Keller/eGFR ratio as a simple and useful tool to make a first differentiation between renal aging and chronic nephropathy in large populations
| datacite.rights | http://purl.org/coar/access_right/c_abf2 | |
| dc.contributor.author | Cristiano, Fabrizio | |
| dc.contributor.author | Aroca‑Martinez, Gustavo | |
| dc.contributor.author | Guido Musso, 4Carlos | |
| dc.date.accessioned | 2025-12-04T20:03:38Z | |
| dc.date.available | 2025-12-04T20:03:38Z | |
| dc.date.issued | 2025 | |
| dc.description.abstract | Background Chronic kidney disease (CKD) prevalence increases with age, but distinguishing physiological renal ageing from pathological CKD remains a major diagnostic challenge. Current CKD definitions based solely on estimated glomerular filtration rate (eGFR) often lead to overdiagnosis in elderly individuals with normal age-related decline. This study explores the use of the Keller/eGFR ratio as a simple and useful tool to differentiate normal renal ageing from true nephropathy in large populations. Methods Keller formula (GFR = 130—age) was applied to model the expected physiological GFR decline across the lifespan. The ratio between Keller-derived GFR and measured eGFR (CKD-EPI) was analyzed to distinguish physiological ageing (Keller/eGFR ≤ 1) from pathological decline (Keller/eGFR > 1). The approach was compared with classical biochemical, urinary, and imaging markers and validated using data from the Abruzzo cohort of older adults. Results Keller/eGFR ratio provided a clear separation between individuals with expected age-related GFR reduction and those with evidence of underlying CKD. In patients with Keller/eGFR ≤ 1, biochemical parameters (creatinine, urea, hemoglobin, calcium–phosphorus metabolism) and urinalysis remained within normal limits, and imaging findings were unremarkable. Conversely, Keller/eGFR > 1 was associated with typical CKD features, including anemia, mineral abnormalities, and structural renal alterations. Integrating this ratio with clinical and laboratory data significantly reduced CKD overdiagnosis in elderly subjects. Conclusions The Keller/eGFR ratio represents a practical, low-cost, and easily applicable index for the first-line screening of kidney function in older adults. When combined with biochemical and imaging markers, it enhances diagnostic accuracy and helps avoid excessive medicalization related to CKD misclassification. Wider implementation in population studies could improve epidemiological stratification and resource allocation in nephrology care. | eng |
| dc.format.mimetype | ||
| dc.identifier.citation | Cristiano, F., Aroca-Martinez, G. & Musso, C.G. Keller/eGFR ratio as a simple and useful tool to make a first differentiation between renal aging and chronic nephropathy in large populations. Int | |
| dc.identifier.doi | https://doi.org/10.1007/s11255-025-04932-1 | |
| dc.identifier.issn | 1573-2584 (Electrónico) | |
| dc.identifier.issn | 0301-1623 (Impreso) | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12442/17166 | |
| dc.identifier.url | https://link.springer.com/article/10.1007/s11255-025-04932-1 | |
| dc.language.iso | eng | |
| dc.publisher | Springer | eng |
| dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
| dc.source | Vol. 57 No. 12 Año 2025 | spa |
| dc.source | International Urology and Nephrology | eng |
| dc.subject.keywords | Renal ageing | eng |
| dc.subject.keywords | Chronic kidney disease | eng |
| dc.subject.keywords | eGFR | eng |
| dc.subject.keywords | Keller formula | eng |
| dc.subject.keywords | CKD overdiagnosis | eng |
| dc.subject.keywords | Population screening | eng |
| dc.title | Keller/eGFR ratio as a simple and useful tool to make a first differentiation between renal aging and chronic nephropathy in large populations | eng |
| dc.type.driver | info:eu-repo/semantics/article | |
| dc.type.spa | Artículo científico | |
| dcterms.references | Zhou XJ, Rakheja D, Yu X, Saxena R, Vaziri ND, Silva FG (2008) The aging kidney. Kidney Int 74(6):710–720. https:// doi. org/ 10. 1038/ ki. 2008. 319 | eng |
| dcterms.references | Musso CG, Ricardo AC, Aroca-Martinez G (2024) The fourth wave in chronic kidney disease (CKD) classification: taking into account the aging kidney. Int Urol Nephrol 56(2):805–806. https:// doi. org/ 10. 1007/ s11255- 023- 03642-w. (Epub 2023 May 26 PMID: 37237099) | eng |
| dcterms.references | Musso CG, MacíasNuñez JF, Oreopoulos DG (2007) Physiological similarities and differences between renal aging and chronic renal disease. J Nephrol 20(5):586–587 | eng |
| dcterms.references | Grubb A, Sundin PO, Eriksen BO, Melsom T, Rule AD, Berg U, Littmann K, Åsling-Monemi K, Hansson M, Larsson A, Courbebaisse M, Dubourg L, Couzi L, Gaillard F, Garrouste C, Jacquemont L, Kamar N, Legendre C, Rostaing L, Ebert N, Schaeffner E, Bökenkamp A, Mariat C, Pottel H, Delanaye P (2025) Enhancing individual glomerular filtration rate assessment: can we trust the equation? Development and validation of machine learning models to assess the trustworthiness of estimated GFR compared to measured GFR. BMC Nephrol 26(1):47. https:// doi. org/ 10. 1186/ s12882- 025- 03972-0 | eng |
| dcterms.references | changes. Adv Chronic Kidney Dis 17(4):302–307. https:// doi. org/ 10. 1053/j. ackd. 2010. 05. 002 | eng |
| dcterms.references | Denic A, Glassock RJ, Rule AD (2016) Structural and functional changes with the aging kidney. Adv Chronic Kidney Dis 23(1):19–28. https:// doi. org/ 10. 1053/j. ackd. 2015. 08. 004 | eng |
| dcterms.references | Hommos MS, Glassock RJ, Rule AD (2017) Structural and functional changes in human kidneys with healthy aging. J Am Soc Nephrol 28(10):2838–2844. https:// doi. org/ 10. 1681/ ASN. 20170 40421 | eng |
| dcterms.references | Corsonello A, Pedone C, Incalzi RA (2010) Age-related pharmacokinetic and pharmacodynamic changes and related risk of adverse drug reactions. Curr Med Chem 17(6):571–584. https:// doi. org/ 10. 2174/ 09298 67107 90416 326. (PMID: 20015034) | eng |
| dcterms.references | Pottel H, Hoste L, Dubourg L, Ebert N, Schaeffner E, Eriksen BO, Melsom T, Lamb EJ, Rule AD, Turner ST, Glassock RJ, De Souza V, Selistre L, Mariat C, Martens F, Delanaye P (2016) An estimated glomerular filtration rate equation for the full age spectrum. Nephrol Dial Transplant 31(5):798–806. https:// doi. org/ 10. 1093/ ndt/ gfv454 | eng |
| dcterms.references | O’Sullivan ED, Hughes J, Ferenbach DA (2017) Renal aging: causes and consequences. J Am Soc Nephrol 28(2):407–420. https:// doi. org/ 10. 1681/ ASN. 20151 21308 | eng |
| dcterms.references | Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group (2024) KDIGO 2024 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int 105(4S):S117–S314. https:// doi. org/ 10. 1016/j. kint. 2023. 10. 018 | eng |
| dcterms.references | Glassock RJ, Rule AD (2012) The implications of anatomical and functional changes of the aging kidney: with an emphasis on the glomeruli. Kidney Int 82(3):270–277. https:// doi. org/ 10. 1038/ ki. 2012. 65 | eng |
| dcterms.references | Shlipak MG, Matsushita K, Ärnlöv J, Inker LA, Katz R, Polkinghorne KR, Rothenbacher D, Sarnak MJ, Astor BC, Coresh J, Levey AS, Gansevoort RT, CKD Prognosis Consortium (2013) Cystatin C versus creatinine in determining risk based on kidney function. N Engl J Med 369(10):932–943. https:// doi. org/ 10. 1056/ NEJMo a1214 234 | eng |
| dcterms.references | Cristiano F, Posari C, d'Angelo B, Schiazza A, Gigante A, Caravelli L, Piano A, Fulle S, Cristiano J, di Matteo G, Rosa Diez G, Verratti V (2024). How to Assess the Glomerular Filtration Rate, and Which Method is Deemed Most Reliable? G Ital Nefrol 41(4):2024. https:// doi. org/ 10. 69097/ 41- 04- 2024- 02 | eng |
| dcterms.references | Shlipak MG, Sarnak MJ, Katz R, Fried LF, Seliger SL, Newman AB, Siscovick DS, Stehman-Breen C (2005) Cystatin C and the risk of death and cardiovascular events among elderly persons. N Engl J Med 352(20):2049–2060. https:// doi. org/ 10. 1056/ NEJMo a0431 61. (PMID: 15901858) | eng |
| dcterms.references | Odden MC, Scherzer R, Bacchetti P, Szczech LA, Sidney S, Grunfeld C, Shlipak MG (2007) Cystatin C level as a marker of kidney function in human immunodeficiency virus infection: the FRAM study. Arch Intern Med 167(20):2213–2219. https:// doi. org/ 10. 1001/ archi nte. 167. 20. 2213 | eng |
| dcterms.references | Knight EL, Verhave JC, Spiegelman D, Hillege HL, de Zeeuw D, Curhan GC, de Jong PE (2004) Factors influencing serum cystatin C levels other than renal function and the impact on renal function measurement. Kidney Int 65(4):1416–1421. https:// doi. org/ 10. 1111/j. 1523- 1755. 2004. 00517.x | eng |
| dcterms.references | Lindeman RD, Tobin J, Shock NW (1985) Longitudinal studies on the rate of decline in renal function with age. J Am Geriatr Soc 33(4):278–285. https:// doi. org/ 10. 1111/j. 1532- 5415. 1985. tb071 17.x. (PMID: 3989190) | eng |
| dcterms.references | Rutkowski M, Mann W, Derose S, Selevan D, Pascual N, Diesto J, Crooks P (2009) Implementing KDOQI CKD definition and staging guidelines in Southern California Kaiser Permanente. Am J Kidney Dis 53(3 Suppl 3):S86-99. https:// doi. org/ 10. 1053/j. ajkd. 2008. 07. 052 | eng |
| dcterms.references | Eriksen BO, Ingebretsen OC (2006) The progression of chronic kidney disease: a 10-year population-based study of the effects of gender and age. Kidney Int 69(2):375–382. https:// doi. org/ 10. 1038/ sj. ki. 50000 58 | eng |
| dcterms.references | Michels WM, Grootendorst DC, Verduijn M, Elliott EG, Dekker FW, Krediet RT (2010) Performance of the Cockcroft-Gault, MDRD, and new CKD-EPI formulas in relation to GFR, age, and body size. Clin J Am Soc Nephrol 5(6):1003–1009. https:// doi. org/ 10. 2215/ CJN. 06870 909 | eng |
| dcterms.references | Cirillo M, Laurenzi M, Mancini M, Zanchetti A, De Santo NG (2006) Low muscular mass and overestimation of microalbuminuria by urinary albumin/creatinine ratio. Hypertension 47(1):56– 61. https:// doi. org/ 10. 1161/ 01. HYP. 00001 97953. 91461. 95 | eng |
| dcterms.references | Hallan SI, Orth SR (2010) The conundrum of chronic kidney disease classification and end-stage renal risk prediction in the elderly--what is the right approach? Nephron Clin Pract 116(4):c307–c316. https:// doi. org/ 10. 1159/ 00031 9166 | eng |
| dcterms.references | Denic A, Lieske JC, Chakkera HA, Poggio ED, Alexander MP, Singh P, Kremers WK, Lerman LO, Rule AD (2017) The substantial loss of nephrons in healthy human kidneys with aging. J Am Soc Nephrol 28(1):313–320. https:// doi. org/ 10. 1681/ ASN. 20160 20154 | eng |
| dcterms.references | Malmgren L, McGuigan FE, Berglundh S, Westman K, Christensson A, Åkesson K (2015) Declining estimated glomerular filtration rate and its association with mortality and comorbidity over 10 years in elderly women. Nephron 130(4):245–255. https:// doi. org/ 10. 1159/ 00043 5790. (Epub 2015 Jul 15 PMID: 26184510) | eng |
| dcterms.references | Eriksen BO, Palsson R, Ebert N, Melsom T, van der Giet M, Gudnason V, Indridason OS, Inker LA, Jenssen TG, Levey AS, Solbu MD, Tighiouart H, Schaeffner E (2020) GFR in healthy aging: an individual participant data meta-analysis of iohexol clearance in European population-based cohorts. J Am Soc Nephrol 31(7):1602–1615. https:// doi. org/ 10. 1681/ ASN. 20200 20151 | eng |
| dcterms.references | Cristiano F, Musso CG (2025) Reclassification of chronic kidney disease in the elderly: integrating age-adjusted GFR and frailty assessment in a regional Italian population (Abruzzo). Int Urol Nephrol. https:// doi. org/ 10. 1007/ s11255- 025- 04698-6 | eng |
| dcterms.references | Astley ME, Chesnaye NC, Gambaro G, Ortiz A, Hallan S, Carrero JJ, Ebert N, Eriksen BO, Faucon AL, Ferraro PM, Ittermann T, Jonsson AJ, Langlo KAR, Melsom T, Schaeffner E, Stracke S, Palsson R, Jager KJ, Stel VS (2025) Prevalence of reduced eGFR in European adults using KDIGO and age-adapted eGFR thresholds. Nephrol Dial Transplant. https:// doi. org/ 10. 1093/ ndt/ gfaf1 12 | eng |
| dcterms.references | Schaeffner ES, Ebert N, Delanaye P, Frei U, Gaedeke J, Jakob O, Kuhlmann MK, Schuchardt M, Tölle M, Ziebig R, van der Giet M, Martus P (2012) Two novel equations to estimate kidney function in persons aged 70 years or older. Ann Intern Med 157(7):471–481. https:// doi. org/ 10. 7326/ 0003- 4819- 157-7- 20121 0020- 00003. (PMID: 23027318) | eng |
| dcterms.references | Kilbride HS, Stevens PE, Eaglestone G, Knight S, Carter JL, Delaney MP, Farmer CK, Irving J, O’Riordan SE, Dalton RN, Lamb EJ (2013) Accuracy of the MDRD (Modification of Diet in Renal Disease) study and CKD-EPI (CKD Epidemiology Collaboration) equations for estimation of GFR in the elderly. Am J Kidney Dis 61(1):57–66. https:// doi. org/ 10. 1053/j. ajkd. 2012. 06. 016 | eng |
| dcterms.references | Ebert N, Delanaye P, Shlipak M, Jakob O, Martus P, Bartel J, Gaedeke J, van der Giet M, Schuchardt M, Cavalier E, Schaeffner E (2016) Cystatin C standardization decreases assay variation and improves assessment of glomerular filtration rate. Clin Chim Acta 1(456):115–121. https:// doi. org/ 10. 1016/j. cca. 2016. 03. 002. (Epub 2016 Mar 3 PMID: 26947968) | eng |
| dcterms.references | Cristiano F, Rosa-Diez G, Musso CG, Cristiano J (2025) Is Iohexol a Possible Method for Estimating Glomerular Filtration Rate? G Ital Nefrol 42(2):2025. https:// doi. org/ 10. 69097/ 42- 02- 2025- 03 | eng |
| dcterms.references | Devarajan P (2011) Biomarkers for the early detection of acute kidney injury. Curr Opin Pediatr 23(2):194–200. https:// doi. org/ 10. 1097/ MOP. 0b013 e3283 43f4dd | eng |
| dcterms.references | Melk A, Schmidt BM, Takeuchi O, Sawitzki B, Rayner DC, Halloran PF (2004) Expression of p16INK4a and other cell cycle regulator and senescence associated genes in aging human kidney. Kidney Int 65(2):510–520. https:// doi. org/ 10. 1111/j. 1523- 1755. 2004. 00438.x | eng |
| oaire.version | info:eu-repo/semantics/publishedVersion |

