Brain hematoma computational segmentation
dc.contributor.author | Sáenz, F | |
dc.contributor.author | Vera, M | |
dc.contributor.author | Huerfano, Y | |
dc.contributor.author | Molina, V | |
dc.contributor.author | Martinez, L | |
dc.contributor.author | Vera, M I | |
dc.contributor.author | Salazar, W | |
dc.contributor.author | Gelvez, E | |
dc.contributor.author | Salazar, J | |
dc.contributor.author | Valbuena, O | |
dc.contributor.author | Robles, H | |
dc.contributor.author | Bautista, M | |
dc.contributor.author | Arango, J | |
dc.date.accessioned | 2019-01-25T20:04:46Z | |
dc.date.available | 2019-01-25T20:04:46Z | |
dc.date.issued | 2018 | |
dc.description.abstract | In computed tomography imaging, brain hematoma (BH) segmentation is a very challenging process due to a high variability of BH morphology, low contrast and noisy images. Because of this, BH segmentation is an open problem. In order to approach this problem, we propose an automatic technique, named nonlinear technique (NLT), based on a thresholding method, noise suppression filters, intelligent operators, a clustering strategy and a binary morphological operator. NLT performance is assessed by Jaccard's similarity index (JSI) used to compare automatic and manual BH segmentations. This assessment allows developing a tuning process for establishing the optimal parameters of each of the algorithms which constitute the proposed technique. The results indicate a good correlation, based on JSI, between the manual segmentations and the automatic ones. Finally, the BH volume is generated considering the automatic segmentation. This volume indicates whether or not the patient must undergo a surgical intervention for BH treatment. | eng |
dc.identifier.issn | 17426588 | |
dc.identifier.uri | http://hdl.handle.net/20.500.12442/2531 | |
dc.language.iso | eng | eng |
dc.publisher | IOP Publishing | eng |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.license | Licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional | spa |
dc.source | Journal of Physics: Conference Series | eng |
dc.source | Vol. 1126, No. 012071 (2018) | spa |
dc.source.uri | doi :10.1088/1742-6596/1126/1/012071 | eng |
dc.title | Brain hematoma computational segmentation | eng |
dc.type | article | eng |
dcterms.references | Stippler M 2016 Craniocerebral trauma Bradley's Neurology in Clinical Practice vol 2 ed Robert B. Daroff, Joseph Jankovic, John C Mazziotta, Scott L Pomeroy (Philadelphia: Elsevier) chapter 62 pp 867– 880 | eng |
dcterms.references | Maier A, Wigstrom L, Hofmann H G, Hornegger J, Zhu L, Strobel N and Fahrig R 2011 Threedimensional anisotropic adaptive filtering of projection data for noise reduction in cone beam CT Medical Physics 38 5896 | eng |
dcterms.references | Li-Hong J and Wu M 2010 MRI brain lesion image detection based on colour converted k-means clustering segmentation Measurement 43 941 | eng |
dcterms.references | Roy S, Nag S, Bandyopadhyay S K, Bhattacharyya D and Kim T H 2015 Automated brain haemorrhage lesion segmentation and classification from MR image using an innovative composite method Journal of Theoretical and Applied Information Technology 78 34 | eng |
dcterms.references | Kamnitsas K, Lediga C, Newcombeb V, Simpsonb J, Kaneb A, Menonb D, Rueckerta D, Glockera B 2017 Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med. Image Anal 23 1603 | eng |
dcterms.references | Liao C, Xiao F, Wong J, Chiang I 2010 Computer-aided diagnosis of intracranial hematoma with brain deformation on computed tomography. Comput Med Imaging Graph 34 563 | eng |
dcterms.references | Vera M, Martinez L J, Huerfano Y, Molina V, Vargas S, Vera M, Salazar W, Rodriguez J, Rodriguez R, Chacon G, Isaza A, Saenz F, Glevez E and Salazar J 2018 Automatic segmentation of subdural hematomas using a computational technique based on smart operators Global Medical Engineering Physics Exchanges/Pan American Health Care Exchanges (Porto) 1 1 | eng |
dcterms.references | Sharma B and Venugopalan K 2012 Automatic segmentation of brain ct scan image to identify hemorrhages. International Journal of Computer Applications 40 1 | eng |
dcterms.references | Al-Ayyoub M, Alawad D, Al-Darabsah K and Aljarrah I 2013. Automatic detection and classification of brain hemorrhages. WSEAS Transactions on Computers 10 395 | eng |
dcterms.references | Vera M, Bravo A and Medina R 2011 Improving ventricle detection in 3D cardiac multislice computerized tomography images Communications in Computer and Information Science 229 170 | eng |
dcterms.references | Real R and Vargas J 1996. The probabilistic basis of Jaccard's index of similarity Syst. Biol 45 380 | eng |
dcterms.references | Hu T, Yan L, Yan P, Wang X and Yue G 2016 Assessment of the ABC/2 method of epidural hematoma volume measurement as compared to computer-assisted planimetric analysis Biological Research for Nursing 18 5 | eng |