111. | eng |
dcterms.references | Tryggvadottir, H.; Sandén, E.; Björner, S.; Bressan, A.; Ygland Rödström, M.; Khazaei, S.; Edwards, D.P.; Nodin, B.; Jirström, K.; Isaksson, K.; et al. The Prognostic Impact of Intratumoral Aryl Hydrocarbon Receptor in Primary Breast Cancer Depends on the Type of Endocrine Therapy: A Population-Based Cohort Study. Front. Oncol. 2021, 11, 642768, doi:10.3389/fonc.2021.642768. | eng |
dcterms.references | Luo, C.; Zou, P.; Ji, G.; Gu, A.; Zhao, P.; Zhao, C. The Aryl Hydrocarbon Receptor (AhR) 1661G>A Polymorphism in Human Cancer: A Meta-Analysis. Gene 2013, 513, 225–230, doi:10.1016/j.gene.2012.09.050. | eng |
dcterms.references | Muegue, L.C.D.; González, J.C.A.; Mesa, G. Caracterización FísicoQuímica y Mineralógica de Suelos En Zona Carbonífera Del Cesar, Colombia. Interciencia 2013. https://www.semanticscholar.org/paper/Caracterizaci%C3%B3n-f%C3%ADsico- qu%C3%ADmica-y-mineral%C3%B3gica-de-en-MuegueGonz%C3%A1lez/cba549bf128d39ca62e86ff5519e99a037bcc920 | spa |
dcterms.references | Yu, W.; Tu, Y.; Long, Z.; Liu, J.; Kong, D.; Peng, J.; Wu, H.; Zheng, G.; Zhao, J.; Chen, Y.; et al. Reactive Oxygen Species Bridge the Gap between Chronic Inflammation and Tumor Development. Oxid. Med. Cell. Longev. 2022, 2022, 2606928, doi:10.1155/2022/2606928. | eng |
dcterms.references | Lowery, S.A.; Sariol, A.; Perlman, S. Innate Immune and Inflammatory Responses to SARS-CoV-2: Implications for COVID-19. Cell Host Microbe 2021, 29, 1052–1062, doi:10.1016/j.chom.2021.05.004. | eng |
dcterms.references | Ghafoor, D.D. Correlation between Oxidative Stress Markers and Cytokines in Different Stages of Breast Cancer. Cytokine 2023, 161, 156082, doi:10.1016/j.cyto.2022.156082. | eng |
dcterms.references | Lin, J.; Epel, E. Stress and Telomere Shortening: Insights from Cellular Mechanisms. Ageing Res. Rev. 2022, 73, 101507, doi:10.1016/j.arr.2021.101507. | eng |
dcterms.references | Ha, H.; Debnath, B.; Neamati, N. Role of the CXCL8-CXCR1/2 Axis in Cancer and Inflammatory Diseases. Theranostics 2017, 7, 1543–1588, doi:10.7150/thno.15625. | eng |
dcterms.references | Langer, V.; Vivi, E.; Regensburger, D.; Winkler, T.H.; Waldner, M.J.; Rath, T.; Schmid, B.; Skottke, L.; Lee, S.; Jeon, N.L.; et al. IFN-γ Drives Inflammatory Bowel Disease Pathogenesis through VE-Cadherin-Directed Vascular Barrier Disruption. J. Clin. Invest. 2019, 129, 4691–4707, doi:10.1172/JCI124884. | eng |
dcterms.references | Eras, N.; Daloglu, F.T.; Çolak, T.; Guler, M.; Akbas, E. The Correlation between IL-1β-C31T Gene Polymorphism and Susceptibility to Breast Cancer. J. Breast Cancer 2019, 22, 210–218, doi:10.4048/jbc.2019.22.e27. | eng |
oaire.version | info:eu-repo/semantics/acceptedVersion | spa |
sb.programa | Doctorado en Genética y Biología Molecular | spa |
sb.sede | Sede Barranquilla | spa |
Archivos
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 1.71 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: