Funciones cognitivas y reconocimiento de emocional en pacientes con trastorno del espectro autista de alto funcionamiento

datacite.rightshttp://purl.org/coar/access_right/c_f1cf
dc.contributor.advisorMartínez Banfi, Marta
dc.contributor.authorNieves Castro, Cristina Eliana
dc.date.accessioned2025-10-29T16:28:31Z
dc.date.available2025-10-29T16:28:31Z
dc.date.issued2025
dc.description.abstractEl Trastorno del Espectro Autista (TEA) constituye un trastorno del neurodesarrollo caracterizado por alteraciones en la comunicación, la interacción social y la presencia de conductas repetitivas o restringidas, siendo una condición de creciente interés clínico y científico debido a sus implicaciones en la calidad de vida y la inclusión social de quienes lo presentan; dentro de este espectro, el autismo de alto funcionamiento (TEA-AF) se distingue por un coeficiente intelectual dentro del rango normal o superior, aunque con persistentes dificultades en el ámbito socioemocional, especialmente en el reconocimiento de emociones y en la comprensión de las sutilezas del lenguaje verbal, lo que plantea la necesidad de comprender de manera más profunda el perfil cognitivo y emocional de estos individuos. En este contexto, el presente estudio tuvo como objetivo evaluar el funcionamiento cognitivo y la capacidad de reconocimiento emocional en adolescentes con TEA-AF en comparación con pares neurotípicos, a través de un diseño analítico de corte transversal con una muestra de 40 participantes (20 con diagnóstico de TEA-AF y 20 neurotípicos) con edades entre 12 y 15 años; para ello se utilizaron la Escala de Inteligencia de Wechsler para Niños-IV (WISC-IV), que permitió identificar fortalezas y debilidades en los distintos dominios cognitivos, y la Evaluación Neuropsicológica Infantil (ENI), centrada en la capacidad para reconocer expresiones emocionales faciales. Los resultados obtenidos mostraron que los adolescentes con TEA-AF presentaron un perfil cognitivo heterogéneo caracterizado por puntuaciones significativamente más altas en razonamiento perceptivo (100.4 ± 4.5 frente a 95.3 ± 5.0; p = 0.002) y en velocidad de procesamiento (104.4 ± 6.5 frente a 98.1 ± 5.8; p = 0.003), lo que evidencia fortalezas en procesos de discriminación visual, atención al detalle y eficiencia en tareas perceptivas; sin embargo, también se identificaron debilidades importantes en comprensión verbal (89.8 ± 4.7 frente a 106.6 ± 5.9; p < 0.001) y en el reconocimiento de emociones faciales (mediana de 4, IQR: 2–4 frente a 8, IQR: 7–8; p < 0.001), lo cual sugiere que, a pesar de sus fortalezas cognitivas, estos individuos encuentran serias limitaciones en dominios clave para la cognición social.spa
dc.description.abstractAutism Spectrum Disorder (ASD) is a neurodevelopmental condition characterized by persistent impairments in communication, social interaction, and the presence of repetitive or restricted behaviors, representing a growing clinical and scientific concern due to its significant impact on quality of life and social inclusion. Within the spectrum, High-Functioning Autism (HFA-ASD) is distinguished by intellectual abilities within or above the average range, yet individuals continue to face socioemotional challenges, particularly in emotional recognition and in understanding the subtleties of verbal language, highlighting the importance of further exploring their cognitive and emotional profiles. Against this backdrop, the present study aimed to evaluate cognitive functioning and emotional recognition abilities in adolescents with HFA- ASD compared to neurotypical peers, using an analytical cross-sectional design with a sample of 40 participants (20 diagnosed with HFA-ASD and 20 neurotypical individuals) aged between 12 and 15 years. To assess these domains, the Wechsler Intelligence Scale for Children-IV (WISC-IV) was administered to measure cognitive strengths and weaknesses, while the Child Neuropsychological Assessment (ENI) was employed to evaluate the ability to recognize facial emotional expressions. The results revealed a heterogeneous cognitive profile in adolescents with HFA-ASD, who exhibited significantly higher scores in perceptual reasoning (100.4 ± 4.5 vs. 95.3 ± 5.0; p = 0.002) and processing speed (104.4 ± 6.5 vs. 98.1 ± 5.8; p = 0.003), suggesting cognitive strengths in visual discrimination, attention to detail, and efficiency in perceptual tasks. However, marked difficulties were found in verbal comprehension (89.8 ± 4.7 vs. 106.6 ± 5.9; p < 0.001) and in facial emotion recognition (median 4, IQR: 2–4 vs. 8, IQR: 7–8; p < 0.001), indicating that despite their strengths, these individuals face critical limitations in domains essential for social cognition.eng
dc.format.mimetypepdf
dc.identifier.urihttps://hdl.handle.net/20.500.12442/17063
dc.language.isospa
dc.publisherEdiciones Universidad Simón Bolívarspa
dc.publisherFacultad de Ciencias de la Saludspa
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationaleng
dc.rights.accessrightsinfo:eu-repo/semantics/embargoedAccess
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectAutismospa
dc.subjectWISC-IVspa
dc.subjectENIspa
dc.subjectAlto funcionamientospa
dc.subjectEvaluación cognitivaspa
dc.subject.keywordsAutismeng
dc.subject.keywordsHigh-functioningeng
dc.subject.keywordsCognitive assessmenteng
dc.titleFunciones cognitivas y reconocimiento de emocional en pacientes con trastorno del espectro autista de alto funcionamientospa
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.spaTrabajo de grado máster
dcterms.referencesAmerican Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (5th ed.). American Psychiatric Publishing. https://doi.org/10.1176/appi.books.9780890425596eng
dcterms.referencesAmeis, S. H., & Catani, M. (2015). Altered white matter connectivity as a neural substrate for social impairment in autism spectrum disorder. Cortex, 62, 158-181. https://doi.org/10.1016/j.cortex.2014.10.014eng
dcterms.referencesBaranek, G. T., David, F. J., Poe, M. D., Stone, W. L., & Watson, L. R. (2006). Sensory Experiences Questionnaire: discriminating sensory features in young children with autism, developmental delays, and typical development. Journal of Child Psychology and Psychiatry, 47(6), 591-601. https://doi.org/10.1111/j.1469-7610.2005.01546.xeng
dcterms.referencesBaron-Cohen, S., Wheelwright, S., Hill, J., Raste, Y., & Plumb, I. (2001). The "Reading the Mind in the Eyes" Test revised version: a study with normal adults, and adults with Asperger syndrome or high-functioning autism. Journal of Child Psychology and Psychiatry, 42(2), 241-251. https://doi.org/10.1111/1469-7610.00715eng
dcterms.referencesBaron-Cohen, S., Wheelwright, S., Skinner, R., Martin, J., & Clubley, E. (2001). The autism- spectrum quotient (AQ): Evidence from Asperger syndrome/high-functioning autism, males and females, scientists and mathematicians. Journal of Autism and Developmental Disorders, 31(1), 5-17. https://doi.org/10.1023/A:1005653411471eng
dcterms.referencesBlack, M. H., Chen, N. T., Iyer, K. K., Lipp, O. V., Bölte, S., Falkmer, M., ... & Girdler, S. (2017). Mechanisms of facial emotion recognition in autism spectrum disorders: Insights from eye tracking and electroencephalography. Neuroscience & Biobehavioral Reviews, 80, 488-515. https://doi.org/10.1016/j.neubiorev.2017.06.016eng
dcterms.referencesBookheimer, S.Y., Wang, T., Scott, A., Sigman, M., & Dapretto, M. (2008). Frontal contributions to face processing differences in autism: Evidence from FMRI of inverted face processing. Journal of the International Neuropsychological Society, 14, 922-932. https://doi.org/10.1017/S135561770808140Xeng
dcterms.referencesBottema-Beutel, K., Kim, S. Y., & Crowley, S. (2019). A systematic review and meta-regression analysis of social functioning correlates in autism and typical development. Autism Research, 12(2), 152-175. https://doi.org/10.1002/aur.2055eng
dcterms.referencesBowler, D. M., Gardiner, J. M., & Grice, S. J. (2000). Episodic memory and remembering in adults with Asperger syndrome. Journal of Autism and Developmental Disorders, 30(4), 295-304. https://doi.org/10.1023/A:1005575216176eng
dcterms.referencesBrown, C., & Dunn, W. (2002). Adolescent/adult sensory profile: User's manual. Psychological Corporation. https://doi.org/10.1037/t56705-000eng
dcterms.referencesCasanova, M. F., Sokhadze, E. M., Opris, I., Wang, Y., & Li, X. (2020). Autism spectrum disorders: linking neuropathological findings to treatment with transcranial magnetic stimulation. Acta Pediatric, 109(2), 346-355. https://doi.org/10.1111/apa.12943eng
dcterms.referencesCDC. (2021). Prevalence of autism spectrum disorder among children aged 8 years - Autism and Developmental Disabilities Monitoring Network, 2020. Morbidity and Mortality Weekly Report, 70(11), 202-205. https://doi.org/10.15585/mmwr.mm7011a1eng
dcterms.referencesCourchesne, E., Pramparo, T., Gazestani, V. H., Lombardo, M. V., Pierce, K., & Lewis, N. E. (2019). The ASD living biology: from cell proliferation to clinical phenotype. Molecular Psychiatry, 24(1), 88-107. https://doi.org/10.1038/s41380-018-0056-yeng
dcterms.referencesCritchley, H. D., Daly, E. M., Bullmore, E. T., Williams, S. C., Van Amelsvoort, T., Robertson, D. M., ... & Murphy, D. G. (2000). The functional neuroanatomy of social behaviour: changes in cerebral blood flow when people with autistic disorder process facial expressions. Brain, 123(11), 2203-2212. https://doi.org/10.1093/brain/123.11.2203eng
dcterms.referencesDalton, K., Nacewicz, B., Johnstone, T., Schaefer, H., Gernsbacher, M., Goldsmith, H., Alexander, A., & Davidson, R.J. (2005). Gaze fixation and the neural circuitry of face processing in autism. Nature Neuroscience, 8, 519-526. https://doi.org/10.1038/nn1421eng
dcterms.referencesDelis, D. C., Kaplan, E., & Kramer, J. H. (2001). Delis-Kaplan Executive Function System (D- KEFS). The Psychological Corporation. https://doi.org/10.1037/t15082-000eng
dcterms.referencesDemetriou, E. A., Lampit, A., Quintana, D. S., Naismith, S. L., Song, Y. J. C., Pye, J. E., ... & Guastella, A. J. (2018). Autism spectrum disorders: a meta-analysis of executive function. Molecular Psychiatry, 23(5), 1198-1204. https://doi.org/10.1038/mp.2017.75eng
dcterms.referencesDemetriou, E. A., et al. (2020). Executive function profiles in high-functioning autism: A meta- analysis. Autism Research, 13(1), 1-16. https://doi.org/10.1002/aur.2246eng
dcterms.referencesDemetriou, E. A., et al. (2021). Executive function profiles in high-functioning autism: A meta- analysis. Autism Research, 14(4), 723-735. https://doi.org/10.1002/aur.2470eng
dcterms.referencesFrazier, T. W., Strauss, M., Klingemier, E. W., Zetzer, E. E., Hardan, A. Y., Eng, C., & Youngstrom, E. A. (2017). A meta-analysis of gaze differences to social and nonsocial information between individuals with and without autism. Journal of the American Academy of Child & Adolescent Psychiatry, 56(7), 546-555. https://doi.org/10.1016/j.jaac.2017.05.005eng
dcterms.referencesFridenson-Hayo, S., Berggren, S., Lassalle, A., Tal, S., Pigat, D., Bölte, S., ... & Golan, O. (2016). Basic and complex emotion recognition in children with autism: cross-cultural findings. Molecular Autism, 7(1), 52. https://doi.org/10.1186/s13229-016-0113-9eng
dcterms.referencesGates, J. A., Kang, E., & Lerner, M. D. (2017). Efficacy of group social skills interventions for youth with autism spectrum disorder: A systematic review and meta-analysis. Clinical Psychology Review, 52, 164-181. https://doi.org/10.1016/j.cpr.2017.01.006eng
dcterms.referencesGeurts, H. M., Corbett, B., & Solomon, M. (2009). The paradox of cognitive flexibility in autism. Trends in Cognitive Sciences, 13(2), 74-82. https://doi.org/10.1016/j.tics.2008.11.006eng
dcterms.referencesGioia, G. A., Isquith, P. K., Guy, S. C., & Kenworthy, L. (2015). Behavior rating inventory of executive function (2nd ed.). Psychological Assessment Resources. https://doi.org/10.1037/t79467-000eng
dcterms.referencesGoris, J., Braem, S., Nijhof, A. D., Rigoni, D., Deschrijver, E., Van de Cruys, S., ... & Brass, M. (2018). Sensory prediction errors are less modulated by global context in autism spectrum disorder. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 3(8), 667- 674. https://doi.org/10.1016/j.bpsc.2018.02.003eng
dcterms.referencesGrove, J., Ripke, S., Als, T. D., Mattheisen, M., Walters, R. K., Won, H., ... & Børglum, A. D. (2019). Identification of common genetic risk variants for autism spectrum disorder. Nature Genetics, 51(3), 431-444. https://doi.org/10.1038/s41588-019-0344-8eng
dcterms.referencesGuillon, Q., Hadjikhani, N., Baduel, S., & Rogé, B. (2014). Visual social attention in autism spectrum disorder: Insights from eye tracking studies. Neuroscience & Biobehavioral Reviews, 42, 279-297. https://doi.org/10.1016/j.neubiorev.2014.03.013eng
dcterms.referencesHampson, D. R., & Blatt, G. J. (2015). Autism spectrum disorders and neuropathology of the cerebellum. Frontiers in Neuroscience, 9, 420. https://doi.org/10.3389/fnins.2015.00420eng
dcterms.referencesHappé, F. (1994). An advanced test of theory of mind: Understanding of story characters' thoughts and feelings by able autistic, mentally handicapped, and normal children and adults. Journal of Autism and Developmental Disorders, 24(2), 129-154. https://doi.org/10.1007/BF02172093eng
dcterms.referencesHappé, F., & Frith, U. (2006). The weak coherence account: detail-focused cognitive style in autism spectrum disorders. Journal of Autism and Developmental Disorders, 36(1), 5-25. https://doi.org/10.1007/s10803-005-0039-0eng
dcterms.referencesHappé, F., & Frith, U. (2014). Annual research review: Towards a developmental neuroscience of autism. Journal of Child Psychology and Psychiatry, 55(6), 553-563. https://doi.org/10.1111/jcpp.12183eng
dcterms.referencesHill, E. L. (2004). Executive dysfunction in autism. Trends in Cognitive Sciences, 8(1), 26-32. https://doi.org/10.1016/j.tics.2003.11.003eng
dcterms.referencesHull, J. V., Dokovna, L. B., Jacokes, Z. J., Torgerson, C. M., Irimia, A., & Van Horn, J. D. (2017). Resting-state functional connectivity in autism spectrum disorders: A review. Frontiers in Psychiatry, 7, 205. https://doi.org/10.3389/fpsyt.2016.00205eng
dcterms.referencesJoseph, R. M., & Tager-Flusberg, H. (2004). The Development of Communication and Language in Autism. Journal of Autism and Developmental Disorders, 34(4), 355-368. https://doi.org/10.1023/B:JADD.0000018077.64617.5aeng
dcterms.referencesJust, M., Cherkassyky, V., Keller, T., & Minshew, N. (2004). Cortical activation and synchronization during sentence comprehension in high-functioning autism: Evidence of underconnectivity. Brain, 127, 1811-1821 https://doi.org/10.1093/brain/awh199eng
dcterms.referencesKana, R. K., Libero, L. E., & Moore, M. S. (2011). Disrupted cortical connectivity theory as an explanatory model for autism spectrum disorders. Physics of Life Reviews, 8(4), 410- 437. https://doi.org/10.1016/j.plrev.2011.10.001eng
dcterms.referencesKasari, C., Brady, N., Lord, C., & Tager‐Flusberg, H. (2013). Assessing the minimally verbal school‐aged child with autism spectrum disorder. Autism Research, 6(6), 479-493. https://doi.org/10.1002/aur.1334eng
dcterms.referencesKazdoba, T. M., Leach, P. T., & Crawley, J. N. (2016). Behavioral phenotypes of genetic mouse models of autism. Genes, Brain and Behavior, 15(1), 7-26. https://doi.org/10.1111/gbb.12256eng
dcterms.referencesKenworthy, L., Anthony, L. G., Naiman, D. Q., Cannon, L., Wills, M. C., Luong‐Tran, C., ... & Wallace, G. L. (2014). Randomized controlled effectiveness trial of executive function intervention for children on the autism spectrum. Journal of Child Psychology and Psychiatry, 55(4), 374-383. https://doi.org/10.1111/jcpp.12161eng
dcterms.referencesLai, M. C., Anagnostou, E., Wiznitzer, M., Allison, C., & Baron-Cohen, S. (2020). Evidence- based support for autistic people across the lifespan: maximising potential, minimising barriers, and optimising the person-environment fit. The Lancet Neurology, 19(5), 434- 451. https://doi.org/10.1016/S1474-4422(20)30034-Xeng
dcterms.referencesLai, M. C., Kassee, C., Besney, R., Bonato, S., Hull, L., Mandy, W., ... & Ameis, S. H. (2019). Prevalence of co-occurring mental health diagnoses in the autism population: a systematic review and meta-analysis. The Lancet Psychiatry, 6(10), 819-829. https://doi.org/10.1016/S2215-0366(19)30289-5eng
dcterms.referencesLawson, R. P., Rees, G., & Friston, K. J. (2014). An aberrant precision account of autism. Frontiers in Human Neuroscience, 8, 302. https://doi.org/10.3389/fnhum.2014.00302eng
dcterms.referencesLivingston, L. A., & Happé, F. (2017). Conceptualising compensation in neurodevelopmental disorders: Reflections from autism spectrum disorder. Neuroscience & Biobehavioral Reviews, 80, 729-742. https://doi.org/10.1016/j.neubiorev.2017.06.005eng
dcterms.referencesLivingston, L. A., Colvert, E., Bolton, P., & Happé, F. (2019). Good social skills despite poor theory of mind: exploring compensation in autism spectrum disorder. Journal of Child Psychology and Psychiatry, 60(1), 102-110. https://doi.org/10.1111/jcpp.12886eng
dcterms.referencesLombardo, M. V., Lai, M. C., & Baron-Cohen, S. (2019). Big data approaches to decomposing heterogeneity across the autism spectrum. Molecular Psychiatry, 24(10), 1435-1450. https://doi.org/10.1038/s41380-018-0321-0eng
dcterms.referencesLoth, E., Garrido, L., Ahmad, J., Watson, E., Duff, A., & Duchaine, B. (2018). Facial expression recognition as a candidate marker for autism spectrum disorder: how frequent and severe are deficits? Molecular Autism, 9(1), 7. https://doi.org/10.1186/s13229-018-0187-7eng
dcterms.referencesLyall, K., Croen, L., Daniels, J., Fallin, M. D., Ladd-Acosta, C., Lee, B. K., ... & Newschaffer, C. (2017). The changing epidemiology of autism spectrum disorders. Annual Review of Public Health, 38, 81-102. https://doi.org/10.1146/annurev-publhealth-031816-044318eng
dcterms.referencesMaenner, M. J., Shaw, K. A., Baio, J., Washington, A., Patrick, M., DiRienzo, M., ... & Dietz, P. M. (2020). Prevalence of autism spectrum disorder among children aged 8 years-autism and developmental disabilities monitoring network, 11 sites, United States, 2016. MMWR Surveillance Summaries, 69(4), 1. https://doi.org/10.15585/mmwr.ss6904a1eng
dcterms.referencesMagiati, I., Tay, X. W., & Howlin, P. (2014). Cognitive, language, social and behavioural outcomes in adults with autism spectrum disorders: A systematic review of longitudinal follow-up studies in adulthood. Clinical Psychology Review, 34(1), 73-86. https://doi.org/10.1016/j.cpr.2013.11.002eng
dcterms.referencesManning, C., Kilner, J., Neil, L., Karaminis, T., & Pellicano, E. (2017). Children on the autism spectrum update their behaviour in response to a volatile environment. Developmental Science, 20(5), e12435. https://doi.org/10.1111/desc.12435eng
dcterms.referencesMatta, S. M., Hill-Yardin, E. L., & Crack, P. J. (2019). The influence of neuroinflammation in autism spectrum disorder. Brain, Behavior, and Immunity, 79, 75-90. https://doi.org/10.1016/j.bbi.2019.04.037eng
dcterms.referencesMaximo, J. O., Cadena, E. J., & Kana, R. K. (2014). The implications of brain connectivity in the neuropsychology of autism. Neuropsychology Review, 24(1), 16-31. https://doi.org/10.1007/s11065-014-9250-0eng
dcterms.referencesMazefsky, C. A., & White, S. W. (2014). Emotion regulation: Concepts & practice in autism spectrum disorder. Child and Adolescent Psychiatric Clinics, 23(1), 15-24. https://doi.org/10.1016/j.chc.2013.07.002eng
dcterms.referencesMcDonald, S., Flanagan, S., Rollins, J., & Kinch, J. (2003). TASIT: A new clinical tool for assessing social perception after traumatic brain injury. The Journal of Head Trauma Rehabilitation, 18(3), 219-238. https://doi.org/10.1097/00001199-200305000-00001eng
dcterms.referencesMeilleur, A. A. S., Jelenic, P., & Mottron, L. (2015). Prevalence of clinically and empirically defined talents and strengths in autism. Journal of Autism and Developmental Disorders, 45(5), 1354-1367. https://doi.org/10.1007/s10803-014-2296-2eng
dcterms.referencesMottron, L., Dawson, M., Soulières, I., Hubert, B., & Burack, J. (2006). Enhanced perceptual functioning in autism: an update, and eight principles of autistic perception. Journal of Autism and Developmental Disorders, 36(1), 27-43. https://doi.org/10.1007/s10803-005- 0040-7eng
dcterms.referencesOzonoff, S., Goodlin-Jones, B. L., & Solomon, M. (2005). Evidence-based assessment of autism spectrum disorders in children and adolescents. Journal of Clinical Child and Adolescent Psychology, 34(3), 523-540. https://doi.org/10.1207/s15374424jccp3403_8eng
dcterms.referencesParham, L. D., Ecker, C., Miller Kuhaneck, H., Henry, D. A., & Glennon, T. J. (2007). Sensory Processing Measure (SPM): Manual. Western Psychological Services. https://doi.org/10.1037/t49671-000eng
dcterms.referencesPellicano, E., & Burr, D. (2012). When the world becomes 'too real': a Bayesian explanation of autistic perception. Trends in Cognitive Sciences, 16(10), 504-510. https://doi.org/10.1016/j.tics.2012.08.009eng
dcterms.referencesPelphrey, K. A., Shultz, S., Hudac, C. M., & Vander Wyk, B. C. (2011). Research review: constraining heterogeneity: the social brain and its development in autism spectrum disorder. Journal of Child Psychology and Psychiatry, 52(6), 631-644. https://doi.org/10.1111/j.1469-7610.2010.02349.xeng
dcterms.referencesRonald, A., & Hoekstra, R. A. (2011). Autism spectrum disorders and autistic traits: a decade of new twin studies. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 156(3), 255-274. https://doi.org/10.1002/ajmg.b.31159eng
dcterms.referencesRosenblau, G., Kliemann, D., Heekeren, H. R., & Dziobek, I. (2015). Approximating implicit and explicit mentalizing with two naturalistic video-based tasks in typical development and autism spectrum disorder. Journal of Autism and Developmental Disorders, 45(4), 953-965. https://doi.org/10.1007/s10803-014-2249-9eng
dcterms.referencesRudovic, O., Lee, J., Dai, M., Schuller, B., & Picard, R. W. (2018). Personalized machine learning for robot perception of affect and engagement in autism therapy. Science Robotics, 3(19), eaao6760. https://doi.org/10.1126/scirobotics.aao6760eng
dcterms.referencesRusso-Ponsaran, N. M., Evans-Smith, B., Johnson, J., Russo, J., & McKown, C. (2016). Efficacy of a facial emotion training program for children and adolescents with autism spectrum disorders. Journal of Nonverbal Behavior, 40(1), 13-38. https://doi.org/10.1007/s10919- 015-0217-5eng
dcterms.referencesRutter, M., Le Couteur, A., & Lord, C. (2003). Autism diagnostic interview-revised. Western Psychological Services. https://doi.org/10.1037/t18128-000eng
dcterms.referencesSeltzer, M. M., Shattuck, P., Abbeduto, L., & Greenberg, J. S. (2004). Trajectory of development in adolescents and adults with autism. Mental Retardation and Developmental Disabilities Research Reviews, 10(4), 234-247. https://doi.org/10.1002/mrdd.20038eng
dcterms.referencesSimonoff, E., Kent, R., Stringer, D., Lord, C., Briskman, J., Lukito, S., ... & Baird, G. (2020). Trajectories in symptoms of autism and cognitive ability in autism from childhood to adult life: Findings from a longitudinal epidemiological cohort. Journal of the American Academy of Child & Adolescent Psychiatry, 59(12), 1342-1352. https://doi.org/10.1016/j.jaac.2019.11.020eng
dcterms.referencesSiu, A. M. H., et al. (2020). Understanding social cognition in children with autism spectrum disorder: A systematic review. Research in Autism Spectrum Disorders, 73, 101514. https://doi.org/10.1016/j.rasd.2020.101514eng
dcterms.referencesSouth, M., Ozonoff, S., & McMahon, W. M. (2005). Repetitive behavior profiles in Asperger syndrome and high-functioning autism. Journal of Autism and Developmental Disorders, 35(2), 145-158. https://doi.org/10.1007/s10803-004-1992-8eng
dcterms.referencesStone, V. E., Baron-Cohen, S., & Knight, R. T. (1998). Frontal lobe contributions to theory of mind. Journal of Cognitive Neuroscience, 10(5), 640-656. https://doi.org/10.1162/089892998562942eng
dcterms.referencesSupekar, K., Uddin, L. Q., Khouzam, A., Phillips, J., Gaillard, W. D., Kenworthy, L. E., ... & Menon, V. (2013). Brain hyperconnectivity in children with autism and its links to social deficits. Cell Reports, 5(3), 738-747. https://doi.org/10.1016/j.celrep.2013.10.001eng
dcterms.referencesSchultz, R., Gauthier, I., Klin, A., Fulbright, R., Anderson, A., Volkmar, F., Skudlarski, P., Lacadie, C., Cohen, D.J., & Gore, J. (2000). Abnormal ventral temporal cortical activity during face discrimination among individuals with autism and Asperger syndrome. https://doi.org/10.1001/archpsyc.57.4.331eng
dcterms.referencesUljarevic, M., & Hamilton, A. (2013). Recognition of emotions in autism: a formal meta- analysis. Journal of Autism and Developmental Disorders, 43(7), 1517-1526. https://doi.org/10.1007/s10803-012-1695-5eng
dcterms.referencesVan de Cruys, S., Evers, K., Van der Hallen, R., Van Eylen, L., Boets, B., de-Wit, L., & Wagemans, J. (2014). Precise minds in uncertain worlds: Predictive coding in autism. Psychological Review, 121(4), 649-675. https://doi.org/10.1037/a0037665eng
dcterms.referencesWang, C., Geng, H., Liu, W., & Zhang, G. (2017). Prenatal, perinatal, and postnatal factors associated with autism: A meta-analysis. Medicine, 96(18). https://doi.org/10.1097/MD.0000000000006696eng
dcterms.referencesZeidan, J., Fombonne, E., Scorah, J., Ibrahim, A., Durkin, M. S., Saxena, S., ... & Elsabbagh, M. (2022). Global prevalence of autism: A systematic review update. Autism Research, 15(5), 778-790. https://doi.org/10.1002/aur.2696eng
oaire.versioninfo:eu-repo/semantics/acceptedVersion
sb.investigacionProfundizaciónspa
sb.programaMaestria en Neuropsicologíaspa
sb.sedeSede Barranquillaspa

Archivos

Bloque original
Mostrando 1 - 2 de 2
No hay miniatura disponible
Nombre:
PDF_Resumen.pdf
Tamaño:
291.82 KB
Formato:
Adobe Portable Document Format
No hay miniatura disponible
Nombre:
PDF.pdf
Tamaño:
1.37 MB
Formato:
Adobe Portable Document Format
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
2.93 KB
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones