Evaluación del citoma de linfocitos y metales en sangre de una población del Cesar expuesta a minería de carbón
datacite.rights | http://purl.org/coar/access_right/c_16ec | spa |
dc.contributor.advisor | León-Mejía, Grethel | |
dc.contributor.author | Álvarez Rueda, Robinson José | |
dc.date.accessioned | 2022-06-14T14:06:54Z | |
dc.date.available | 2022-06-14T14:06:54Z | |
dc.date.issued | 2022 | |
dc.description.abstract | El carbón es un mineral mundialmente usado, sin embargo, a pesar de sus múltiples beneficios no se puede desconocer los efectos en la salud y los efectos ambientales que conlleva la explotación de este mineral. Durante las actividades de minería se liberan partículas micrométricas, lo suficientemente pequeñas para ser inhaladas, llegar a los bronquios y alcanzar los alvéolos pulmonares. El objetivo del presente estudio fue evaluar el citoma de linfocitos y elementos inorgánicos en sangre de una población del Cesar expuesta a minería de Carbón. Para alcanzar estos objetivos se incluyeron 70 personas expuestas que viven en zonas aledañas a las minas de carbón de la Loma-Cesar y 70 personas no expuestas (controles, no tuvieron exposición a minería de carbón) de la Ciudad de Barranquilla. Se utilizó ensayo del citoma de micronúcleos con bloqueo de la citocinesis (CBMN-Cyt) para evaluar los efectos citotóxicos y genotóxicos en linfocitos de sangre periférica de la población general y se analizaron factores como la influencia de la edad, sexo y factores de estilo de vida (tabaquismo, consumo de alcohol, exposición a medicamentos y radiación diagnóstica, antecedentes familiares de cáncer, entre otros). En los resultados obtenidos de los diferentes biomarcadores del CBMN-Cyt se observó un aumento significativo en la frecuencia de micronúcleos (MN), BROTE, PUENTE, necrosis (NECR) y apoptosis (APOP) en el grupo expuesto en comparación con el no expuesto; sin embargo, al analizar el índice de división nuclear (NDI) no se observaron diferencias significativas. En cuanto a los factores relacionados con el estilo de vida, observamos una correlación significativa entre el consumo de vitaminas y carnes muy grasosas con la formación de BROTE; de igual forma, se correlaciona significativamente el consumo de carnes y alcohol con la formación de MN y la presencia de apoptosis con la ingesta de alcohol. En el análisis de las concentraciones de elementos inorgánicos mediante el método PIXE, se encontraron concentraciones significativas de aluminio (Al), azufre (S), potasio (K), hierro (Fe) y cromo (Cr) en el grupo expuesto comparado con el grupo no expuesto. De manera interesante fue encontrada una correlación significativa entre la formación de MN y el aumento de la concentración de Fe y Cr en el grupo expuesto. Los resultados obtenidos en el daño en el ADN y muerte celular pueden estar asociados con el daño oxidativo generado debido a la exposición a residuos de carbón de la zona y demuestran la utilidad de los biomarcadores del CBMN-Cyt para biomonitoreo humano en poblaciones expuestas. | spa |
dc.description.abstract | Coal is a mineral used worldwide, however, despite its multiple benefits, the health and environmental effects that the extraction of this mineral entails cannot be ignored. During mining activities, micrometric particles are released and are small enough to be inhaled, therefore, they reach the bronchi and the pulmonary alveoli. The objective of this study was to evaluate the cytome of lymphocytes and the presence of inorganic elements in the blood of a population of Cesar exposes to a coal product of mining. For this, 70 exposed people living in areas surrounding the Loma-Cesar coal mines and 70 unexposed people (controls, who had no exposure) from the City of Barranquilla were included. The Cytokinesis-Block Micronucleus Cytome Assay (CBMN-Cyt) was used to assess cytotoxic and genotoxic effects on peripheral blood lymphocytes from the general population and the influence of age, gender, and lifestyle factors (smoking, alcohol consumption, medication and diagnostic radiation, family history of cancer, among others). In the results obtained from the different biomarkers of the CBMN-Cyt, a significant increase in the frequency of MN, NBUD, NPB, necrosis (NECR) and apoptosis (APOP) was observed in the exposed group, compared to the unexposed group. In respect of the nuclear division index (NDI), no significant differences were observed. Regarding the factors related to lifestyle, we observed a significant correlation between the consumption of vitamins and very fatty meats with the formation of NBUD. In the same way, the consumption of meats and alcohol were significantly correlated with the formation of MN and the presence of apoptosis, with alcohol intake. In the analysis of the concentrations of inorganic elements using the PIXE method, significant concentrations of aluminum (Al), sulfur (S), potassium (K), chromium (Cr), and Iron (Fe) were found in the exposed group compared to the unexposed group. Interestingly, a significant correlation was found between MN formation and increased Fe and Cr concentration in the exposed group. The results obtained in DNA damage and cell death may be associated with the oxidative damage generated due to exposure to coal residues in the region and demonstrate the usefulness of CBMN-Cyt biomarkers for human biomonitoring in exposed populations. | eng |
dc.format.mimetype | spa | |
dc.identifier.uri | https://hdl.handle.net/20.500.12442/10000 | |
dc.language.iso | spa | spa |
dc.publisher | Ediciones Universidad Simón Bolívar | spa |
dc.publisher | Facultad de Ciencias Básicas y Biomédicas | spa |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | eng |
dc.rights.accessrights | info:eu-repo/semantics/restrictedAccess | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject | Biomarcadores | spa |
dc.subject | CBMN Cyt | spa |
dc.subject | Carbón | spa |
dc.subject | PIXE | spa |
dc.subject | Muerte celular | spa |
dc.subject | Biomarkers | eng |
dc.subject | Coal | eng |
dc.subject | Cell death | eng |
dc.title | Evaluación del citoma de linfocitos y metales en sangre de una población del Cesar expuesta a minería de carbón | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.spa | Trabajo de grado máster | spa |
dcterms.references | Miller BG, Tillman DA. Coal Characteristics. In: Combustion Engineering Issues for Solid Fuel Systems [Internet]. Elsevier; 2008 [cited 2022 Apr 12]. p. 33–81. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780123736116000021 | eng |
dcterms.references | Orem W, Finkelman R. Coal Formation and Geochemistry. Sediments, Diagenes Sediment Rocks [Internet]. 2014 [cited 2022 Apr 12];7:207–32. Available from: http://dx.doi.org/10.1016/B978-0-08-095975-7.00708-7 | eng |
dcterms.references | Smoot LD. General Characteristics of Coal. Pulverized-Coal Combust Gasif [Internet]. 1979 [cited 2022 Apr 12];123–32. Available from: https://link.springer.com/chapter/10.1007/978-1-4757-1696-2_7 | eng |
dcterms.references | Mejía L. EL CARBÓN. Origen, atributos, extracción y usos actuales en Colombia. Univ Nac Colomb. 2014;94. | spa |
dcterms.references | Teichmüller M, Teichmüller R. Chapter 5 Diagenesis of Coal (Coalification). Dev Sedimentol. 1979 Jan 1;25:207–46. | eng |
dcterms.references | Teichmüller M, Teichmüller R. Chapter 8 Diagenesis of Coal (Coalification). Dev Sedimentol. 1967 Jan 1;8(C):391–415. | eng |
dcterms.references | Barrera Zapata R, Pérez Bayer JF, Salazar Jiménez C. Carbones colombianos: clasificación y caracterización termoquímica para aplicaciones energéticas. Rev ION [Internet]. 2014 [cited 2022 Apr 12];27(2):43–54. Available from: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-100X2014000200005&lng=en&nrm=iso&tlng= | spa |
dcterms.references | UPME. Boletín Estadístico Sector Minero Energético 2016 - 2020. 2021;1–173. Available from: https://www1.upme.gov.co/PromocionSector/SeccionesInteres/Documents/Boletines/Boletin_Estadistico_ME_2016-2020.pdf | spa |
dcterms.references | Raliuga T. CARBÓN Origen del carbón [Internet]. [cited 2022 Apr 26]. Available from: https://www.academia.edu/7706306/CARBÓN_Origen_del_carbón | spa |
dcterms.references | Wang H, Maqbool A, Xiao X, Yang H, Bi W, Bian Z. Seasonal pollution and risk assessment of heavy metals in atmospheric dust from coal mining area. Int J Environ Sci Technol 2022 [Internet]. 2022 Jan 24 [cited 2022 Apr 17];1–10. Available from: https://link.springer.com/article/10.1007/s13762-022-03916-3 | eng |
dcterms.references | León-Mejía G, Luna-Rodríguez I, Trindade C, Oliveros-Ortíz L, Anaya-Romero M, Luna-Carrascal J, et al. Cytotoxic and genotoxic effects in mechanics occupationally exposed to diesel engine exhaust. Ecotoxicol Environ Saf. 2019 Apr 30;171:264–73. | eng |
dcterms.references | Quintana-Sosa M, León-Mejía G, Luna-Carrascal J, De moya YS, Rodríguez IL, Acosta-Hoyos A, et al. Cytokinesis-block micronucleus cytome (CBMN-CYT) assay biomarkers and telomere length analysis in relation to inorganic elements in individuals exposed to welding fumes. Ecotoxicol Environ Saf. 2021 Apr 1;212:111935. | eng |
dcterms.references | Fenech M. Cytokinesis-block micronucleus cytome assay. Nat Protoc 2007 25 [Internet]. 2007 May 3 [cited 2022 Apr 10];2(5):1084–104. Available from: https://www.nature.com/articles/nprot.2007.77 | eng |
dcterms.references | Thomas P, Fenech M. Cytokinesis-Block Micronucleus Cytome Assay in Lymphocytes. Methods Mol Biol [Internet]. 2011 [cited 2022 Apr 17];682:217–34. Available from: https://link.springer.com/protocol/10.1007/978-1-60327-409-8_16 | eng |
dcterms.references | Gajski G, Gerić M, Oreščanin V, Garaj-Vrhovac V. Cytokinesis-block micronucleus cytome assay parameters in peripheral blood lymphocytes of the general population: Contribution of age, sex, seasonal variations and lifestyle factors. Ecotoxicol Environ Saf. 2018 Feb 1;148:561–70. | eng |
dcterms.references | Kaizer J, Ješkovský M, Kvasniak J, Zeman J, Pánik J, Povinec PP. Elemental composition of organic and non-organic foods determined by PIXE. J Radioanal Nucl Chem 2022 3313 [Internet]. 2022 Jan 25 [cited 2022 Apr 17];331(3):1249–59. Available from: https://link.springer.com/article/10.1007/s10967-022-08188-2 | eng |
dcterms.references | Abdul Sattar S, Seetharami Reddy B, Ramnarayana K. Trace Element Analysis of Some Vegetables by PIXE Technique. Lect Notes Electr Eng [Internet]. 2022 [cited 2022 Apr 17];790:219–26. Available from: https://link.springer.com/chapter/10.1007/978-981-16-1342-5_17 | eng |
dcterms.references | Shaibur MR, Das TK. Quantification of potentially toxic element contamination in groundwater using the novel particle-induced X-ray emission (PIXE) technique and human health impacts. Groundw Sustain Dev [Internet]. 2022 May 1 [cited 2022 Apr 17];17:100755. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2352801X22000327 | eng |
dcterms.references | Bustamante P, Rafael Eduardo García Molano, Oswald Maya Sánchez, Juan Felipe Rodríguez López, Tatiana Aguilar Londoño. MINERÍA DE CARBÓN EN COLOMBIA. 2020; | spa |
dcterms.references | Herrera CJ, Gil JM, Carvajal CC, Escobar L, Subdirectora De Demanda R, Loaiza J, et al. GRUPO DE TRABAJO TÉCNICO. 2016 [cited 2022 Apr 12]; Available from: www.upme.gov.co | spa |
dcterms.references | Leguizamo Castellanos AT, Ruiz Rodrígues JS. Impactos Ambientales De La Mineria De Carbon Sobre El Recurso Hídrico En El Departamento De Boyaca. Bol Semillas Ambient. 2018;12(1):2463–0691. | spa |
dcterms.references | Achten C, Hofmann T. Native polycyclic aromatic hydrocarbons (PAH) in coals - A hardly recognized source of environmental contamination. Sci Total Environ [Internet]. 2009;407(8):2461–73. Available from: http://dx.doi.org/10.1016/j.scitotenv.2008.12.008 | eng |
dcterms.references | León-Mejía G, Espitia-Pérez L, Hoyos-Giraldo LS, Da Silva J, Hartmann A, Henriques JAP, et al. Assessment of DNA damage in coal open-cast mining workers using the cytokinesis-blocked micronucleus test and the comet assay. Sci Total Environ [Internet]. 2011;409(4):686–91. Available from: http://dx.doi.org/10.1016/j.scitotenv.2010.10.049 | eng |
dcterms.references | Tang Q, Li L, Zhang S, Zheng L, Miao C. Characterization of heavy metals in coal gangue-reclaimed soils from a coal mining area. J Geochemical Explor. 2018 Mar 1;186:1–11. | eng |
dcterms.references | Guerrero-Castilla A, Olivero-Verbel J, Marrugo-Negrete J. Heavy metals in wild house mice from coal-mining areas of Colombia and expression of genes related to oxidative stress, DNA damage and exposure to metals. Mutat Res Toxicol Environ Mutagen. 2014 Mar 1;762:24–9. | eng |
dcterms.references | Blanco GD, Sühs RB, Brizola E, Correâ PF, Campos ML, Hanazaki N. Invisible contaminants and food security in former coal mining areas of Santa Catarina, Southern Brazil. J Ethnobiol Ethnomed [Internet]. 2020 Aug 14 [cited 2022 Apr 10];16(1):1–11. Available from: https://ethnobiomed.biomedcentral.com/articles/10.1186/s13002-020-00398-w | eng |
dcterms.references | Galaris D, Evangelou A. The role of oxidative stress in mechanisms of metal-induced carcinogenesis. Crit Rev Oncol Hematol. 2002 Apr 1;42(1):93–103. | eng |
dcterms.references | Calao CR, Marrugo JL. Genotoxic effects in a human population exposed to heavy metals in the region of La Mojana, Colombia, 2013. Biomédica [Internet]. 2015 Aug 10 [cited 2022 Apr 26];35(3):139–51. Available from: https://revistabiomedica.org/index.php/biomedica/article/view/2392/2887 | eng |
dcterms.references | Schins RPF, Borm PJA. Mechanisms and mediators in coal dust induced toxicity: A review. Ann Occup Hyg. 1999;43(1):7–33. | eng |
dcterms.references | Proietti E, Röösli M, Frey U, Latzin P. Air Pollution During Pregnancy and Neonatal Outcome: A Review. https://home.liebertpub.com/jamp [Internet]. 2013 Jan 31 [cited 2022 Apr 17];26(1):9–23. Available from: https://www.liebertpub.com/doi/abs/10.1089/jamp.2011.0932 | eng |
dcterms.references | Schulz H, Karrasch S, Bölke G, Cyrys J, Hornberg C, Pickford R, et al. Breathing: Ambient Air Pollution and Health - Part III. Pneumologie [Internet]. 2019 Jul 10 [cited 2022 Apr 17];73(7):407–29. Available from: http://www.thieme-connect.com/products/ejournals/html/10.1055/a-0920-6423 | eng |
dcterms.references | Cooperación C, De Salud M, Protección Y, Organización S, De P, Salud LA. PROTOCOLO PARA LA VIGILANCIA SANITARIA Y AMBIENTAL DE LOS EFECTOS EN SALUD RELACIONADOS CON LA CONTAMINACIÓN DEL AIRE EN COLOMBIA. 2012; | spa |
dcterms.references | Corona Esquivel R, Tritlla J, Benavides Muñoz ME, Piedad Sánchez N, Ferrusquía Villafranca I. Geología, estructura y composición de los principales yacimientos de carbón mineral en México. Boletín la Soc Geológica Mex. 2006;58(1):141–60. | spa |
dcterms.references | Schweinfurth SP. Coal - A complex natural resource: An overview of factors affecting coal quality and use in the United States. US Geol Surv Circ. 2003;(1143):1–39. | eng |
dcterms.references | Drummond Company I. ¿Por qué carbón? - Drummond Co. Drummond Co. [Internet]. 2019 [cited 2022 Apr 8]. Available from: https://www.drummondco.com/por-que-carbon/?lang=es | spa |
dcterms.references | Valora analitik. Colombia tiene reservas de carbón para 180 años; está en top 10 de países con mayor cantidad - Valora Analitik 2019-05-14 [Internet]. 2019 [cited 2022 Apr 17]. Available from: https://www.valoraanalitik.com/2019/05/14/colombia-tiene-reservas-de-carbon-para-180-anos-esta-en-top-10-de-paises-con-mas-cantidad/ | spa |
dcterms.references | Looney B. Statistical Review of World Energy 2020. 2020 [cited 2022 Apr 12]; Available from: www.bp.com/statisticalreview. | eng |
dcterms.references | UPME. ZONAS CARBONÍFERAS DE COLOMBIA [Internet]. 2020 [cited 2022 May16]. Available from: http://www.upme.gov.co/guia_ambiental/carbon/areas/zonas/indice.htm | spa |
dcterms.references | Kumar Rai P. Multifaceted health impacts of Particulate Matter (PM) and its management: An overview. Environ Skept Critics [Internet]. 2015 [cited 2022 May 20];4(1):1–26. Available from: www.iaees.org | eng |
dcterms.references | Cassee FR, Héroux ME, Gerlofs-Nijland ME, Kelly FJ. Particulate matter beyond mass: recent health evidence on the role of fractions, chemical constituents and sources of emission. Inhal Toxicol [Internet]. 2013 Dec [cited 2022 May 20];25(14):802. Available from: /pmc/articles/PMC3886392/ | eng |
dcterms.references | Schraufnagel DE. The health effects of ultrafine particles. Exp Mol Med 2020 523 [Internet]. 2020 Mar 17 [cited 2022 May 20];52(3):311–7. Available from: https://www.nature.com/articles/s12276-020-0403-3 | eng |
dcterms.references | León-Mejía G, Sosa MQ, Rohr P, KatiaKvitko, Henriques JAP, Silva J da. Occupational Exposure to Coal, Genotoxicity, and Cancer Risk. Environ Heal Risk - Hazard Factors to Living Species [Internet]. 2016 Jun 16 [cited 2022 May 23]; Available from: undefined/state.item.id | eng |
dcterms.references | Kyung SY, Jeong SH. Particulate-Matter Related Respiratory Diseases. Tuberc Respir Dis (Seoul) [Internet]. 2020 Apr 1 [cited 2022 May 20];83(2):116–21. Available from: https://synapse.koreamed.org/articles/1144418 | eng |
dcterms.references | Amati AL, Zakrzewicz A, Siebers K, Wilker S, Heldmann S, Zakrzewicz D, et al. Chemokines (CCL3, CCL4, and CCL5) Inhibit ATP-Induced Release of IL-1β by Monocytic Cells. Mediators Inflamm [Internet]. 2017 [cited 2022 May 23];2017. Available from: /pmc/articles/PMC5516742/ | eng |
dcterms.references | Goodell J. Big coal : the dirty secret behind America’s energy future. Boston: Houghton Mifflin Co.; 2006. | eng |
dcterms.references | Beyersmann D, Hartwig A. Carcinogenic metal compounds: recent insight into molecular and cellular mechanisms. Arch Toxicol [Internet]. 2008;82(8):493. Available from: https://doi.org/10.1007/s00204-008-0313-y | eng |
dcterms.references | Leffa D, Andrade V. [PDF] POTENCIAL GENOTÓXICO DE METAIS EM ÁREAS MINERADAS DE CARVÃO LEFFA, D. D. 1 ANDRADE, V. M. 2 - Free Download [Internet]. 2017 [cited 2022 Apr 10]. Available from: https://silo.tips/queue/potencial-genotoxico-de-metais-em-areas-mineradas-de-carvao-leffa-d-d-1-andrade?&queue_id=-1&v=1649605374&u=MTkwLjg0LjExNi42Mg== | spa |
dcterms.references | Agova S, Groseva D, Panev T, Popov T, Toncheva D, Hadjidekova V. Effect of environmental exposure to PAHs on somatic chromosomes. Turkish J Med Sci. 2005;35(3):143–8. | eng |
dcterms.references | Jomova K, Valko M. Advances in metal-induced oxidative stress and human disease. Toxicology. 2011 May 10;283(2–3):65–87. | eng |
dcterms.references | Angelé-Martínez C, Goodman C, Brumaghim J. Metal-mediated DNA damage and cell death: mechanisms, detection methods, and cellular consequences. Metallomics [Internet]. 2014 Aug 1;6(8):1358–81. Available from: https://doi.org/10.1039/c4mt00057a | eng |
dcterms.references | Lamichhane S, Bal Krishna KC, Sarukkalige R. Polycyclic aromatic hydrocarbons (PAHs) removal by sorption: A review. Chemosphere. 2016 Apr 1;148:336–53. | eng |
dcterms.references | Kim KH, Jahan SA, Kabir E, Brown RJC. A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects. Environ Int. 2013 Oct 1;60:71–80. | eng |
dcterms.references | Macri M, Sica D, Mrrón Gustavo. Hidrocarburos Aromáticos Policíclicos. Hoy, mañana, siempre Prevenir es trabajo de todos los días. Hidrocarburos Aromáticos Policíclicos, Hoy, mañana, siempre Prevenir es trabajo de todos los días [Internet]. 2019 [cited 2022 May 23]; Available from: https://www.argentina.gob.ar/sites/default/files/14_guia_hidrocarburos_aromaticos_policiclicos_-_final_-_ok_0.pdf | spa |
dcterms.references | Ortiz-Salinas R, Cram S, Sommer I. Polycyclic aromatic hydrocarbons (pahs) in soils of the low alluvial plain in the state of Tabasco, Mexico. 2012 [cited 2022 May 23];28(2):131–44. Available from: www.universidadyciencia.ujat.mx | eng |
dcterms.references | Wang Z, Ren P, Sun Y, Ma X, Liu X, Na G, et al. Gas/particle partitioning of polycyclic aromatic hydrocarbons in coastal atmosphere of the north Yellow Sea, China. Environ Sci Pollut Res 2013 208 [Internet]. 2013 Mar 6 [cited 2022 May 23];20(8):5753–63. Available from: https://link.springer.com/article/10.1007/s11356-013-1588-y | eng |
dcterms.references | Yu M-H, Tsunoda H, Tsunoda M. Environmental toxicology : biological and health effects of pollutants. 2012;375. | eng |
dcterms.references | Zuo L, Wijegunawardana D. Redox Role of ROS and Inflammation in Pulmonary Diseases. Adv Exp Med Biol [Internet]. 2021 [cited 2022 Apr 26];1304:187–204. Available from: https://link.springer.com/chapter/10.1007/978-3-030-68748-9_11 | eng |
dcterms.references | Porter DW, Millecchia L, Robinson VA, Hubbs A, Willard P, Pack D, et al. Enhanced nitric oxide and reactive oxygen species production and damage after inhalation of silica. Am J Physiol Lung Cell Mol Physiol [Internet]. 2002;283:485–93. Available from: www.ajplung.org | eng |
dcterms.references | Petsonk EL, Rose C, Cohen R. Coal Mine Dust Lung Disease. New Lessons from an Old Exposure. Am J Respir Crit Care Med [Internet]. 2013 Jun 1 [cited 2022 Apr 10];187(11):1178–85. Available from: http://www.atsjournals.org/doi/abs/10.1164/rccm.201301-0042CI | eng |
dcterms.references | Mahadeva R, Lomas DA. Alpha1-antitrypsin deficiency, cirrhosis and emphysema. Thorax [Internet]. 1998 Jun 1 [cited 2022 Apr 10];53(6):501–5. Available from: https://thorax.bmj.com/content/53/6/501 | eng |
dcterms.references | Jang A-S, Jun YJ, Park MK. Effects of air pollutants on upper airway disease. Curr Opin Allergy Clin Immunol [Internet]. 2016;16(1). Available from: https://journals.lww.com/co-allergy/Fulltext/2016/02000/Effects_of_air_pollutants_on_upper_airway_disease.4.aspx | eng |
dcterms.references | da Silva FMR, Tavella RA, Fernandes CLF, Dos Santos M. Genetic damage in coal and uranium miners. Mutat Res Toxicol Environ Mutagen. 2021 Jun 1;866:503348. | eng |
dcterms.references | Ramírez A. Biomarcadores en monitoreo de exposición a metales pesados en metalurgia. An la Fac Med [Internet]. 2006 [cited 2022 Apr 10];67(1):49–58. Available from: http://www.scielo.org.pe/scielo.php?script=sci_arttext&pid=S1025-55832006000100008&lng=es&nrm=iso&tlng=es | spa |
dcterms.references | Pastor S, Creus A, Xamena N, Siffel C, Marcos R. Occupational exposure to pesticides and cytogenetic damage: Results of a Hungarian population study using the micronucleus assay in lymphocytes and buccal cells. Environ Mol Mutagen. 2002;40(2):101–9. | eng |
dcterms.references | Lozano O, Colaux JL, Laloy J, Alpan L, Dogné JM, Lucas S. Fast, asymmetric and nonhomogeneous clearance of SiC nanoaerosol assessed by micro-particle-induced x-ray emission. Nanomedicine (Lond) [Internet]. 2018 [cited 2022 Apr 10];13(2):145–55. Available from: https://pubmed.ncbi.nlm.nih.gov/29173016/ | eng |
dcterms.references | Kumar P, Singh JP, Kumar V, Asokan K. Introduction of Ion Beam Techniques. 2022 [cited 2022 Apr 26];1–7. Available from: https://link.springer.com/chapter/10.1007/978-3-030-93862-8_1 | eng |
dcterms.references | Nuncio Q AE. Analysis of obsidians by PIXE technique [Internet]. 1998. (Analisis de obsidianas por medio de la tecnica PIXE). Available from: http://inis.iaea.org/search/search.aspx?orig_q=RN:29029260 | eng |
dcterms.references | Sera K. Particle-Induced X-Ray Emission. Compend Surf Interface Anal [Internet]. 2018 [cited 2022 Apr 26];425–34. Available from: https://link.springer.com/chapter/10.1007/978-981-10-6156-1_70 | eng |
dcterms.references | Teixeira EC, Streck CD, Braga CF, Yoneama ML, Dias JF. A PIXE study of elements transport in fluvial waters in the Candiota region, Rio Grande do Sul, Brazil. Nucl Instruments Methods Phys Res Sect B Beam Interact with Mater Atoms. 2004;215(1–2):203–13. | eng |
dcterms.references | Valle Brozas F, Crego A, Roso L, Conde AP. Laser-based X-ray and electron source for X-ray fluorescence studies. 2016; | eng |
dcterms.references | DeYoung PA, Hall CC, Mears PJ, Padilla DJ, Sampson R, Peaslee GF. Comparison of glass fragments using particle-induced X-ray emission (PIXE) spectrometry. J Forensic Sci [Internet]. 2011 Mar [cited 2022 Apr 10];56(2):366–71. Available from: https://pubmed.ncbi.nlm.nih.gov/21210808/ | eng |
dcterms.references | Shimizu Y, Dobashi K, Kusakbe T, Nagamine T, Oikawa M, Satoh T, et al. In-air micro-particle induced X-ray emission analysis of asbestos and metals in lung tissue. Int J Immunopathol Pharmacol [Internet]. 2008 [cited 2022 Apr 10];21(3):567–76. Available from: https://pubmed.ncbi.nlm.nih.gov/18831923/ | eng |
dcterms.references | Cloete KJ, Šmit Ž, Minnis-Ndimba R, Vavpetič P, du Plessis A, le Roux SG, et al. Physico-elemental analysis of roasted organic coffee beans from Ethiopia, Colombia, Honduras, and Mexico using X-ray micro-computed tomography and external beam particle induced X-ray emission. Food Chem X [Internet]. 2019 Jun 30 [cited 2022 Apr 10];2. Available from: https://doi.org/10.1016/j.fochx.2019.100032 | eng |
dcterms.references | Naga Raju GJ, Sarita P, Ramana Murty GAV, Ravi Kumar M, Seetharami Reddy B, John Charles M, et al. Estimation of trace elements in some anti-diabetic medicinal plants using PIXE technique. Appl Radiat Isot. 2006 Aug 1;64(8):893–900. | eng |
dcterms.references | Sukum P, Narongchai P, Boonyawan D, Narongchai S, Tippawan U. Determination of Elements in Gymnema inodorum Lour by Particle Induced X-Ray Emission (PIXE). Biol Trace Elem Res [Internet]. 2019 Dec 1 [cited 2022 Apr 10];192(2):330–5. Available from: https://pubmed.ncbi.nlm.nih.gov/30847766/ | eng |
dcterms.references | Siegele R, Kachenko AG, Bhatia NP, Wang YD, Ionescu M, Singh B, et al. Localisation of trace metals in metal-accumulating plants using μ-PIXE. X-Ray Spectrom [Internet]. 2008 Mar 1 [cited 2022 Apr 10];37(2):133–6. Available from: https://onlinelibrary.wiley.com/doi/full/10.1002/xrs.1035 | eng |
dcterms.references | Follmer C, Carlini CR, Yoneama ML, Dias JF. PIXE analysis of urease isoenzymes isolated from Canavalia ensiformis (jack bean) seeds. Nucl Instruments Methods Phys Res Sect B Beam Interact with Mater Atoms. 2002 Apr;189(1–4):482–6. | eng |
dcterms.references | Du X, Jin X, Zucker N, Kennedy R, Urpelainen J. Transboundary air pollution from coal-fired power generation. J Environ Manage. 2020 Sep 15;270:110862. | eng |
dcterms.references | Solís C, Mireles A, Andrade E, Zolezzi-Ruíz H. Environmental applications of PIXE at the Institute of Physics, UNAM. Rev Mex física [Internet]. 2007 [cited 2022 Apr 10];53:33–7. Available from: http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0035-001X2007000900009&lng=es&nrm=iso&tlng= | spa |
dcterms.references | Rohr P, Kvitko K, da Silva FR, Menezes APS, Porto C, Sarmento M, et al. Genetic and oxidative damage of peripheral blood lymphocytes in workers with occupational exposure to coal. Mutat Res Toxicol Environ Mutagen. 2013 Dec 12;758(1–2):23–8. | eng |
dcterms.references | León-Mejía G, Quintana M, Debastiani R, Dias J, Espitia-Pérez L, Hartmann A, et al. Genetic damage in coal miners evaluated by buccal micronucleus cytome assay. Ecotoxicol Environ Saf. 2014 Sep 1;107:133–9. | eng |
dcterms.references | Fenech M, Bonassi S. The effect of age, gender, diet and lifestyle on DNA damage measured using micronucleus frequency in human peripheral blood lymphocytes. Mutagenesis. 2011;26(1):43–9. | eng |
dcterms.references | Ceppi M, Biasotti B, Fenech M, Bonassi S. Human population studies with the exfoliated buccal micronucleus assay: Statistical and epidemiological issues. Mutat Res Mutat Res. 2010 Jul 1;705(1):11–9. | eng |
dcterms.references | Ergene S, Çelik A, Çavaş T, Kaya F. Genotoxic biomonitoring study of population residing in pesticide contaminated regions in Göksu Delta: Micronucleus, chromosomal aberrations and sister chromatid exchanges. Environ Int. 2007 Oct 1;33(7):877–85. | eng |
dcterms.references | Terradas M, Martín M, Tusell L, Genescà A. Genetic activities in micronuclei: Is the DNA entrapped in micronuclei lost for the cell? Mutat Res Mutat Res. 2010 Jul 1;705(1):60–7. | eng |
dcterms.references | Fenech M, Kirsch-Volders M, Natarajan AT, Surralles J, Crott JW, Parry J, et al. Molecular mechanisms of micronucleus, nucleoplasmic bridge and nuclear bud formation in mammalian and human cells. Mutagenesis [Internet]. 2011 Jan 1 [cited 2022 Apr 26];26(1):125–32. Available from: https://academic.oup.com/mutage/article/26/1/125/1054873 | eng |
dcterms.references | Fenech M. Cytokinesis-Block Micronucleus Cytome Assay Evolution into a More Comprehensive Method to Measure Chromosomal Instability. Genes (Basel) [Internet]. 2020 Oct 1 [cited 2022 Apr 27];11(10):1–13. Available from: /pmc/articles/PMC7602810/ | eng |
dcterms.references | Fenech M, Knasmueller S, Bolognesi C, Bonassi S, Holland N, Migliore L, et al. Molecular mechanisms by which in vivo exposure to exogenous chemical genotoxic agents can lead to micronucleus formation in lymphocytes in vivo and ex vivo in humans. Mutat Res Mutat Res. 2016 Oct 1;770:12–25. | eng |
dcterms.references | Fink SL, Cookson BT. Apoptosis, pyroptosis, and necrosis: Mechanistic description of dead and dying eukaryotic cells. Infect Immun [Internet]. 2005 Apr [cited 2022 Apr 26];73(4):1907–16. Available from: https://journals.asm.org/journal/iai | eng |
dcterms.references | Repetto Jiménez M, Kuhn GR. TOXICOLOGÍA FUNDAMENTAL Cuarta edición. 2009 [cited 2022 Apr 10]; Available from: www.diazdesantos.es/ediciones | spa |
dcterms.references | Rodríguez Rey A, Cuéllar Luna L, Maldonado Cantillo G, Suardiaz Espinosa ME. Efectos nocivos del plomo para la salud del hombre. Rev Cuba Investig Biomed. 2016;35(3):251–71. | spa |
dcterms.references | Ascarrunz ME, Tirado N, Gonzáles AR, Cuti M, Huici O. Evaluación de riesgo genotóxico : biomonitorización de trabajadores agrícolas de Caranavi , Guanay , Palca y Mecapaca , expuestos a plaguicidas. Cuad Hosp Clin. 2006;51(1):7–18. | spa |
dcterms.references | Monroy CM, Cortés AC, Sicard DM, de Restrepo HG. Cytotoxicity and genotoxicity of human cells exposed in vitro to glyphosate. Biomedica. 2005;25(3):335–45. | eng |
dcterms.references | Llewellyn S V., Parak WJ, Hühn J, Burgum MJ, Evans SJ, Chapman KE, et al. Deducing the cellular mechanisms associated with the potential genotoxic impact of gold and silver engineered nanoparticles upon different lung epithelial cell lines in vitro. Nanotoxicology [Internet]. 2022 Jan 27 [cited 2022 Apr 10];1–21. Available from: https://www.tandfonline.com/doi/full/10.1080/17435390.2022.2030823 | eng |
dcterms.references | Akbas E, Unal F, Yuzbasioglu D. Genotoxic effects of gadobutrol and gadoversetamide active substances used in magnetic resonance imaging in human peripheral lymphocytes in vitro. Drug Chem Toxicol [Internet]. 2022 Feb 21 [cited 2022 Apr 10];1–12. Available from: https://www.tandfonline.com/doi/full/10.1080/01480545.2021.1957913 | eng |
dcterms.references | Fenech M, El-Sohemy A, Cahill L, Ferguson LR, French TAC, Tai ES, et al. Nutrigenetics and Nutrigenomics: Viewpoints on the Current Status and Applications in Nutrition Research and Practice. J Nutrigenet Nutrigenomics [Internet]. 2011 Jul [cited 2022 Apr 10];4(2):69. Available from: /pmc/articles/PMC3121546/ | eng |
dcterms.references | Alam I, Ali F, Zeb F, Almajwal A, Fatima S, Wu X. Relationship of nutrigenomics and aging: Involvement of DNA methylation. J Nutr Intermed Metab. 2019 Jun 1;16:100098. | eng |
dcterms.references | Weinshilboum RM, Wang L. Pharmacogenetics and pharmacogenomics: development, science, and translation. Annu Rev Genomics Hum Genet [Internet]. 2006 [cited 2022 Apr 10];7:223–45. Available from: https://pubmed.ncbi.nlm.nih.gov/16948615/ | eng |
dcterms.references | Wang L. Pharmacogenomics: a systems approach. Wiley Interdiscip Rev Syst Biol Med [Internet]. 2010 Jan [cited 2022 Apr 10];2(1):3. Available from: /pmc/articles/PMC3894835/ | eng |
dcterms.references | Bhatia A, Kumar Y. Cancer cell micronucleus: an update on clinical and diagnostic applications. APMIS [Internet]. 2013 Jul 1 [cited 2022 Apr 10];121(7):569–81. Available from: https://onlinelibrary.wiley.com/doi/full/10.1111/apm.12033 | eng |
dcterms.references | Lewis CW, Golsteyn RM. Cancer cells that survive checkpoint adaptation contain micronuclei that harbor damaged DNA. Cell Cycle [Internet]. 2016 Nov 16 [cited 2022 Apr 10];15(22):3131. Available from: /pmc/articles/PMC5134707/ | eng |
dcterms.references | Carrano A V., Natarajan AT. Considerations for population monitoring using cytogenetic techniques. Mutat Res Toxicol. 1988 Mar 1;204(3):379–406. | eng |
dcterms.references | Campbell JL, Hopman TL, Maxwell JA, Nejedly Z. Guelph PIXE software package III: alternative proton database. Nucl Instruments Methods Phys Res Sect B Beam Interact with Mater Atoms. 2000;170(1):193–204. | eng |
dcterms.references | Maxwell JA, Teesdale WJ, Campbell JL. The Guelph PIXE software package II. Nucl Instruments Methods Phys Res Sect B Beam Interact with Mater Atoms. 1995 Mar 2;95(3):407–21. | eng |
dcterms.references | Santos M dos, Flores Soares MC, Martins Baisch PR, Muccillo Baisch AL, Rodrigues da Silva Júnior FM. Biomonitoring of trace elements in urine samples of children from a coal-mining region. Chemosphere. 2018 Apr 1;197:622–6. | eng |
dcterms.references | Isermann J, Prager HM, Ebbinghaus R, Janasik B, Wasowicz W, Dufaux B, et al. Urinary cadmium levels in active and retired coal miners. https://doi.org/101080/1093740420171304710 [Internet]. 2017 Apr 18 [cited 2022 Apr 18];80(7–8):405–10. Available from: https://www.tandfonline.com/doi/abs/10.1080/10937404.2017.1304710 | eng |
dcterms.references | Ali AE, Sloane DR, Strezov V. Assessment of Impacts of Coal Mining in the Region of Sydney, Australia on the Aquatic Environment Using Macroinvertebrates and Chlorophyll as Indicators. Int J Environ Res Public Heal 2018, Vol 15, Page 1556 [Internet]. 2018 Jul 23 [cited 2022 Apr 18];15(7):1556. Available from: https://www.mdpi.com/1660-4601/15/7/1556/htm | eng |
dcterms.references | León-Mejía G, Silva LFO, Civeira MS, Oliveira MLS, Machado M, Villela IV, et al. Cytotoxicity and genotoxicity induced by coal and coal fly ash particles samples in V79 cells. Environ Sci Pollut Res 2016 2323 [Internet]. 2016 Sep 16 [cited 2022 Apr 26];23(23):24019–31. Available from: https://link.springer.com/article/10.1007/s11356-016-7623-z | eng |
dcterms.references | Da Silva Pinto EA, Garcia EM, de Almeida KA, Fernandes CFL, Tavella RA, Soares MCF, et al. Genotoxicity in adult residents in mineral coal region—a cross-sectional study. Environ Sci Pollut Res 2017 2420 [Internet]. 2017 Jun 1 [cited 2022 Apr 11];24(20):16806–14. Available from: https://link.springer.com/article/10.1007/s11356-017-9312-y | eng |
dcterms.references | Donbak L, Rencuzogullari E, Yavuz A, Topaktas M. The genotoxic risk of underground coal miners from Turkey. Mutat Res Toxicol Environ Mutagen. 2005 Dec 30;588(2):82–7. | eng |
dcterms.references | Klaunig JE, Kamendulis LM. Carcinogenicity. Compr Toxicol Second Ed. 2010 Jan 1;3:117–38. | eng |
dcterms.references | Bai H, Wu M, Zhang H, Tang G. Chronic polycyclic aromatic hydrocarbon exposure causes DNA damage and genomic instability in lung epithelial cells. Oncotarget [Internet]. 2017 [cited 2022 Apr 18];8(45):79034. Available from: /pmc/articles/PMC5668018/ | eng |
dcterms.references | Pizzino G, Irrera N, Cucinotta M, Pallio G, Mannino F, Arcoraci V, et al. Oxidative Stress: Harms and Benefits for Human Health. Oxid Med Cell Longev [Internet]. 2017 [cited 2022 Apr 18];2017. Available from: /pmc/articles/PMC5551541/ | eng |
dcterms.references | Nuran Ercal BSP, Hande Gurer-Orhan BSP, Nukhet Aykin-Burns BSP. Toxic Metals and Oxidative Stress Part I: Mechanisms Involved in Me-tal induced Oxidative Damage. Curr Top Med Chem. 2005 Mar 25;1(6):529–39. | eng |
dcterms.references | Nefic H, Handzic I. The effect of age, sex, and lifestyle factors on micronucleus frequency in peripheral blood lymphocytes of the Bosnian population. Mutat Res Toxicol Environ Mutagen. 2013 Apr 30;753(1):1–11. | eng |
dcterms.references | Vinogradova Y, Coupland C, Hippisley-Cox J. Use of hormone replacement therapy and risk of breast cancer: nested case-control studies using the QResearch and CPRD databases. BMJ [Internet]. 2020 Oct 28 [cited 2022 Apr 18];371. Available from: https://www.bmj.com/content/371/bmj.m3873 | eng |
dcterms.references | Hill DA, Crider M. Hormone Therapy and Other Treatments for Symptoms of Menopause. 2016 [cited 2022 Apr 18];94. Available from: http://www.goodrx.com | eng |
dcterms.references | Spicer D V, Pike MC. Acta Oncologica The Prevention of Breast Cancer through Reduced Ovarian Steroid Exposure. 2009; Available from: https://www.tandfonline.com/action/journalInformation?journalCode=ionc20 | eng |
dcterms.references | Bronte G, Bravaccini S, Ravaioli S, Puccetti M, Scarpi E, Andreis D, et al. Androgen Receptor Expression in Breast Cancer: What Differences Between Primary Tumor and Metastases? Transl Oncol [Internet]. 2018 Aug 1 [cited 2022 Apr 18];11(4):950–6. Available from: https://doi.org/10.1016/j.tranon.2018.05.006 | eng |
dcterms.references | Patra KC, Rautray TR, Tripathy BB, Nayak P. Elemental analysis of coal and coal ASH by PIXE technique. Appl Radiat Isot. 2012 Apr 1;70(4):612–6. | eng |
dcterms.references | Joosen AMCP, Kuhnle GGC, Aspinall SM, Barrow TM, Lecommandeur E, Azqueta A, et al. Effect of processed and red meat on endogenous nitrosation and DNA damage. Carcinogenesis [Internet]. 2009 Aug 1 [cited 2022 Apr 11];30(8):1402–7. Available from: https://academic.oup.com/carcin/article/30/8/1402/2476991 | eng |
dcterms.references | Ishikawa H, Ishikawa T, Yamamoto H, Fukao A, Yokoyama K. Genotoxic effects of alcohol in human peripheral lymphocytes modulated by ADH1B and ALDH2 gene polymorphisms. Mutat Res Mol Mech Mutagen. 2007 Feb 3;615(1–2):134–42. | eng |
dcterms.references | Iarmarcovai G, Bonassi S, Botta A, Baan RA, Orsière T. Genetic polymorphisms and micronucleus formation: A review of the literature. Mutat Res Mutat Res. 2008 Mar 1;658(3):215–33. | eng |
dcterms.references | Maffei F, Forti GC, Castelli E, Stefanini GF, Mattioli S, Hrelia P. Biomarkers to assess the genetic damage induced by alcohol abuse in human lymphocytes. Mutat Res Toxicol Environ Mutagen. 2002 Feb 15;514(1–2):49–58. | eng |
dcterms.references | Seitz HK, Stickel F. Acetaldehyde as an underestimated risk factor for cancer development: Role of genetics in ethanol metabolism. Genes Nutr [Internet]. 2010 Jun 22 [cited 2022 Apr 18];5(2):121–8. Available from: https://link.springer.com/articles/10.1007/s12263-009-0154-1 | eng |
dcterms.references | Yu HS, Oyama T, Isse T, Kitagawa K, Pham TTP, Tanaka M, et al. Formation of acetaldehyde-derived DNA adducts due to alcohol exposure. Chem Biol Interact. 2010 Dec 5;188(3):367–75. | eng |
dcterms.references | Seitz HK, Becker P. Alcohol Metabolism and Cancer Risk. Alcohol Res Heal [Internet]. 2007 [cited 2022 Apr 18];30(1):38. Available from: /pmc/articles/PMC3860434/ | eng |
dcterms.references | Jelski W, Szmitkowski M. Alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) in the cancer diseases. Clin Chim Acta. 2008 Sep 1;395(1–2):1–5. | eng |
dcterms.references | Juan CA, de la Lastra JMP, Plou FJ, Pérez-Lebeña E. The Chemistry of Reactive Oxygen Species (ROS) Revisited: Outlining Their Role in Biological Macromolecules (DNA, Lipids and Proteins) and Induced Pathologies. Int J Mol Sci [Internet]. 2021 [cited 2022 Apr 18];22(9):4642. Available from: /pmc/articles/PMC8125527/ | eng |
oaire.version | info:eu-repo/semantics/acceptedVersion | spa |
sb.programa | Maestría en Genética | spa |
sb.sede | Sede Barranquilla | spa |