Sobre El Uso Adecuado Del Coeficiente De Correlación De Pearson: Definición, Propiedades Y Suposiciones
dc.contributor.author | Hernández Lalinde, Juan Diego | |
dc.contributor.author | Espinosa Castro, Jhon Franklin | |
dc.contributor.author | Peñaloza Tarazona, Mariana Elena | |
dc.contributor.author | Fernández González, Johel Enrique | |
dc.contributor.author | Chacón Rangel, José Gerardo | |
dc.contributor.author | Toloza Sierra, Cristian Andrés | |
dc.contributor.author | Arenas Torrado, Marlly Karina | |
dc.contributor.author | Carrillo Sierra, Sandra Milena | |
dc.contributor.author | Bermúdez Pirela, Valmore José | |
dc.date.accessioned | 2019-01-21T20:29:25Z | |
dc.date.available | 2019-01-21T20:29:25Z | |
dc.date.issued | 2018 | |
dc.description.abstract | El coeficiente de correlación de Pearson es una medida considerablemente utilizada en diversas áreas del quehacer científico, desde estudios técnicos, econométricos o de ingeniería; hasta investigaciones relacionadas con las ciencias sociales, del comportamiento o de la salud. Es precisamente esta extensa y profusa divulgación una de las razones que explicaría el uso indebido que se le da a esta herramienta estadística, especialmente en aquellos escenarios en los que debe ser interpretada correctamente o en los que se tienen que comprobar las suposiciones matemáticas que la sustentan. Un ejemplo de esto se halla cuando se asume que la correlación implica causalidad, confusión en la que se incurre con frecuencia y en la que se ven involucrados, tanto investigadores noveles, como algunos más experimentados. Pero tal vez el foco de mayores errores se encuentre al momento de comprobar premisas como la de la normalidad, siendo que esta se verifica únicamente a nivel univariado y se omite su revisión bivariada, quizás por desconocimiento o porque exige la utilización de técnicas más complejas. Situación similar se observa cuando se intentan detectar datos atípicos. En este caso, lo común es que se empleen diagramas de caja y bigotes para identificar valores extremos en cada variable, cuando lo apropiado sería abordar esta tarea con procedimientos que cuantifiquen la distancia que separa a dicha observación del centro de gravedad de los datos, pero de manera simultánea y tomando en cuenta todos los componentes del espacio vectorial en que se encuentra. En tal sentido, se propone la presente revisión como aporte para esclarecer estas dudas y como guía metodológica para orientar en la verificación de tales supuestos, abordando el aspecto matemático de manera general, pero enfatizando en las alternativas de que dispone el investigador para acometer debidamente este tipo de análisis. | spa |
dc.description.abstract | The Pearson correlation coefficient is a measure widely used in several areas of scientific work, from technical, econometric or engineering studies; to social, behavioral or health sciences researches. It’s precisely this extensive and profuse disclosure one of the reasons that would explain the misuse of this statistical tool, especially in those cases in which it must be correctly interpreted, or in those situations in which the mathematical assumptions that support it have to be checked. An example of this arise when it’s assumed that correlation implies causation, confusion that occurs frequently and involves both, novice and experienced researches. But perhaps the mayor focus of errors is found when checking assumptions such as normality, since it’s verified only at univariate level omitting its bivariate verification, possibly due to lack of knowledge or because it requires more complex techniques. Similar situation is observed when trying to detect outliers. In this case, it's common to use box and whisker plots to identify extreme values in each variable, when the appropriate would be to approach this task using procedures that calculate the distances that separates this observation of the center of the data, taking into account all its vector space components. In this regard, this review is proposed as a contribution to clarify these doubts and as a methodological guide to help in the verification of such assumptions, addressing the mathematical aspect in a general manner, but emphasizing the alternatives available to undertake this type of analysis. | eng |
dc.identifier.issn | 07980264 | |
dc.identifier.uri | http://hdl.handle.net/20.500.12442/2469 | |
dc.language.iso | spa | spa |
dc.publisher | Sociedad Venezolana de Farmacología Clínica y Terapéutica | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.license | Licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional | |
dc.source | Archivos Venezolanos de Farmacología y Terapéutica | spa |
dc.source | Vol. 37, No. 5 (2018) | |
dc.subject | Coeficiente | spa |
dc.subject | Correlación | spa |
dc.subject | Supuestos | spa |
dc.subject | Normalidad bivariada | spa |
dc.subject | Datos atípicos multivariados | spa |
dc.subject | Coefficient | eng |
dc.subject | Correlation | eng |
dc.subject | Pearson | eng |
dc.subject | Assumptions | eng |
dc.subject | Bivariate normality | eng |
dc.subject | Multivariate outliers | eng |
dc.title | Sobre El Uso Adecuado Del Coeficiente De Correlación De Pearson: Definición, Propiedades Y Suposiciones | spa |
dc.title.alternative | On the proper use of the Pearson correlation coefficient: definitions, properties and assumptions | eng |
dc.type | article | spa |
dcterms.references | Rodgers JL, Nicewander WA. Thirteen Ways to Look at the Correlation Coefficient. Am Stat. febrero de 1988;42(1):59. | eng |
dcterms.references | J. J. Strossmayer University of Osijek, Faculty of Agriculture in Osijek, Kralja Petra Svačića 1d, 31000 Osijek, Croatia, Rebekić A, Lončarić Z, Petrović S, Marić S. Pearson’s or Spearman’s correlation coefficient - Which one to use? Poljoprivreda. 18 de diciembre de 2015;21(2):47-54. | eng |
dcterms.references | Zhong M, Zheng S, Wang G, Hua J, Gebbink R. Correlation analysis of combined and separated effects of wing deformation and support system in the CAE-AVM study. Chin J Aeronaut. marzo de 2018;31(3):429-38. | eng |
dcterms.references | Kusiak A, Li W. Estimation of wind speed: A data-driven approach. J Wind Eng Ind Aerodyn. octubre de 2010;98(10-11):559-67. | eng |
dcterms.references | Fu X, Wang J, Tan F, Feng X, Wang D. Occurrence and enrichment of trace elements in marine oil shale (china) and their behavior during combustion. Oil Shale. 2015;32(1):42. | eng |
dcterms.references | Freitas N de O, Forero CG, Caltran MP, Alonso J, Dantas RAS, Piccolo MS, et al. Validation of the Perceived Stigmatization Questionnaire for Brazilian adult burn patients. Lin C-Y, editor. PLOS ONE. 30 de enero de 2018;13(1):e0190747. | eng |
dcterms.references | Shoji K, Lesnierowska M, Smoktunowicz E, Bock J, Luszczynska A, Benight CC, et al. What Comes First, Job Burnout or Secondary Traumatic Stress? Findings from Two Longitudinal Studies from the U.S. and Poland. Elhai JD, editor. PLOS ONE. 25 de agosto de 2015;10(8):e0136730. | eng |
dcterms.references | Larson LR, Jennings V, Cloutier SA. Public Parks and Wellbeing in Urban Areas of the United States. Lepczyk CA, editor. PLOS ONE. 7 de abril de 2016;11(4):e0153211. | eng |
dcterms.references | Joseph PV, Wang Y, Fourie NH, Henderson WA. A computational framework for predicting obesity risk based on optimizing and integrating genetic risk score and gene expression profiles. Devaney J, editor. PLOS ONE. 24 de mayo de 2018;13(5):e0197843. | eng |
dcterms.references | Vera M, Huérfano Y, Contreras J, Vera M, Salazar W, Vargas S, et al. Desarrollo de una técnica computacional no lineal para la segmentación de hematomas subdurales, presentes en imágenes de tomografía computarizada cerebral. Arch Venez Farmacol Ter. 2017;36(6):168-73. | spa |
dcterms.references | Vera M, Huérfano Y, Contreras J, Vera M, Salazar W, Vargas S, et al. Técnica computacional no lineal para la detección de hemoventrículo, en imágenes de tomografía computarizada cerebral. Latinoam Hipertens [Internet]. 29 de enero de 2018 [citado 11 de enero de 2019];12(5). Disponible en: http://saber.ucv.ve/ojs/index.php/rev_lh/article/view/14695 | spa |
dcterms.references | Bernardo SM, Anholon R, Novaski O, Silva D, Quelhas OLG. Main causes that lead strategies to decline at execution phase: an analysis of Brazilian companies. Int J Product Perform Manag. 6 de marzo de 2017;66(3):424-40. | eng |
dcterms.references | Rani K. Analysis of Dynamic Interaction between Foreign Investments and Indian Stock Market. J Int Econ. 2015;6(2):10. | eng |
dcterms.references | Wu S, Duncan F, Anderson NH, Kuppuswamy A, Macloed MR, Mead GE. Exploratory Cohort Study of Associations between Serum C - Reactive Protein and Fatigue after Stroke. Hashimoto K, editor. PLOS ONE. 24 de noviembre de 2015;10(11):e0143784. | eng |
dcterms.references | Tarabichi M, Detours V. A research note regarding «Variation in cancer risk among tissues can be explained by the number of stem cell divisions». F1000Research. 22 de agosto de 2016;5:2044. | eng |
dcterms.references | Tomasetti C, Vogelstein B. Variation in cancer risk among tissues can be explained by the number of stem cell divisions. Science. 2 de enero de 2015;347(6217):78-81. | eng |
dcterms.references | Fenton A, Jesky MD, Webster R, Stringer SJ, Yadav P, Chapple I, et al. Association between urinary free light chains and progression to end stage renal disease in chronic kidney disease. Bjornstad P, editor. PLOS ONE. 9 de mayo de 2018;13(5):e0197043. | eng |
dcterms.references | Dinas PC, Nintou E, Psychou D, Granzotto M, Rossato M, Vettor R, et al. Association of fat mass profile with natriuretic peptide receptor alpha in subcutaneous adipose tissue of medication-free healthy men: A cross-sectional study. F1000Research. 15 de marzo de 2018;7:327. | eng |
dcterms.references | Akuffo KO, Nolan JM, Peto T, Stack J, Leung I, Corcoran L, et al. Relationship between macular pigment and visual function in subjects with early age-related macular degeneration. Br J Ophthalmol. febrero de 2017;101(2):190-7. | eng |
dcterms.references | Kozak M, Krzanowski W, Tartanus M. Use of the correlation coefficient in agricultural sciences: problems, pitfalls and how to deal with them. An Acad Bras Ciênc. diciembre de 2012;84(4):1147-56. | eng |
dcterms.references | Warren WG. Correlation or Regression: Bias or Precision. Appl Stat. 1971;20(2):148. | eng |
dcterms.references | Mukaka M. A guide to appropriate use of Correlation coefficient in medical research. Malawi Med J J Med Assoc Malawi. septiembre de 2012;24(3):69-71. | eng |
dcterms.references | Porter AM. Misuse of correlation and regression in three medical journals. J R Soc Med. marzo de 1999;92(3):123-8. | eng |
dcterms.references | Use and Misuse of Correlation Coefficients [Internet]. STAT 509. [citado 15 de enero de 2019]. Disponible en: https://newonlinecourses.science.psu.edu/stat509/node/160/ | eng |
dcterms.references | Montgomery DC, Runger GC. Applied statistics and probability for engineers. 3rd ed. New York: Wiley; 2003. 706 p. | eng |
dcterms.references | Walpole RE, Myers RH, Myers SL, Ye K. Probability & statistics for engineers & scientists: MyStatLab update [Internet]. 2017 [citado 24 de junio de 2018]. Disponible en: http://www.myilibrary.com?id=94790 | eng |
dcterms.references | Daniel WW. Biostatistics: A Foundation for Analysis in the Health Sciences, 5th Edition. [Internet]. Vol. 47. 1991 [citado 24 de junio de 2018]. Disponible en: https://www.jstor.org/stable/2532686?origin=crossref | eng |
dcterms.references | Weisberg S. Applied linear regression. 3rd ed. Hoboken, N.J: Wiley-Interscience; 2005. 310 p. (Wiley series in probability and statistics). | eng |
dcterms.references | Rencher AC. Methods of multivariate analysis. 2nd ed. New York: J. Wiley; 2002. 708 p. (Wiley series in probability and mathematical statistics). | eng |
dcterms.references | Covariance and Correlation. En: Hedge Funds [Internet]. Oxford, UK: John Wiley & Sons Ltd; 2013 [citado 26 de junio de 2018]. p. 121-46. Disponible en: http://doi.wiley.com/10.1002/9781118673546.ch6 | eng |
dcterms.references | Asuero AG, Sayago A, González AG. The Correlation Coefficient: An Overview. Crit Rev Anal Chem. enero de 2006;36(1):41-59. | eng |
dcterms.references | Rigby AS. Statistical methods in epidemiology. VI. Correlation and regression: the same or different? Disabil Rehabil. enero de 2000;22(18):813-9. | eng |
dcterms.references | Goodwin LD, Leech NL. Understanding Correlation: Factors That Affect the Size of r. J Exp Educ. abril de 2006;74(3):249-66. | eng |
dcterms.references | Ratner B. The correlation coefficient: Its values range between +1/−1, or do they? J Target Meas Anal Mark. junio de 2009;17(2):139-42. | eng |
dcterms.references | Cohen J. Statistical power analysis for the behavioral sciences. 2nd ed. Hillsdale, N.J: L. Erlbaum Associates; 1988. 567 p. | eng |
dcterms.references | Sedgwick P. Pearson’s correlation coefficient. BMJ. 4 de julio de 2012;345(jul04 1):e4483-e4483. | eng |
dcterms.references | Wiedermann W, Hagmann M. Asymmetric properties of the Pearson correlation coefficient: Correlation as the negative association between linear regression residuals. Commun Stat - Theory Methods. noviembre de 2016;45(21):6263-83. | eng |
dcterms.references | Yeager K. LibGuides: SPSS Tutorials: Pearson Correlation [Internet]. [citado 18 de diciembre de 2018]. Disponible en: https://libguides.library.kent.edu/SPSS/PearsonCorr | eng |
dcterms.references | Measure of association | statistics [Internet]. Encyclopedia Britannica. [citado 17 de diciembre de 2018]. Disponible en: https://www.britannica.com/topic/measure-of-association | eng |
dcterms.references | Pearson Product-Moment Correlation - When you should run this test, the range of values the coefficient can take and how to measure strength of association. [Internet]. [citado 18 de diciembre de 2018]. Disponible en: https://statistics.laerd.com/statistical-guides/pearson-correlation-coefficient-statistical-guide.php | eng |
dcterms.references | Pearson’s Product-Moment Correlation in SPSS Statistics - Procedure, assumptions, and output using a relevant example. [Internet]. [citado 18 de diciembre de 2018]. Disponible en: https://statistics.laerd.com/spss-tutorials/pearsons-product-moment-correlation-using-spss-statistics.php | eng |
dcterms.references | Point-Biserial Correlation in SPSS Statistics - Procedure, assumptions, and output using a relevant example. [Internet]. [citado 18 de diciembre de 2018]. Disponible en: https://statistics.laerd.com/spss-tutorials/point-biserial-correlation-using-spss-statistics.php | eng |
dcterms.references | Chi-Square Test for Association using SPSS Statistics - Procedure, assumptions and reporting the output [Internet]. [citado 18 de diciembre de 2018]. Disponible en: https://statistics.laerd.com/spss-tutorials/chi-square-test-for-association-using-spss-statistics.php | eng |
dcterms.references | Cui Y, Wang S, Yan S. Evaluating the Applicability of Phi Coefficient in Indicating Habitat Preferences of Forest Soil Fauna Based on a Single Field Study in Subtropical China. PLoS ONE [Internet]. 1 de marzo de 2016 [citado 18 de diciembre de 2018];11(3). Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4773244/ | eng |
dcterms.references | Timm NH. Applied multivariate analysis. New York: Springer; 2002. 693 p. (Springer texts in statistics). | eng |
dcterms.references | Mardia KV. Measures of Multivariate Skewness and Kurtosis with Applications. Biometrika. diciembre de 1970;57(3):519. | eng |
dcterms.references | Kankainen A, Taskinen S, Oja H. On Mardia’s Tests of Multinormality. En: Hubert M, Pison G, Struyf A, Van Aelst S, editores. Theory and Applications of Recent Robust Methods [Internet]. Basel: Birkhäuser Basel; 2004 [citado 30 de diciembre de 2018]. p. 153-64. Disponible en: http://link.springer.com/10.1007/978-3-0348-7958-3_14 | eng |
dcterms.references | Romeu JL, Ozturk A. A Comparative Study of Goodness-of-Fit Tests for Multivariate Normality. J Multivar Anal. agosto de 1993;46(2):309-34. | eng |
dcterms.references | Cabana E, Laniado H, Lillo RE. Multivariate outlier detection based on a robust Mahalanobis distance with shrinkage estimators. :80. | eng |
dcterms.references | De Maesschalck R, Jouan-Rimbaud D, Massart DL. The Mahalanobis distance. Chemom Intell Lab Syst. enero de 2000;50(1):1-18. | eng |
dcterms.references | Franklin S, Thomas S, Franklin S. Robust multivariate outlier detection using Mahalanobis’ distance and modified Stahel-Donoho estimators. Semantic Sch. 2001;35. | eng |
dcterms.references | Bendre SM. Masking and swamping effects on tests for multiple outliers in normal sample. Commun Stat - Theory Methods. enero de 1989;18(2):697-710. | eng |
dcterms.references | Chiang J-T. The masking and swamping effects using the planted mean-shift outliers models. Int J Contemp Math Sci. 2007;2:297-307. | eng |
dcterms.references | García JAM, Uribe IA. Técnicas para detección de outliers multivariantes. Rev En Telecomunicaciones E Informática. 2013;3(5):11-25. | spa |
dcterms.references | Lohr SL. Sampling: Design and Analysis. 3.a ed. Brooks/Cole Cengage Learning; 2010. 596 p. | eng |
dcterms.references | Alf C, Lohr S. Sampling Assumptions in Introductory Statistics Classes. Am Stat. febrero de 2007;61(1):71-7. | eng |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Sobre_uso_adecuado_coeficiente.pdf
- Tamaño:
- 700.25 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 368 B
- Formato:
- Item-specific license agreed upon to submission
- Descripción: