Exploring computational methods in the statistical analysis of imprecise medical data: between epistemology and ontology

datacite.rightshttp://purl.org/coar/access_right/c_abf2
dc.contributor.authorNieto Sanchez, Zulmary Carolina
dc.contributor.authorBravo Valero, Antonio José
dc.date.accessioned2025-02-06T15:43:00Z
dc.date.available2025-02-06T15:43:00Z
dc.date.issued2024
dc.description.abstractThe accuracy of the results is essential to evaluate the effectiveness of statistical methods in the analysis of medical data with uncertainty. Indicators such as margin of error, percent agreement and coefficient of determination quantified accuracy under epistemic and ontological uncertainty. The stability of the methods was assessed by variation in trend analysis, sensitivity to small variations and model robustness. Data reliability focused on the selection of methods that effectively handle epistemic uncertainty, recording assumptions, sensitivity analysis and internal consistency. Ontological imprecision was quantified using the fuzzy membership degree and the overlap coefficient. The exploration of computational methods underlined the importance of accuracy and the handling of epistemic and ontological uncertainty, ensuring reliable results. The geometric mean filter, with a score of 0,7790, stood out as the best for its accuracy and ability to effectively handle uncertainty.eng
dc.description.abstractLa exactitud de los resultados es esencial para evaluar la eficacia de métodos estadísticos en el análisis de datos médicos con incertidumbre. Indicadores como el margen de error, el porcentaje de concordancia y el coeficiente de determinación cuantificaron la precisión bajo incertidumbre epistémica y ontológica. La estabilidad de los métodos se evaluó mediante la variación en análisis de tendencias, la sensibilidad a pequeñas variaciones y la robustez del modelo. La confiabilidad de los datos se centró en la selección de métodos que manejan eficazmente la incertidumbre epistémica, registrando supuestos, análisis de sensibilidad y consistencia interna. La imprecisión ontológica se cuantificó mediante el grado de pertenencia difuso y el coeficiente de solapamiento. La exploración de métodos computacionales subrayó la importancia de la precisión y el manejo de la incertidumbre epistémica y ontológica, asegurando resultados fiables. El filtro de media geométrica, con una puntuación de 0,7790, destacó como el mejor por su precisión y capacidad para el manejo eficaz de la incertidumbre.spa
dc.format.mimetypepdf
dc.identifier.citationNieto Sánchez, Z. C., & Bravo Valero, A. J. (2024). Exploring computational methods in the statistical analysis of imprecise medical data: between epistemology and ontology. Salud, Ciencia Y Tecnología, 4, 1341. https://doi.org/10.56294/saludcyt20241341eng
dc.identifier.doihttps://doi.org/10.56294/saludcyt20241341
dc.identifier.issn27699711
dc.identifier.urihttps://hdl.handle.net/20.500.12442/16224
dc.language.isoeng
dc.publisherAG Editoreng
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 United Stateseng
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/
dc.sourceSalud, Ciencia y Tecnologíaspa
dc.sourceVol. 4 (2024)spa
dc.subjectEstadísticaspa
dc.subjectMétodos computacionalesspa
dc.subjectDatos imprecisosspa
dc.subjectIncertidumbrespa
dc.subjectEpistemologíaspa
dc.subjectOntologíaspa
dc.subject.keywordsStatisticseng
dc.subject.keywordsComputational Methodseng
dc.subject.keywordsImprecise Dataeng
dc.subject.keywordsUncertaintyeng
dc.subject.keywordsEpistemologyeng
dc.subject.keywordsOntologyeng
dc.titleExploring computational methods in the statistical analysis of imprecise medical data: between epistemology and ontologyeng
dc.title.translatedExploración de métodos computacionales en el análisis estadístico de datos médicos imprecisos: entre epistemología y ontologíaspa
dc.type.driverinfo:eu-repo/semantics/article
dc.type.spaArtículo científicospa
dcterms.referencesMaghrabie, H., Beauregard, Y., & Schiffauerova, A. Grey-based Multi-Criteria Decision Analysis approach: Addressing uncertainty at complex decision problems. Technological Forecasting and Social Change. 2019; 146:366-379. https://doi.org/10.1016/J.TECHFORE.2019.05.031eng
dcterms.referencesKeith, A., & Ahner, D. A survey of decision making and optimization under uncertainty. Annals of Operations Research. 2019; 300:319-353. https://doi.org/10.1007/s10479-019-03431-8eng
dcterms.referencesHewitt, M., Ortmann, J., & Rei, W. Decision-based scenario clustering for decision-making under uncertainty. Annals of Operations Research. 2021;1-25. https://doi.org/10.1007/s10479-020-03843-xeng
dcterms.referencesMoroni, S., & Chiffi, D. Uncertainty and Planning: Cities, Technologies and Public Decision-Making. Perspectives on Science. 2022; 30:237-259. https://doi.org/10.1162/posc_a_00413eng
dcterms.referencesHinkel, J., Feyen, L., Hemer, M., Cozannet, G., Lincke, D., Marcos, M., Mentaschi, L., Merkens, J., Moel, H., Muis, S., Nicholls, R., Vafeidis, A., Wal, R., Vousdoukas, M., Wahl, T., Ward, P., & Wolff, C. Uncertainty and Bias in Global to Regional Scale Assessments of Current and Future Coastal Flood Risk. Earth's Future. 2021;9. https://doi.org/10.1029/2020EF001882eng
dcterms.referencesNg, S., Faraji-Rad, A., & Batra, R. Uncertainty Evokes Consumers’ Preference for Brands Incongruent with their Global–Local Citizenship Identity. Journal of Marketing Research. 2020; 58:400-415. https://doi.org/10.1177/0022243720972956eng
dcterms.referencesHerran, D., Tachiiri, K., & Matsumoto, K. Global energy system transformations in mitigation scenarios considering climate uncertainties. Applied Energy. 2019; 243:119-131. https://doi.org/10.1016/J.APENERGY.2019.03.069eng
dcterms.referencesAfanador Cubillos N. Historia de la producción y sus retos en la era actual. Región Científica. 2023;2(1):202315. https://doi.org/10.58763/rc202315spa
dcterms.referencesStefan, A. Statistics for Making Decisions. The American Statistician. 2022; 76:87-88. https://doi.org/10.1080/00031305.2021.2020003eng
dcterms.referencesRoman-Acosta D, Rodríguez-Torres E, Baquedano-Montoya MB, López-Zavala L, Pérez-Gamboa AJ. ChatGPT y su uso para perfeccionar la escritura académica en educandos de posgrado. Praxis Pedagógica. 2024;24(36):53-75. https://revistas.uniminuto.edu/index.php/praxis/article/view/3536eng
dcterms.referencesHassani, H., Beneki, C., Silva, E., Vandeput, N., & Madsen, D. The science of statistics versus data science: What is the future? Technological Forecasting and Social Change. 2021; 173:121111. https://doi.org/10.1016/J.TECHFORE.2021.121111eng
dcterms.referencesKammerer-David MI, Murgas-Téllez B. La innovación tecnológica desde un enfoque de dinámica de sistemas. Región Científica. 2024;3(1):2024217. https://doi.org/10.58763/rc2024217spa
dcterms.referencesChicco D, Shiradkar R. Ten quick tips for computational analysis of medical images. PLOS Computational Biology. 2023;19. https://doi.org/10.1371/journal.pcbi.1010778eng
dcterms.referencesBarisoni L, Lafata K, Hewitt S, Madabhushi A, Balis U. Digital pathology and computational image analysis in nephropathology. Nature Reviews Nephrology. 2020;16:669-685. https://doi.org/10.1038/s41581-020-0321-6eng
dcterms.referencesSengupta K, Srivastava P. Quantum algorithm for quicker clinical prognostic analysis: an application and experimental study using CT scan images of COVID-19 patients. BMC Medical Informatics and Decision Making. 2021;21. https://doi.org/10.1186/s12911-021-01588-6eng
dcterms.referencesLiu Z, Wang S, Dong D, Wei J, Fang C, Zhou X, et al. The Applications of Radiomics in Precision Diagnosis and Treatment of Oncology: Opportunities and Challenges. Theranostics. 2019;9:1303-1322. https://doi.org/10.7150/thno.30309eng
dcterms.referencesAbdar M, Pourpanah F, Hussain S, Rezazadegan D, Liu L, Ghavamzadeh M, et al. A Review of Uncertainty Quantification in Deep Learning: Techniques, Applications and Challenges. Information Fusion. 2020;76:243-297. https://doi.org/10.1016/j.inffus.2021.05.008eng
dcterms.referencesWang X, Yao L, Wang X, Paik H, Wang S. Uncertainty Estimation With Neural Processes for Meta-Continual Learning. IEEE Transactions on Neural Networks and Learning Systems. 2022;34:6887-6897. https://doi.org/10.1109/TNNLS.2022.3215633eng
dcterms.referencesAl-turjman F, Zahmatkesh H, Mostarda L. Quantifying Uncertainty in Internet of Medical Things and Big-Data Services Using Intelligence and Deep Learning. IEEE Access. 2019;7:115749-115759. https://doi.org/10.1109/ACCESS.2019.2931637eng
dcterms.referencesHerzog L, Murina E, Dürr O, Wegener S, Sick B. Integrating uncertainty in deep neural networks for MRI based stroke analysis. Medical image analysis. 2020;65:101790. https://doi.org/10.1016/j.media.2020.101790eng
dcterms.referencesGhesu F, Georgescu B, Mansoor A, Yoo Y, Gibson E, Vishwanath R, et al. Quantifying and Leveraging Predictive Uncertainty for Medical Image Assessment. Medical image analysis. 2020; 68:101855. https://doi.org/10.1016/j.media.2020.101855eng
dcterms.referencesRajaraman S, Zamzmi G, Yang F, Xue Z, Jaeger S, Antani S. Uncertainty Quantification in Segmenting Tuberculosis-Consistent Findings in Frontal Chest X-rays. Biomedicines. 2022;10. https://doi.org/10.3390/biomedicines10061323eng
dcterms.referencesSathiyamoorthi V, Ilavarasi A, Murugeswari K, Ahmed S, Devi B, Kalipindi M. A deep convolutional neural network based computer aided diagnosis system for the prediction of Alzheimer's disease in MRI images. Measurement. 2020; 171:108838. https://doi.org/10.1016/j.measurement.2020.108838eng
dcterms.referencesCabeli V, Verny L, Sella N, Uguzzoni G, Verny M, Isambert H. Learning clinical networks from medical records based on information estimates in mixed-type data. PLoS Computational Biology. 2020;16. https://doi.org/10.1371/journal.pcbi.1007866eng
dcterms.referencesVellido A. The importance of interpretability and visualization in machine learning for applications in medicine and health care. Neural Computing and Applications. 2019; 32:18069-18083. https://doi.org/10.1007/s00521-019-04051-weng
dcterms.referencesSifaou H, Kammoun A, Alouini M. High-Dimensional Quadratic Discriminant Analysis Under Spiked Covariance Model. IEEE Access. 2020;8:117313-117323. https://doi.org/10.1109/ACCESS.2020.3004812eng
dcterms.referencesIkotun A, Ezugwu E, Abualigah L, Abuhaija B, Heming J. (2023). K-means clustering algorithms: A comprehensive review, variants analysis, and advances in the era of big data. Information Sciences. 2023;622(C):178–210. https://doi.org/10.1016/j.ins.2022.11.139eng
dcterms.referencesDembińska A, Jasiński K. Maximum likelihood estimators based on discrete component lifetimes of a k-out-of-n system. TEST. 2020; 30:407-428. https://doi.org/10.1007/s11749-020-00724-0eng
dcterms.referencesCorreia S, Guimarães P, Zylkin T. Fast Poisson estimation with high-dimensional fixed effects. The Stata Journal. 2019; 20:115-95. https://doi.org/10.1177/1536867X20909691eng
dcterms.referencesMannam V, Zhang Y, Zhu Y, Nichols E, Wang Q, Sundaresan V, Zhang S, Smith C, Bohn PW, Howard SS. Real-time image denoising of mixed Poisson-Gaussian noise in fluorescence microscopy images using Image. Optica. 2022;9(4):335-345. https://doi.org/10.1364/OPTICA.448287eng
dcterms.referencesNavya B, Sridevi J, Vasanth K. Modified Geometric Mean as an Estimator of Outlier based Artifacts in Natural Images. 2022 3rd International Conference on Smart Electronics and Communication (ICOSEC). Trichy, India: IEEE; 2022. p. 1095–102. https://doi.org/10.1109/ICOSEC54921.2022.9951924eng
dcterms.referencesVera M, Bravo A, Medina R. Description and use of three-dimensional numerical phantoms of cardiac computed tomography images. Data. 2022;7(8):115. https://doi.org/10.3390/data7080115eng
dcterms.referencesMuñoz Bonilla HA, Menassa Garrido IS, Rojas Coronado L, Espinosa Rodríguez MA. La innovación en el sector servicios y su relación compleja con la supervivencia empresarial. Región Científica. 2024;3(1):2024214. https://doi.org/10.58763/rc2024214spa
dcterms.referencesLi X, Chen W, Li F, Kang R. Reliability evaluation with limited and censored time-to-failure data based on uncertainty distributions. Applied Mathematical Modelling. 2021;94:403-420. https://doi.org/10.1016/J.APM.2021.01.029eng
dcterms.referencesGrzegorzewski P, Romaniuk M. Bootstrap Methods for Epistemic Fuzzy Data. International Journal of Applied Mathematics and Computer Science. 2022;32:285-297. https://doi.org/10.34768/amcs-2022-0021eng
dcterms.referencesDerbyshire J. Answers to questions on uncertainty in geography: Old lessons and new scenario tools. Environment and Planning A: Economy and Space. 2019;52:710-727. https://doi.org/10.1177/0308518X19877885eng
dcterms.referencesAsim Shahid M, Alam M, Mohd Su'ud M. Improved accuracy and less fault prediction errors via modified sequential minimal optimization algorithm. PloS one. 2023;18(4):e0284209. https://doi.org/10.1371/journal.pone.0284209eng
dcterms.referencesSchober P, Mascha E, Vetter T. Statistics From A (Agreement) to Z (z Score): A Guide to Interpreting Common Measures of Association, Agreement, Diagnostic Accuracy, Effect Size, Heterogeneity, and Reliability in Medical Research. Anesthesia and analgesia. 2021;133(6):1633-1641. https://doi.org/10.1213/ANE.0000000000005773eng
dcterms.referencesSánchez-González J, Rocha-de-Lossada C, Flikier D. Median absolute error and interquartile range as criteria of success against the percentage of eyes within a refractive target in IOL surgery. Journal of Cataract & Refractive Surgery. 2020;46(10):1441. https://doi.org/10.1097/j.jcrs.0000000000000248eng
dcterms.referencesChicco D, Warrens MJ, Jurman G. The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation. PeerJ Computer Science. 2021;7:e623. https://doi.org/10.7717/peerj-cs.623eng
dcterms.referencesSarker IH. (2021). Data science and analytics: an overview from data-driven smart computing, decision-making and applications perspective. SN Computer Science. 2021;2(5):377. https://doi.org/10.1007/s42979-021-00765-8eng
dcterms.referencesAntoniano-Villalobos I, Borgonovo E, Lu X. Nonparametric estimation of probabilistic sensitivity measures. Statistics and Computing. 2019; 30:447-467. https://doi.org/10.1007/s11222-019-09887-9eng
dcterms.referencesLee M, Khoo M, Chew X, Then P. Effect of Measurement Errors on the Performance of Coefficient of Variation Chart With Short Production Runs. IEEE Access. 2020; 8:72216-72228. https://doi.org/10.1109/ACCESS.2020.2985410eng
dcterms.referencesOrtiz-Pimiento N, Díaz-Serna F. (2019). Relative average deviation as measure of robustness in the stochastic project scheduling problem. Revista Facultad de Ingeniería. 2019;28(52):77-97. https://doi.org/10.19053/01211129.v28.n52.2019.9756eng
dcterms.referencesStarczewski J, Goetzen P, Napoli C. Triangular Fuzzy-Rough Set Based Fuzzification of Fuzzy Rule-Based Systems. Journal of Artificial Intelligence and Soft Computing Research. 2020; 10:271-285. https://doi.org/10.2478/jaiscr-2020-0018eng
dcterms.referencesShoaip N, El-Sappagh S, Abuhmed T, Elmogy M. A dynamic fuzzy rule-based inference system using fuzzy inference with semantic reasoning. Scientific reports. 2024;14(1):4275. https://doi.org/10.1038/s41598-024-54065-1eng
dcterms.referencesEaton JW, Bateman D, Hauberg S, Wehbring R. GNU Octave version 5.1.0 manual: A high-level interactive language for numerical computations. 2019. https://www.gnu.org/software/octave/doc/interpretereng
dcterms.referencesLi G, Yang L, Lee C, Wang X, Rong M. A Bayesian Deep Learning RUL Framework Integrating Epistemic and Aleatoric Uncertainties. IEEE Transactions on Industrial Electronics. 2021;68:8829-8841. https://doi.org/10.1109/TIE.2020.3009593eng
dcterms.referencesChen S, Zhang Q, Zhang T, Zhang L, Peng L, Wang S. Robust State Estimation With Maximum Correntropy Rotating Geometric Unscented Kalman Filter. IEEE Transactions on Instrumentation and Measurement. 2022;71:1-14. https://doi.org/10.1109/TIM.2021.3137553eng
dcterms.referencesCao B, Zhao J, Liu X, Arabas J, Tanveer M, Singh A, Lv Z. Multiobjective Evolution of the Explainable Fuzzy Rough Neural Network With Gene Expression Programming. IEEE Transactions on Fuzzy Systems. 2022;30:4190-4200. https://doi.org/10.1109/TFUZZ.2022.3141761eng
dcterms.referencesKubíček J, Strycek M, Cerný M, Penhaker M, Prokop O, Vilimek D. Quantitative and Comparative Analysis of Effectivity and Robustness for Enhanced and Optimized Non-Local Mean Filter Combining Pixel and Patch Information on MR Images of Musculoskeletal System. Sensors. 2021;21. https://doi.org/10.3390/s21124161eng
dcterms.referencesARABI H, Zaidi H. Non-local mean denoising using multiple PET reconstructions. Annals of Nuclear Medicine. 2020;35:176-186. https://doi.org/10.1007/s12149-020-01550-yeng
dcterms.referencesMeng Z, Pang Y, Pu Y, Wang X. New hybrid reliability-based topology optimization method combining fuzzy and probabilistic models for handling epistemic and aleatory uncertainties. Computer Methods in Applied Mechanics and Engineering. 2020;363:112886. https://doi.org/10.1016/j.cma.2020.112886eng
dcterms.referencesHüllermeier E, Waegeman W. Aleatoric and epistemic uncertainty in machine learning: an introduction to concepts and methods. Machine Learning. 2019;110:457-506. https://doi.org/10.1007/s10994-021-05946-3eng
oaire.versioninfo:eu-repo/semantics/publishedVersion

Archivos

Bloque original
Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
PDF.pdf
Tamaño:
517.14 KB
Formato:
Adobe Portable Document Format
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
381 B
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones