Manifestaciones neurológicas en pacientes con infección por Coronavirus (SARS-COV-2) durante la pandemia 2019-2020 una revisión analítica
datacite.rights | http://purl.org/coar/access_right/c_16ec | spa |
dc.contributor.advisor | Palacio Duran, Erika | |
dc.contributor.author | Pacheco Mosquera, Luis Fabián | spa |
dc.contributor.author | Tapias Agamez, Manuel Alberto | spa |
dc.date.accessioned | 2020-11-12T19:29:34Z | |
dc.date.available | 2020-11-12T19:29:34Z | |
dc.date.issued | 2020 | |
dc.description.abstract | Dado que los coronavirus no siempre permanecen confinados al sistema respiratorio, en determinadas condiciones pueden invadir distintos sistemas incluido el sistema nervioso, conllevando a la presentación de manifestaciones neurológicas diversas. Objetivos: Establecer la prevalencia de manifestaciones neurológicas en pacientes con infección por COVID-19 y su relación con las comorbilidades presentes en los sujetos del estudio. Materiales y métodos: Se realizó una revisión sistemática cuantitativa, a partir de los datos aportados por los estudios que hasta la fecha se han realizado en pacientes con COVID 19 encontrados en las bases de datos (MedRxiv, PUBMED, OVID, EMBASE, MEDLINE y SCOPUS. El tiempo de la revisión abarca desde el 01 de diciembre del 2019 hasta el 31 de mayo del 2020. Resultados: Mediante la estrategia de búsqueda PRISMA, se pudieron identificar 162 artículos siendo seleccionados para este estudio 58 de ellos. Conclusiones: La incidencia de manifestaciones neurológicas en pacientes con infección por COVID-19 resulta importante, por lo que se recomiendan todos los esfuerzos del personal médico para su detección oportuna, de tal forma que se brinden las opciones terapéuticas necesarias para impactar tanto en la mortalidad como en la discapacidad que puedan generar. | spa |
dc.description.abstract | Since coronaviruses do not always remain confined to the respiratory system, under certain conditions they can invade different systems including the nervous system, leading to the presentation of various neurological manifestations. Objectives: To establish the prevalence of neurological manifestations in patients with COVID-19 infection and its relationship with the comorbidities present in the study subjects. Materials and methods: A quantitative systematic review was carried out, based on the data provided by the studies that have been carried out to date in patients with COVID 19 found in the databases (MedRxiv, PUBMED, OVID, EMBASE, MEDLINE and SCOPUS). The time during which the information in the databases was reviewed corresponds from December 1, 2019 to May 31, 2020. Results: Using the PRISMA search strategy, we were able to identify 162 articles. Finally, we had 58 articles for synthesis. Conclusions: Future epidemiological studies and case registries should give importance to the incidence of neurological manifestations, in addition to their pathogenic mechanisms, which leads to optimal therapeutic options that impact both mortality and disability. | spa |
dc.format.mimetype | spa | |
dc.identifier.uri | https://hdl.handle.net/20.500.12442/6792 | |
dc.language.iso | spa | spa |
dc.publisher | Ediciones Universidad Simón Bolívar | spa |
dc.publisher | Facultad de Ciencias de la Salud | spa |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | eng |
dc.rights.accessrights | info:eu-repo/semantics/restrictedAccess | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject | Coronavirus | spa |
dc.subject | COVID-19 | spa |
dc.subject | Encefalopatía | spa |
dc.subject | SARS-COV-2 | spa |
dc.subject | ACV | spa |
dc.subject | Síndrome de Guillain Barre | spa |
dc.subject | Convulsión | spa |
dc.subject | Epilepsia | spa |
dc.subject | Cefalea | spa |
dc.subject | Encephalopathy | eng |
dc.subject | Stroke | eng |
dc.subject | Guillain Barre Syndrome | eng |
dc.subject | Seizure | eng |
dc.subject | Epilepsy | eng |
dc.subject | Headache | eng |
dc.title | Manifestaciones neurológicas en pacientes con infección por Coronavirus (SARS-COV-2) durante la pandemia 2019-2020 una revisión analítica | spa |
dc.type.driver | info:eu-repo/semantics/other | spa |
dc.type.spa | Otros | spa |
dcterms.references | OMS | Neumonía de causa desconocida – China. World Health Organization. World Health Organization [Internet]. 2020 [Citado 10 jun 2020]. Disponible en: https://www.who.int/csr/don/05-january-2020-pneumonia-of-unkowncause-china/es/ | spa |
dcterms.references | WHO Director-General's opening remarks at the media briefing on COVID-19. World Health Organization [Internet]. 2020 [Citado 10 jun 2020]. World Health Organization; Disponible en: https://www.who.int/dg/speeches/detail/whodirector-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11- march-2020 | eng |
dcterms.references | Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. The Lancet. 2020;395(10224):565–574 | eng |
dcterms.references | Wuhan. Wikipedia. Wikimedia Foundation [Internet]. 2020 [Citado 01 may 2020]. Disponible en: https://es.wikipedia.org/wiki/Wuhan | eng |
dcterms.references | Wang C, Horby PW, Hayden FG, Gao GF. A novel coronavirus outbreak of global health concern. The Lancet. 2020;395(10223):470–473. | eng |
dcterms.references | China's first confirmed Covid-19 case traced back to November 17. South China Morning Post [Internet]. 2020 [Citado 01 may 2020]. Disponible en: https://www.scmp.com/news/china/society/article/3074991/coronaviruschinas-first-confirmed-covid-19-case-traced-back | eng |
dcterms.references | Davidson H. First Covid-19 case happened in November, China government records show – report. The Guardian. Guardian News and Media [Internet]. 2020. [Citado 01 may 2020]. Disponible en: https://www.theguardian.com/world/2020/mar/13/first-covid-19-casehappened-in-november-china-government-records-show-report | eng |
dcterms.references | Novel Coronavirus (2019-nCov). Situation report – 1. World Health Organization [Internet]. 2020 [Citado 01 may 2020]. Disponible en: https://www.who.int/docs/default-source/coronaviruse/situationreports/20200121-sitrep-1-2019-ncov.pdf | eng |
dcterms.references | Situación COVID-19 en Colombia, reporte diario al 24 de julio de 2020. Ministerio de salud [Internet]. 2020 [Citado 25 jul 2020]. Disponible en: https://covid19.minsalud.gov.co/ | spa |
dcterms.references | PAHO/OMS. Cumulative confirmed and probable COVID-19 cases reported by countries and territories in the Americas, as of 24 July 2020 Updated as of 3PM. World Health Organization [Internet]. 2020 [Citado 25 jul 2020]. Disponible en:https://ais.paho.org/phip/viz/COVID19Table.asp | eng |
dcterms.references | .Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet. 2020;395(10223):497–506. | eng |
dcterms.references | Millán-Oñate J, Rodriguez-Morales AJ, Camacho-Moreno G, MendozaRamírez H, Rodríguez-Sabogal IA, Álvarez-Moreno C. A new emerging zoonotic virus of concern: the 2019 novel Coronavirus (COVID-19). Infectio. 2020;24(3):187-192. | spa |
dcterms.references | Munster VJ, Koopmans M, Doremalen NV, Riel DV, Wit ED. A Novel Coronavirus Emerging in China — Key Questions for Impact Assessment. New England Journal of Medicine. 2020;382(8):692–694 | eng |
dcterms.references | Rodriguez-Morales AJ, Bonilla-Aldana DK, Balbin-Ramon GJ, PanizMondolfi A, Rabaan A, Sah R, et al. History is repeating itself, a probable zoonotic spillover as a cause of an epidemic: the case of 2019 novel Coronavirus. Infez Med. 2020;28(1):3-5 | eng |
dcterms.references | Rodriguez-Morales AJ, Bonilla-Aldana DK, Balbin-Ramon GJ, PanizMondolfi A, Rabaan A, Sah R, et al. History is repeating itself, a probable zoonotic spillover as a cause of an epidemic: the case of 2019 novel Coronavirus. Infez Med. 2020;28(1):3-5. | eng |
dcterms.references | World Health Organization. Novel Coronavirus (2019-nCoV) - Situation report - 7 - 27 January 2020. World Health Organization [Internet]. 2020. [Citado 01 jul 2020]. Disponible en: https://www.who.int/docs/defaultsource/coronaviruse/situation-reports/20200127-sitrep-7-2019--ncov. pdf?sfvrsn=98ef79f5_2020. | eng |
dcterms.references | Chen Y, Liu Q, Guo D. Emerging coronaviruses: Genome structure, replication, and pathogenesis. Journal of Medical Virology. 2020;92(4):418– 423. | eng |
dcterms.references | Guarner J. Three Emerging Coronaviruses in Two Decades. American Journal of Clinical Pathology. 2020;153(4):420–421. | eng |
dcterms.references | World Health Organization. List of Blueprint priority diseases. World Health Organization [Internet]. 2018. [Citado 01 jul 2020]. Disponible en: http://origin.who.int/blueprint/priority-diseases/en/. | eng |
dcterms.references | Villamil-Gómez WE, Sánchez Á, Gelis L, Silvera LA, Barbosa J, Otero-Nader O, et al. Fatal human coronavirus 229E (HCoV-229E) and RSV–Related pneumonia in an AIDS patient from Colombia. Travel Medicine and Infectious Disease. 2020;Feb 6:101573. | eng |
dcterms.references | Cui J, Li F, Shi Z-L. Origin and evolution of pathogenic coronaviruses. Nature Reviews Microbiology. 2018;17(3):181–192. | eng |
dcterms.references | Cunha CB, Cunha BA. Impact of Plague on Human History. Infectious Disease Clinics of North America. 2006;20(2):253–272. | eng |
dcterms.references | Snow J. On the Mode of Communication of Cholera. Edinb Med J. 1856;1:668-670. | eng |
dcterms.references | Cerda L Jaime, Valdivia C Gonzalo. John Snow, la epidemia de cólera y el nacimiento de la epidemiología moderna. Rev. chil. infectol. 2007; 24(4):331- 334 | spa |
dcterms.references | Monto AS, Fukuda K. Lessons From Influenza Pandemics of the Last 100 Years. Clin Infect Dis. 2020 Mar 1;70(5):951–957. | eng |
dcterms.references | Barry JM. How the Horrific 1918 Flu Spread Across America. Smithsonian Magazine [Internet]. 2017. [Citado 01 jul 2020]. Disponible en: https://www.smithsonianmag.com/history/journal-plague-year-180965222/. | eng |
dcterms.references | World Health Organization. Statement on the second meeting of the International Health Regulations (2005) Emergency Committee regarding the outbreak of novel coronavirus (2019-nCoV). World Health Organization [Internet]. 2020. [Citado 01 jul 2020]. Disponible en: https://www.who.int/ news room/detail/30-01-2020-statement-on-the-second-meeting-of-theinternational-health-regulations-(2005)-emergency-committee-regarding-theoutbreak-of-novel-coronavirus-(2019-ncov). | eng |
dcterms.references | World Health Organization. Communicating risk in public health emergencies: a WHO guideline for emergency risk communication (ERC) policy and practice. World Health Organization [Internet]. 2020. [Citado 01 jul 2020]. Disponible en: https://www.who.int/risk-communication/guidance/ download/en/. 2017. | eng |
dcterms.references | Day M. Covid-19: surge in cases in Italy and South Korea makes pandemic look more likely. Bmj. 2020;25;368:m751. | eng |
dcterms.references | Rodriguez-Morales AJ, Cardona-Ospina JA, Gutiérrez-Ocampo E, VillamizarPeña R, Holguin-Rivera Y, Escalera-Antezana JP, et al. Clinical, laboratory and imaging features of COVID-19: A systematic review and meta-analysis. Travel Medicine and Infectious Disease. 2020;34:101623. | eng |
dcterms.references | .Lauer SA, Grantz KH, Bi Q, Jones FK, Zheng Q, Meredith HR, et al. The Incubation Period of Coronavirus Disease 2019 (COVID-19) From Publicly Reported Confirmed Cases: Estimation and Application. Annals of Internal Medicine. 2020;172(9):577–582 | eng |
dcterms.references | Bwire GM, Paulo LS. Coronavirus disease-2019: is fever an adequate screening for the returning travelers? Tropical Medicine and Health. 2020;48(14). | eng |
dcterms.references | Wilder-Smith A, Chiew CJ, Lee VJ. Can we contain the COVID-19 outbreak with the same measures as for SARS? The Lancet Infectious Diseases. 2020;20(5):e102-e107 | eng |
dcterms.references | Wilder-Smith A, Freedman DO. Isolation, quarantine, social distancing and community containment: pivotal role for old-style public health measures in the novel coronavirus (2019-nCoV) outbreak. Journal of Travel Medicine. 2020;27(2):1-4. | eng |
dcterms.references | Cetron M, Landwirth J. Public health and ethical considerations in planning for quarantine. Yale J Biol Med. 2005;78:329-334. | eng |
dcterms.references | Watts CH, Vallance P, Whitty CJM. Coronavirus: global solutions to prevent a pandemic. Nature. 2020;578(7795):363 | eng |
dcterms.references | WHO. Current WHO phase of pandemic alert for Pandemic (H1N1) 2009. World Health Organization [Internet]. 2009. [Citado 01 jul 2020]. Disponible en: https://www.who.int/csr/disease/swineflu/phase/en/. 2009. | eng |
dcterms.references | WHO. Pandemic Influenza Preparedness and Response: A WHO Guidance Document. Geneva: World Health Organization [Internet]. 2009. [Citado 01 jul 2020]. Disponible en: https://www.who.int/influenza/resources/documents/pandemic_guidance_04 _2009/en/ | eng |
dcterms.references | WHO. Critical preparedness, readiness and response actions for COVID-19. World Health Organization [Internet]. 2020. [Citado 01 jul 2020]. https://www.who.int/emergencies/diseases/novel-coronavirus-2019/ technical-guidance/critical-preparedness-readiness-and-response-actionsfor-COVID-19. 2020. | eng |
dcterms.references | Parodi SM, Liu VX. From Containment to Mitigation of COVID-19 in the US. Jama. 2020;323(15):1441-1442. | eng |
dcterms.references | Porcheddu R, Serra C, Kelvin D, Kelvin N, Rubino S. Similarity in Case Fatality Rates (CFR) of COVID-19/SARS-COV-2 in Italy and China. The Journal of Infection in Developing Countries. 2020;14(02):125–128. | eng |
dcterms.references | Ferguson N, Laydon D, Nedjati-Gilani G, Imai N, Ainslie K, Baguelin M, et al. Imperial College COVID-19 Response Team. Impact of non-pharmaceutical interventions (NPIs) to reduce COVID- 19 mortality and healthcare demand. Imperial College London [Internet]. 2020 [citado 17 abr 2020]. Disponible en: https://www.imperial.ac.uk/media/imperial-college/medicine/sph/ide/gidafellowships/Imperial-College-COVID19-NPI-modelling-16-03-2020.pdf | eng |
dcterms.references | Remuzzi A, Remuzzi G. COVID-19 and Italy: what next? The Lancet. 2020;395(10231):1225–1228. | eng |
dcterms.references | Cyranoski D. Mystery deepens over animal source of coronavirus. Nature. 2020;579(7797):18–19. | eng |
dcterms.references | .Lam TT-Y, Jia N, Zhang Y-W, Shum MH-H, Jiang J-F, Zhu H-C, et al. Identifying SARS-CoV-2-related coronaviruses in Malayan pangolins. Nature. 2020;583(7815):282–285. | eng |
dcterms.references | Saif LJ. Animal coronavirus vaccines: lessons for SARS. Dev Biol (Basel). 2004;119:129-140. | eng |
dcterms.references | .Institué auprès de l’Agence Fédérale pourla Sécurité de la Chaîne Alimentaire. Risque zoonotique du SARS-CoV2 (Covid-19) associé aux animaux de compagnie: infection de l’animal vers l’homme et de l’homme vers l’animal [Internet]. Bélgica; 2020 [citado 17 abr 2020]. Disponible en: http://www.afsca.be/comitescientifique/avis/2020/_documents/Conseilurgent provisoire04-2020_SciCom2020-07_Covid19petitsanimauxdomestiques_27-03-20_001.pdf | eng |
dcterms.references | Shi J, Wen Z, Zhong G, Yang H, Wang C, Huang B, et al. Susceptibility of ferrets, cats, dogs, and other domesticated animals to SARS–coronavirus 2. Science. 2020;368(6494):1016–1020 | eng |
dcterms.references | Zhang Q, Zhang H, Huang K, Yang Y, Hui X, Gao J, et al. SARS-CoV-2 neutralizing serum antibodies in cats: a serological investigation. bioRxiv [Internet]. 2020. [citado 01 may 2020]. Disponible en: https://www.biorxiv.org/content/10.1101/2020.04.01.021196v1 | eng |
dcterms.references | Kim Y-I, Kim S-G, Kim S-M, Kim E-H, Park S-J, Yu K-M, et al. Infection and Rapid Transmission of SARS-CoV-2 in Ferrets. Cell Host Microbe. 2020 May 13;27(5):704-709.e2. | eng |
dcterms.references | Hung LS. The SARS Epidemic in Hong Kong: What Lessons have we Learned? Journal of the Royal Society of Medicine. 2003;96(8):374–378. | eng |
dcterms.references | To KK-W, Tsang OT-Y, Chik-Yan Yip C, Chan K-H, Wu T-C, Chan JMC, et al. Consistent detection of 2019 novel coronavirus in saliva. Clin Infect Dis. 2020; Feb:12;ciaa149. | eng |
dcterms.references | Doremalen NV, Bushmaker T, Morris D, Holbrook M, Gamble A, Williamson B, et al. Aerosol and surface stability of HCoV-19 (SARS-CoV-2) compared to SARS-CoV-1. 2020; N Engl J Med 2020 Apr 16;382(16):1564-1567. | eng |
dcterms.references | .Chin A, Chu J, Perera M, Hui K, Yen H-L, Chan M, et al. Stability of SARSCoV-2 in different environmental conditions.The Lancet Microbe 2020 May 01;1(1) e10. | eng |
dcterms.references | Liu Y, Ning Z, Chen Y, Guo M, Liu Y, Gali NK, et al. Aerodynamic Characteristics and RNA Concentration of SARS-CoV-2 Aerosol in Wuhan Hospitals during COVID-19 Outbreak. bioRxiv [Internet]. 2020. [citado 01 may 2020]. Disponible en: https://www.biorxiv.org/content/10.1101/2020.03.08.982637v1 | eng |
dcterms.references | Ong SWX, Tan YK, Chia PY, Lee TH, Ng OT, Wong MSY, et al. Air, Surface Environmental, and Personal Protective Equipment Contamination by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) From a Symptomatic Patient. JAMA. 2020;323(16):1610-1612. | eng |
dcterms.references | Booth TF, Kournikakis B, Bastien N, Ho J, Kobasa D, Stadnyk L, et al. Detection of Airborne Severe Acute Respiratory Syndrome (SARS) Coronavirus and Environmental Contamination in SARS Outbreak Units. The Journal of Infectious Diseases. 2005;191(9):1472–1477. | eng |
dcterms.references | Yeo C, Kaushal S, Yeo D. Enteric involvement of coronaviruses: is faecal– oral transmission of SARS-CoV-2 possible? The Lancet Gastroenterology & Hepatology. 2020;5(4):335–337. | eng |
dcterms.references | Zeng L, Xia S, Yuan W, Yan K, Xiao F, Shao J, et al. Neonatal Early-Onset Infection With SARS-CoV-2 in 33 Neonates Born to Mothers With COVID-19 in Wuhan, China. JAMA Pediatrics. 2020;174(7):722-725. | eng |
dcterms.references | Schwartz DA. An Analysis of 38 Pregnant Women With COVID-19, Their Newborn Infants, and Maternal-Fetal Transmission of SARS-CoV-2: Maternal Coronavirus Infections and Pregnancy Outcomes. Archives of Pathology & Laboratory Medicine. 2020;144(7):799–805 | eng |
dcterms.references | Zeng H, Xu C, Fan J, Tang Y, Deng Q, Zhang W, et al. Antibodies in Infants Born to Mothers With COVID-19 Pneumonia. JAMA 2020 Mar 26;323(18):1848-1849. | eng |
dcterms.references | Guan W-J, Ni Z-Y, Hu Y, Liang W-H, Ou C-Q, He J-X, et al. Clinical Characteristics of Coronavirus Disease 2019 in China. New England Journal of Medicine. 2020;382(18):1708–1720. | eng |
dcterms.references | Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus–Infected Pneumonia in Wuhan, China. JAMA. 2020;323(11):1061-1069. | eng |
dcterms.references | World health Organization. Report of the WHO-China Joint Mission on Coronavirus Disease 2019 (COVID-19). World Health Organization [Internet]. 2020. [Citado 01 may 2020]. Disponible en: https://www.who.int/docs/defaultsource/coronaviruse/who-china-joint-mission-on-covid-19-final-report.pdf | eng |
dcterms.references | Lancet T. COVID-19: protecting health-care workers. The Lancet. 2020;395(10228):922. | eng |
dcterms.references | Red Nacional de Vigilancia Epidemiológica. Situación de COVID-19 en España. Informe 22 [Internet]. 2020. [Citado 01 may 2020]. Disponible en: https://www.isciii.es/QueHacemos/Servicios/VigilanciaSaludPublicaRENAV E/EnfermedadesTransmisibles/Documents/INFORMES/Informes%20COVI D19/Informe%20n%C2%BA%2022.%20Situaci%C3%B3n%20de%20COVID19%20en%20Espa%C3%B1a%20a%2013%20de%20abril%20de%202020. pdf | spa |
dcterms.references | Folgueira M, Munoz-Ruiperez C, Alonso-Lopez M, Delgado R. SARS-CoV-2 infection in Health Care Workers in a large public hospital in Madrid, Spain, during March 2020. BioRxiv preprint [Internet]. 2020. [Citado 01 may 2020]. Disponible en: https://www.medrxiv.org/content/10.1101/2020.04.07.20055723v1 | eng |
dcterms.references | Kampf G, Todt D, Pfaender S, Steinmann E. Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents. Journal of Hospital Infection. 2020;104(3):246–251. | eng |
dcterms.references | Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus–Infected Pneumonia in Wuhan, China. JAMA. 2020;323(11):1061-1069. | eng |
dcterms.references | .Chen H, Guo J, Wang C, Luo F, Yu X, Zhang W, et al. Clinical characteristics and intrauterine vertical transmission potential of COVID-19 infection in nine pregnant women: a retrospective review of medical records. The Lancet. 2020;395(10226):809–815. | eng |
dcterms.references | Hellewell J, Abbott S, Gimma A, Bosse NI, Jarvis CI, Russell TW, et al. Feasibility of controlling 2019-nCoV outbreaks by isolation of cases and contacts. 2020;Apr;8(4):e488-e496 | eng |
dcterms.references | Zou L, Ruan F, Huang M, Liang L, Huang H, Hong Z, et al. SARS-CoV-2 Viral Load in Upper Respiratory Specimens of Infected Patients. New England Journal of Medicine. 2020;382(12):1177–1179. | eng |
dcterms.references | Ganyani T, Kremer C, Chen D, Torneri A, Faes C, Wallinga J, et al. Estimating the generation interval for COVID-19 based on symptom onset data. BioRxiv preprint [Internet]. 2020. [Citado 01 may 2020]. Disponible en: https://www.medrxiv.org/content/10.1101/2020.03.05.20031815v1 | eng |
dcterms.references | Riccardo F, Ajelli M, Andrianou X, Bella A, Manso MD, Fabiani M, et al. Epidemiological characteristics of COVID-19 cases in Italy and estimates of the reproductive numbers one month into the epidemic. BioRxiv preprint [Internet]. 2020. [Citado 01 may 2020]. Disponible en: https://www.medrxiv.org/content/10.1101/2020.04.08.20056861v1 | eng |
dcterms.references | Huang LL, Shen SP, Yu P, Wei YY. [Dynamic basic reproduction number based evaluation for current prevention and control of COVID-19 outbreak in China]. Zhonghua Liu Xing Bing Xue Za Zhi.2020 Apr 10;41(4):466-469. | eng |
dcterms.references | Zhang S, Diao M, Yu W, Pei L, Lin Z, Chen D. Estimation of the reproductive number of novel coronavirus (COVID-19) and the probable outbreak size on the Diamond Princess cruise ship: A data-driven analysis. International Journal of Infectious Diseases. 2020;93:201–204. | eng |
dcterms.references | Liu Y, Yan L-M, Wan L, Xiang T-X, Le A, Liu J-M, et al. Viral dynamics in mild and severe cases of COVID-19. The Lancet Infectious Diseases. 2020;20(6):656–657. | eng |
dcterms.references | Munster VJ, Feldmann F, Williamson BN, Doremalen NV, Pérez-Pérez L, Schulz J, et al. Respiratory disease and virus shedding in rhesus macaques inoculated with SARS-CoV-2. BioRxiv preprint [Internet]. 2020. [Citado 01 may 2020]. Disponible en: https://www.biorxiv.org/content/10.1101/2020.03.21.001628v1 | eng |
dcterms.references | Wu F, Wang A, Liu M, Wang Q, Chen J, Xia S, et al. Neutralizing Antibody Responses to SARS-CoV-2 in a COVID-19 Recovered Patient Cohort and Their Implications. BioRxiv preprint [Internet]. 2020. [Citado 01 may 2020] Disponible en: https://www.medrxiv.org/content/10.1101/2020.03.30.20047365v1 | eng |
dcterms.references | Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. | eng |
dcterms.references | Battegay M, Kuehl R, Tschudin-Sutter S, Hirsch HH, Widmer AF, Neher RA. 2019-novel Coronavirus (2019-nCoV): estimating the case fatality rate – a word of caution. Swiss Medical Weekly. 2020;150:w20203 | eng |
dcterms.references | .European Centre for Disease Prevention and Control. Coronavirus disease 2019 (COVID-19) in the EU/EEA and the UK – eighth update. European Centre for Disease Prevention and Control [Internet]. 2020. [Citado 01 may 2020] Disponible en: https://www.ecdc.europa.eu/en/publications-data/rapidrisk-assessment-coronavirus-disease-2019-covid-19-pandemic-eighthupdate | eng |
dcterms.references | Wu P, Hao X, Lau EHY, Wong JY, Leung KSM, Wu JT, et al. Real-time tentative assessment of the epidemiological characteristics of novel coronavirus infections in Wuhan, China, as at 22 January 2020. Eurosurveillance. 2020;25(3). | eng |
dcterms.references | Anderson RM, Heesterbeek H, Klinkenberg D, Hollingsworth TD. How will country-based mitigation measures influence the course of the COVID-19 epidemic? The Lancet. 2020;395(10228):931–934 | eng |
dcterms.references | Tikellis C, Thomas MC. Angiotensin-Converting Enzyme 2 (ACE2) Is a Key Modulator of the Renin Angiotensin System in Health and Disease. International Journal of Peptides. 2012;2012:1–8. | eng |
dcterms.references | .Garabelli PJ, Modrall JG, Penninger JM, Ferrario CM, Chappell MC. Distinct roles for angiotensin-converting enzyme 2 and carboxypeptidase A in the processing of angiotensins within the murine heart. Experimental Physiology. 2008;93(5):613–621. | eng |
dcterms.references | Liu Y, Yang Y, Zhang C, Huang F, Wang F, Yuan J, et al. Clinical and biochemical indexes from 2019-nCoV infected patients linked to viral loads and lung injury. Science China Life Sciences. 2020;63(3):364–374. | eng |
dcterms.references | Li W, Moore MJ, Vasilieva N, Sui J, Wong SK, Berne MA, et al. Angiotensinconverting enzyme 2 is a functional receptor for the SARS coronavirus. Nature. 2003;426(6965):450–454. | eng |
dcterms.references | Kuba K, Imai Y, Rao S, Gao H, Guo F, Guan B, et al. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus–induced lung injury. Nature Medicine. 2005;11(8):875–879. | eng |
dcterms.references | Mehta P, Mcauley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ. COVID-19: consider cytokine storm syndromes and immunosuppression. The Lancet. 2020;395(10229):1033–4. | eng |
dcterms.references | Zhou Y, Fu B, Zheng X, Wang D, Zhao C, Qi Y, et al. Aberrant pathogenic GM-CSF T cells and inflammatory CD14 CD16 monocytes in severe pulmonary syndrome patients of a new coronavirus. BioRxiv preprint [Internet]. 2020. [Citado 01 may 2020]. Disponible en: https://www.biorxiv.org/content/10.1101/2020.02.12.945576v | eng |
dcterms.references | Conti P, Ronconi G, Caraffa A, et al. Induction of pro-inflammatory cytokines (IL-1 and IL-6) and lung inflammation by Coronavirus-19 (COVI-19 or SARSCoV-2): anti-inflammatory strategies. J Biol Regul Homeost Agents. 2020;34(2):1. | eng |
dcterms.references | Poll TVD, Veerdonk FLVD, Scicluna BP, Netea MG. The immunopathology of sepsis and potential therapeutic targets. Nature Reviews Immunology. 2017;17(7):407–20 | eng |
dcterms.references | Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. The Lancet. 2020;395(10229):1054–1062. | eng |
dcterms.references | Zhang J-J, Dong X, Cao Y-Y, Yuan Y-D, Yang Y-B, Yan Y-Q, et al. Clinical characteristics of 140 patients infected with SARS‐CoV‐2 in Wuhan, China. Allergy. 2020;75(7):1730–1741. | eng |
dcterms.references | Lee DW, Gardner R, Porter DL, Louis CU, Ahmed N, Jensen M, et al. Current concepts in the diagnosis and management of cytokine release syndrome. Blood. 2014;124(2):188–195. | eng |
dcterms.references | Riegler LL, Jones GP, Lee DW.Current approaches in the grading and management of cytokine release syndrome after chimeric antigen receptor Tcell therapy. Therapeutics and Clinical Risk Management. 2019;Volume 15:323–335. | eng |
dcterms.references | Mei H, Hu Y. [Characteristics, causes, diagnosis and treatment of coagulation dysfunction in patients with COVID-19]. Zhonghua Xue Ye Xue Za Zhi. 2020 Mar 14;41(3):185-191. | eng |
dcterms.references | Cohen J. The immunopathogenesis of sepsis. Nature. 2002;420(6917):885–891. | eng |
dcterms.references | Yin S, Huang M, Li D, Tang N. Difference of coagulation features between severe pneumonia induced by SARS-CoV2 and non-SARS-CoV2. Journal of Thrombosis and Thrombolysis. 2020;Apr 3;1-4 | eng |
dcterms.references | Jiang H, Liu L, Guo T, Wu Y, Ai L, Deng J, et al. Improving the safety of CAR-T cell therapy by controlling CRS-related coagulopathy. Annals of Hematology. 2019;98(7):1721–1732. | eng |
dcterms.references | Han H, Yang L, Liu R, Liu F, Wu K-L, Li J, et al. Prominent changes in blood coagulation of patients with SARS-CoV-2 infection. Clinical Chemistry and Laboratory Medicine (CCLM). 2020;58(7):1116–1120. | eng |
dcterms.references | Wang J, Tang K, Feng K, Lv W. High Temperature and High Humidity Reduce the Transmission of COVID-19. SSRN Electronic Journal [Internet]. 2020. [Citado 01 may 2020]. Disponible en: https://papers.ssrn.com/abstract=3551767 | eng |
dcterms.references | Sajadi MM, Habibzadeh P, Vintzileos A, Shokouhi S, Miralles-Wilhelm F, Amoroso A. Temperature, Humidity, and Latitude Analysis to Estimate Potential Spread and Seasonality of Coronavirus Disease 2019 (COVID-19). JAMA Network Open. 2020;3(6).e2011834. | eng |
dcterms.references | Bannister-Tyrrell M, Meyer A, Faverjon C, Cameron A. Preliminary evidence that higher temperatures are associated with lower incidence of COVID-19, for cases reported globally up to 29th February 2020. BioRxiv preprint [Internet]. 2020. [Citado 01 may 2020]. Disponible en: https://www.medrxiv.org/content/10.1101/2020.03.18.20036731v1.articleinfo | eng |
dcterms.references | Lipsitch M. Seasonality of SARS-CoV-2: Will COVID-19 go away on its own in warmer weather? – Center for Communicable Disease Dynamics [Internet]. 2020. [Citado 01 may 2020]. Disponible en: https://ccdd.hsph.harvard.edu/will-covid-19-go-away-on-its-own-in-warmerweather/ | eng |
dcterms.references | Red Nacional de Vigilancia Epidemiológica. Informe sobre la situación de COVID-19 en España. Informe 14. Centro Nacional de Epidemiología [Internet]. 2020. [Citado 01 may 2020]. Disponible en: https://www.isciii.es/QueHacemos/Servicios/VigilanciaSaludPublicaRENAV E/EnfermedadesTransmisibles/Documents/INFORMES/Informes%20COVI D19/Informe%20n%C2%BA%2014.%20Situaci%C3%B3n%20de%20COVID19%20en%20Espa%C3%B1a%20a%2024%20marzo%20de%202020.pdf | spa |
dcterms.references | Ferrario CM, Jessup J, Chappell MC, Averill DB, Brosnihan KB, Tallant EA, et al. Effect of Angiotensin-Converting Enzyme Inhibition and Angiotensin II Receptor Blockers on Cardiac Angiotensin-Converting Enzyme 2. Circulation. 2005;111(20):2605–2610. | eng |
dcterms.references | Moskowitz D, Johnson F. The Central Role of Angiotensin I-Converting Enzyme in Vertebrate Pathophysiology. Current Topics in Medicinal Chemistry. 2004;4(13):1431–1452 | eng |
dcterms.references | Zheng Y-Y, Ma Y-T, Zhang J-Y, Xie X. COVID-19 and the cardiovascular system. Nature Reviews Cardiology. 2020;17(5):259–60. | eng |
dcterms.references | Wu Q, Zhou L, Sun X, Yan Z, Hu C, Wu J, et al. Altered Lipid Metabolism in Recovered SARS Patients Twelve Years after Infection. Scientific Reports. 2017;7(1). | eng |
dcterms.references | Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. The Lancet. 2020;395(10229):1054–1062. | eng |
dcterms.references | Fang L, Karakiulakis G, Roth M. Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection? The Lancet Respiratory Medicine. 2020;8(4). | eng |
dcterms.references | Patel VB, Parajuli N, Oudit GY. Role of angiotensin-converting enzyme 2 (ACE2) in diabetic cardiovascular complications. Clinical Science. 2013;126(7):471–482 | eng |
dcterms.references | Zhang W, Xu Y-Z, Liu B, Wu R, Yang Y-Y, Xiao X-Q, et al. Pioglitazone Upregulates Angiotensin Converting Enzyme 2 Expression in Insulin-Sensitive Tissues in Rats with High-Fat Diet-Induced Nonalcoholic Steatohepatitis. The Scientific World Journal. 2014;2014:1–7. | eng |
dcterms.references | Chodavarapu H, Grobe N, Somineni HK, Salem ESB, Madhu M, Elased KM. Rosiglitazone Treatment of Type 2 Diabetic db/db Mice Attenuates Urinary Albumin and Angiotensin Converting Enzyme 2 Excretion. PLoS ONE. 2013;8(4) | eng |
dcterms.references | Halpin DMG, Faner R, Sibila O, Badia JR, Agusti A. Do chronic respiratory diseases or their treatment affect the risk of SARS-CoV-2 infection? The Lancet Respiratory Medicine. 2020;8(5):436–8 | eng |
dcterms.references | Liang W, Guan W, Chen R, Wang W, Li J, Xu K, et al. Cancer patients in SARS-CoV-2 infection: a nationwide analysis in China. The Lancet Oncology. 2020;21(3):335–7. | eng |
dcterms.references | Martin-Loeches I, Lemiale V, Geoghegan P, Mcmahon MA, Pickkers P, Soares M, et al. Influenza and associated co-infections in critically ill immunosuppressed patients. Critical Care. 2019;23(1) | eng |
dcterms.references | Han Y, Jiang M, Xia D, He L, Lv X, Liao X, et al. COVID-19 in a patient with long-term use of glucocorticoids: A study of a familial cluster. Clinical Immunology. 2020;214:108413 | eng |
dcterms.references | Wang J, Li X, Cao G, Wu X, Wang Z, Yan T. COVID-19 in a Kidney Transplant Patient. European Urology. 2020;77(6):769–70. | eng |
dcterms.references | Seminari E, Colaneri M, Sambo M, et al. SARS Cov-2 infection in a renal-transplanted patient: A case report. Am J Transplant. 2020;20(7):1882- 1884. | eng |
dcterms.references | D’Antiga L. Coronaviruses and Immunosuppressed Patients: The Facts During the Third Epidemic. Liver Transplantation. 2020;26(6):832–4. | eng |
dcterms.references | Romanelli A, Mascolo S. Immunosuppression drug‐related and clinical manifestation of Coronavirus disease 2019: A therapeutical hypothesis. American Journal of Transplantation. 2020;20(7):1947–8. | eng |
dcterms.references | Lupia T, Scabini S, Pinna SM, Perri GD, Rosa FGD, Corcione S. 2019 novel coronavirus (2019-nCoV) outbreak: A new challenge. Journal of Global Antimicrobial Resistance. 2020;21:22–7. | eng |
dcterms.references | ThrombosisUK. Practical guidance for the prevention of thrombosis and management of coagulopathy and disseminated intravascular coagulation of patients infected with COVID-19 [Internet]. Disponible en: https://thrombosisuk.org/covid-19-thrombosis.php | eng |
dcterms.references | Chen Y, Peng H, Wang L, Zhao Y, Zeng L, Gao H, et al. Infants Born to Mothers With a New Coronavirus (COVID-19). Frontiers in Pediatrics. 2020;8. | eng |
dcterms.references | Breslin N, Baptiste C, Gyamfi-Bannerman C, Miller R, Martinez R, Bernstein K, et al. Coronavirus disease 2019 infection among asymptomatic and symptomatic pregnant women: two weeks of confirmed presentations to an affiliated pair of New York City hospitals. American Journal of Obstetrics & Gynecology MFM. 2020;2(2):100118. | eng |
dcterms.references | Sutton D, Fuchs K, D’Alton M, Goffman D. Universal Screening for SARS-CoV-2 in Women Admitted for Delivery. New England Journal of Medicine. 2020;382(22):2163–4. | eng |
dcterms.references | Mcmichael TM, Currie DW, Clark S, Pogosjans S, Kay M, Schwartz NG, et al. Epidemiology of Covid-19 in a Long-Term Care Facility in King County, Washington. New England Journal of Medicine. 2020;382(21):2005– 11. | eng |
dcterms.references | Vardavas C, Nikitara K. COVID-19 and smoking: A systematic review of the evidence. Tobacco Induced Diseases. 2020;18(20 marzo). | eng |
dcterms.references | Dietz W, Santos‐Burgoa C. Obesity and its Implications for COVID‐19 Mortality. Obesity. 2020;28(6):1005 | eng |
dcterms.references | Movahed MR, Khoubyari R, Hashemzadeh M, Hashemzadeh M. Obesity is strongly and independently associated with a higher prevalence of pulmonary embolism. Respiratory Investigation. 2019;57(4):376–379. | eng |
dcterms.references | Jia, X.; Yin, C.; Lu, S.; Chen, Y.; Liu, Q.; Bai, J.; Lu, Y. Two Things about COVID-19 Might Need Attention. Preprints 2020, 2020020315. | eng |
dcterms.references | Peng YD, Meng K, Guan HQ, Leng L, Zhu RR, Wang BY, et al. [Clinical characteristics and outcomes of 112 cardiovascular disease patients infected by 2019-nCoV]. Zhonghua Xin Xue Guan Bing Za Zhi. 2 de marzo de 2020;48(0):E004 | eng |
dcterms.references | Desforges M, Coupanec AL, Dubeau P, Bourgouin A, Lajoie L, Dubé M, et al. Human Coronaviruses and Other Respiratory Viruses: Underestimated Opportunistic Pathogens of the Central Nervous System? Viruses. 2019;12(1):14. | eng |
dcterms.references | Bohmwald K, Gálvez NMS, Ríos M, Kalergis AM. Neurologic Alterations Due to Respiratory Virus Infections. Frontiers in Cellular Neuroscience. 2018;12:386. | eng |
dcterms.references | Foley JE, Lapointe J-M, Koblik P, Poland A, Pedersen NC. Diagnostic Features of Clinical Neurologic Feline Infectious Peritonitis. Journal of Veterinary Internal Medicine. 1998;12(6):415–23. | eng |
dcterms.references | Desforges M, Coupanec AL, Brison É, Meessen-Pinard M, Talbot PJ. Neuroinvasive and Neurotropic Human Respiratory Coronaviruses: Potential Neurovirulent Agents in Humans. Advances in Experimental Medicine and Biology Infectious Diseases and Nanomedicine I. 2014;807:75–96 | eng |
dcterms.references | Andries K, Pensaert MB. Virus isolated and immunofluorescence in different organs of pigs infected with hemagglutinating encephalomyelitis virus. Am J Vet Res.1980 Feb;41(2):215-8. | eng |
dcterms.references | Arbour N, Côté Geneviève, Lachance C, Tardieu M, Cashman NR, Talbot PJ. Acute and Persistent Infection of Human Neural Cell Lines by Human Coronavirus OC43. Journal of Virology. 1999;73(4):3338–3350. | eng |
dcterms.references | Brison E, Jacomy H, Desforges M, Talbot PJ. Glutamate Excitotoxicity Is Involved in the Induction of Paralysis in Mice after Infection by a Human Coronavirus with a Single Point Mutation in Its Spike Protein. Journal of Virology. 2011;85(23):12464–73. | eng |
dcterms.references | Dubé M, Coupanec AL, Wong AHM, Rini JM, Desforges M, Talbot PJ. Axonal Transport Enables Neuron-to-Neuron Propagation of Human Coronavirus OC43. Journal of Virology. 2018;92(17).e00404-18. | eng |
dcterms.references | Netland J, Meyerholz DK, Moore S, Cassell M, Perlman S. Severe Acute Respiratory Syndrome Coronavirus Infection Causes Neuronal Death in the Absence of Encephalitis in Mice Transgenic for Human ACE2. Journal of Virology. 2008;82(15):7264–75. | eng |
dcterms.references | Morfopoulou S, Brown JR, Davies EG, Anderson G, Virasami A, Qasim W, et al. Human Coronavirus OC43 Associated with Fatal Encephalitis. New England Journal of Medicine. 2016;375(5):497–498. | eng |
dcterms.references | Yeh EA, Collins A, Cohen ME, Duffner PK, Faden H. Detection of Coronavirus in the Central Nervous System of a Child With Acute Disseminated Encephalomyelitis. Pediatrics. 2004 Jan;113(1):e73-6 | eng |
dcterms.references | Tsai LK, Hsieh ST, Chang YC. Neurological manifestations in severe acute respiratory syndrome. Acta Neurol Taiwan.2005 Sep;14(3):113-119. | eng |
dcterms.references | Lau K-K, Yu W-C, Chu C-M, Lau S-T, Sheng B, Yuen K-Y. Possible Central Nervous System Infection by SARS Coronavirus. Emerging Infectious Diseases. 2004;10(2):342–344. | eng |
dcterms.references | Gu J, Gong E, Zhang B, Zheng J, Gao Z, Zhong Y, et al. Multiple organ infection and the pathogenesis of SARS. Journal of Experimental Medicine. 2005;202(3):415–24. | eng |
dcterms.references | Arabi YM, Harthi A, Hussein J, Bouchama A, Johani S, Hajeer AH, et al. Severe neurologic syndrome associated with Middle East respiratory syndrome coronavirus (MERS-CoV). Infection. 2015;43(4):495–501. | eng |
dcterms.references | Xu Z, Shi L, Wang Y, Zhang J, Huang L, Zhang C, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. The Lancet Respiratory Medicine. 2020;8(4):420–422. | eng |
dcterms.references | Mao L, Jin H, Wang M, Hu Y, Chen S, He Q, et al. Neurologic Manifestations of Hospitalized Patients With Coronavirus Disease 2019 in Wuhan, China. JAMA Neurology. 2020;77(6):683-690. | eng |
dcterms.references | Giacomelli A, Pezzati L, Conti F, Bernacchia D, Siano M, Oreni L, et al. Self-reported Olfactory and Taste Disorders in Patients With Severe Acute Respiratory Coronavirus 2 Infection: A Cross-sectional Study. Clinical Infectious Diseases. 2020;ciaa330. | eng |
dcterms.references | Lechien JR, Chiesa-Estomba CM, Siati DRD, Horoi M, Bon SDL, Rodriguez A, et al. Olfactory and gustatory dysfunctions as a clinical presentation of mild-to-moderate forms of the coronavirus disease (COVID19): a multicenter European study. European Archives of Oto-RhinoLaryngology. 2020;277(8):2251–2261. | eng |
dcterms.references | Filatov A, Sharma P, Hindi F, Espinosa PS. Neurological Complications of Coronavirus Disease (COVID-19): Encephalopathy. Cureus.2020 Mar 21;12(3):e7352. | eng |
dcterms.references | Baig AM, Khaleeq A, Ali U, Syeda H. Evidence of the COVID-19 Virus Targeting the CNS: Tissue Distribution, Host–Virus Interaction, and Proposed Neurotropic Mechanisms. ACS Chemical Neuroscience. 2020;11(7):995– 998 | eng |
dcterms.references | Li YC, Bai WZ, Hashikawa T. The neuroinvasive potential of SARS‐ CoV2 may play a role in the respiratory failure of COVID‐19 patients. Journal of Medical Virology. 2020;92(6):552–555. | eng |
dcterms.references | Hemachudha T, Ugolini G, Wacharapluesadee S, Sungkarat W, Shuangshoti S, Laothamatas J. Human rabies: neuropathogenesis, diagnosis, and management. The Lancet Neurology. 2013;12(5):498–513 | eng |
dcterms.references | Turtle L. Respiratory failure alone does not suggest central nervous system invasion by SARS‐CoV‐2. Journal of Medical Virology. 2020;92(7):705–6 | eng |
dcterms.references | Yan R, Zhang Y, Li Y, Xia L, Guo Y, Zhou Q. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science. 2020;367(6485):1444–8. | eng |
dcterms.references | Dessau RB, Lisby G, Frederiksen JL. Coronaviruses in spinal fluid of patients with acute monosymptomatic optic neuritis. Acta Neurologica Scandinavica. 2009;100(2):88–91. | eng |
dcterms.references | Salmi A, Ziola B, Hovi T, Reunanen M. Antibodies to coronaviruses OC43 and 229E in multiple sclerosis patients. Neurology. 1982;32(3):292– 295. | eng |
dcterms.references | Fazzini E, Fleming J, Fahn S. Cerebrospinal fluid antibodies to coronavirus in patients with Parkinson's disease. Movement Disorders. 1992;7(2):153–158. | eng |
dcterms.references | Burks J, Devald B, Jankovsky L, Gerdes J. Two coronaviruses isolated from central nervous system tissue of two multiple sclerosis patients. Science. 1980;209(4459):933–934 | eng |
dcterms.references | Severance EG, Dickerson FB, Viscidi RP, Bossis I, Stallings CR, Origoni AE, et al. Coronavirus Immunoreactivity in Individuals With a Recent Onset of Psychotic Symptoms. Schizophrenia Bulletin. 2009;37(1):101–107. | eng |
dcterms.references | MINISTERIO DE SALUD, RESOLUCIÒN NÙMERO 8430 DE 1993. Por la cual se establecen las normas científicas, técnicas y administrativas para la investigación en salud. Disponible en: https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/DE/DIJ/R ESOLUCION-8430-DE-1993.PDF | spa |
dcterms.references | Moher D, Liberati A, Tetzlaff J, Altman DG; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6(7):e1000097. | eng |
dcterms.references | Ge H, Wang X, Yuan X, Xiao G, Wang C, Deng T, et al. The epidemiology and clinical information about COVID-19. European Journal of Clinical Microbiology & Infectious Diseases. 2020;39(6):1011–1019. | eng |
dcterms.references | Lechien J, Chiesa‐Estomba C, Place S, Van Laethem, Y., Cabaraux, P., Mat. Clinical and epidemiological characteristics of 1,420 European patients with mild‐to‐moderate coronavirus disease 2019. Journal of internal medicine. 2020 Apr 30;10.1111. | eng |
dcterms.references | Docherty AB, Harrison EM, Green CA, Hardwick HE, Pius R, Norman L, et al. Features of 16,749 hospitalised UK patients with COVID-19 using the ISARIC WHO Clinical Characterisation Protocol. BMJ. 2020 May 22;369:m1985. | eng |
dcterms.references | Lighter J, Phillips M, Hochman S, Sterling S, Johnson D, Francois F, et al. Obesity in Patients Younger Than 60 Years Is a Risk Factor for COVID19 Hospital Admission. Clinical Infectious Diseases. 2020;71(15):896–7. | eng |
dcterms.references | Simonnet A, Chetboun M, Poissy J, Raverdy V, Noulette J, Duhamel A, et al. High Prevalence of Obesity in Severe Acute Respiratory Syndrome Coronavirus‐2 (SARS‐CoV‐2) Requiring Invasive Mechanical Ventilation. Obesity. 2020;28(7):1195–9 | eng |
dcterms.references | INARC. Report on 2249 patients critically ill with COVID-19. INARC [Internet]. 2020. [citado 14 abr 2020]. Disponible en: file:///C:/Users/user/Desktop/ICNARC%20COVID-19%20report%202020-04- 04.pdf.pdf | eng |
dcterms.references | Liu W, Tao Z-W, Wang L, Yuan M-L, Liu K, Zhou L, et al. Analysis of factors associated with disease outcomes in hospitalized patients with 2019 novel coronavirus disease. Chinese Medical Journal. 2020;133(9):1032–8. | eng |
dcterms.references | Jain V, Yuan J-M. Systematic review and meta-analysis of predictive symptoms and comorbidities for severe COVID-19 infection. medRxiv preprint [Internet]. 2020. [citado 14 abr 2020]. Disponible en: https://www.medrxiv.org/content/10.1101/2020.03.15.20035360v1 | eng |
dcterms.references | Zhao X, Zhang B, Li P, Ma C, Gu J, Hou P, et al. Incidence, clinical characteristics and prognostic factor of patients with COVID-19: a systematic review and meta-analysis. MedRxiv preprint [Internet]. 2020. [citado 14 abr 2020]. Disponible en: https://www.medrxiv.org/content/10.1101/2020.03.17.20037572v1 | eng |
dcterms.references | Guan W-J, Liang W-H, Zhao Y, Liang H-R, Chen Z-S, Li Y-M, et al. Comorbidity and its impact on 1590 patients with COVID-19 in China: a nationwide analysis. European Respiratory Journal. 2020;55(5):2000547. | eng |
dcterms.references | Nam KW, Kwon HM, Jeong HY, Park JH, Kwon H, Jeong SM. Cerebral small vessel disease and stage 1 hypertension defined by the 2017 American College of Cardiology/American Heart Association Guidelines. Hypertension. 2019;73(6):1210-1216. | eng |
dcterms.references | Ortiz M., Valencia N, Moreno E, Zafra M, Espinel L, Villarreal D. ACV y covid-19: una revisión de los estudios observacionales publicados en época de pandemia. Acta Neurol Colomb. 2020; 36(2): 63-74 | eng |
dcterms.references | Aronson JK, Ferner RE. Drugs and the renin-angiotensin system in covid-19. BMJ. 2020;369:m1313. | eng |
dcterms.references | Jarcho JA, Ingelfinger JR, Hamel MB, D’Agostino Sr RB, Harrington DP. Inhibitors of the renin-angiotensin-aldosterone system and Covid-19. N Engl J Med. 2020 May 1. | eng |
dcterms.references | Reynolds HR, Adhikari S, Pulgarin C, Troxel AB, Iturrate E, Johnson SB, et al. Renin-angiotensin-aldosterone system inhibitors and risk of Covid19. N Engl J Med. 2020 May 1 | eng |
dcterms.references | Yang G, Tan Z, Zhou L, Yang M, Peng L, Liu J, et al. Effects of ARBs and ACEIs on virus infection, inflammatory status and clinical outcomes In COVID-19 patients with hypertension: a single center retrospective study. Hypertension. 2020 Apr 29. | eng |
dcterms.references | Nasr DM, Rabinstein AA. Neurologic Complications of Extracorporeal Membrane Oxygenation. Journal of Clinical Neurology. 2015;11(4):383-389. | eng |
dcterms.references | Khosravani H, Rajendram P, Notario L, Chapman MG, Menon BK. Protected code stroke: hyperacute stroke management during the coronavirus disease 2019 (COVID-19) pandemic. Stroke.2020 Jun;51(6):1891-1895. | eng |
dcterms.references | Ghannam M, Alshaer Q, Al-Chalabi M, Zakarna L, Robertson J, Manousakis G. Neurological Involvement of Coronavirus Disease 2019: A Systematic Review. 2020;Jun 19;1-19. | eng |
dcterms.references | Lodigiani C, Iapichino G, Carenzo L, Cecconi M, Ferrazzi P, Sebastian T, et al. Venous and arterial thromboembolic complications in COVID-19 patients admitted to an academic hospital in Milan, Italy. Thrombosis Research. 2020;191:9–14 | eng |
dcterms.references | Li Y, Li M, Wang M, Zhou Y, Chang J, Xian Y, et al. Acute cerebrovascular disease following COVID-19: a single center, retrospective, observational study. Stroke and Vascular Neurology. 2020 Jul 2;svn-2020- 000431 | eng |
dcterms.references | Kim J-E, Heo J-H, Kim H-O, Song S-H, Park S-S, Park T-H, et al. Neurological Complications during Treatment of Middle East Respiratory Syndrome. Journal of Clinical Neurology. 2017;13(3):227-233. | eng |
dcterms.references | Algahtani H, Subahi A, Shirah B. Neurological Complications of Middle East Respiratory Syndrome Coronavirus: A Report of Two Cases and Review of the Literature. Case Reports in Neurological Medicine. 2016;2016:1–6 | eng |
dcterms.references | Saad M, Omrani AS, Baig K, Bahloul A, Elzein F, Matin MA, et al. Clinical aspects and outcomes of 70 patients with Middle East respiratory syndrome coronavirus infection: a single-center experience in Saudi Arabia. International Journal of Infectious Diseases. 2014;29:301–306 | eng |
dcterms.references | Turgay C, Emine T, Ozlem K, Muhammet S, Haydar A. A rare cause of acute flaccid paralysis: Human coronaviruses. Journal of Pediatric Neurosciences. 2015;10(3):280-281. | eng |
dcterms.references | Jin M, Tong Q. Rhabdomyolysis as Potential Late Complication Associated with COVID-19. Emerging Infectious Diseases. 2020;26(7):1618– 1620 | eng |
dcterms.references | Hepburn M, Mullaguri N, George P, Hantus S, Punia V, Bhimraj A, et al. Acute Symptomatic Seizures in Critically Ill Patients with COVID-19: Is There an Association? Neurocritical Care. 2020; May 28;1-5. | eng |
dcterms.references | Balestrino R, Rizzone M, Zibetti M, Romagnolo A, Artusi CA, Montanaro E, et al. Onset of Covid-19 with impaired consciousness and ataxia: a case report. Journal of Neurology. 2020;May 27;1-2 | eng |
dcterms.references | Byrnes S, Bisen M, Syed B, Huda S, Siddique Z, Sampat P, et al. COVID‐19 encephalopathy masquerading as substance withdrawal. Journal of Medical Virology. 2020;May 27;10.1002/jmv.26065. | eng |
dcterms.references | Dixon L, Varley J, Gontsarova A, Mallon D, Tona F, Muir D, et al. COVID-19-related acute necrotizing encephalopathy with brain stem involvement in a patient with aplastic anemia. Neurology - Neuroimmunology Neuroinflammation. 2020;7(5):e789. | eng |
dcterms.references | Panariello A, Bassetti R, Radice A, Rossotti R, Puoti M, Corradin M, et al. Anti-NMDA receptor encephalitis in a psychiatric Covid-19 patient: A case report. Brain, Behavior, and Immunity. 2020;87:179–81. | eng |
dcterms.references | Afshar H, Yassin Z, Kalantari S, Aloosh O, Lotfi T, Moghaddasi M, et al. Evolution and resolution of brain involvement associated with SARS- CoV2 infection: A close Clinical – Paraclinical follow up study of a case. Multiple Sclerosis and Related Disorders. 2020;43:102216. | eng |
dcterms.references | Alolama M, Rashid A, Garozzo D. COVID-19 associated meningoencephalitis complicated with intracranial hemorrhage. A case report. Acta Neurochir (Wien). 2020 Jul;162(7):1495-1499 | eng |
dcterms.references | Zayet S, Abdallah YB, Royer PY, Toko‐Tchiundzie L, Gendrin V, Klopfenstein T. Encephalopathy in patients with COVID‐19: ‘Causality or coincidence?’ Journal of Medical Virology. 2020 May 19;10.1002/jmv.26027. | eng |
dcterms.references | Haddad S, Tayyar R, Risch L, Churchill G, Fares E, Choe M, et al. Encephalopathy and seizure activity in a COVID-19 well controlled HIV patient. IDCases. 2020 May 16;21:e00814. | eng |
dcterms.references | Deliwala S, Abdulhamid S, Abusalih MF, Al-Qasmi MM, Bachuwa G. Encephalopathy as the Sentinel Sign of a Cortical Stroke in a Patient Infected With Coronavirus Disease-19 (COVID-19). Cureus. 2020 May 14;12(5):e8121. | eng |
dcterms.references | Alkeridy WA, Almaghlouth I, Alrashed R, Alayed K, Binkhamis K, Alsharidi A, et al. A Unique Presentation of Delirium in a Patient with Otherwise Asymptomatic COVID ‐19. Journal of the American Geriatrics Society. 2020;68(7):1382–4. | eng |
dcterms.references | Wong PF, Craik S, Newman P, Makan A, Srinivasan K, Crawford E, et al. Lessons of the month 1: A case of rhombencephalitis as a rare complication of acute COVID-19 infection. Clinical Medicine. 2020;20(3):293– 4 | eng |
dcterms.references | Moriguchi T, Harii N, Goto J, Harada D, Sugawara H, Takamino J, et al. A first case of meningitis/encephalitis associated with SARS-Coronavirus2. International Journal of Infectious Diseases. 2020;94:55–8. | eng |
dcterms.references | Bernard‐Valnet R, Pizzarotti B, Anichini A, Demars Y, Russo E, Schmidhauser M, et al. Two patients with acute meningoencephalitis concomitant with SARS‐CoV‐2 infection. European Journal of Neurology. 2020 May 7;10.1111/ene.14298. | eng |
dcterms.references | Kajani R, Apramian A, Vega A, Ubhayakar N, Xu P, Liu A. Neuroleptic malignant syndrome in a COVID-19 patient. Brain, Behavior, and Immunity.2020 May 18;S0889-1591(20)30838-2. | eng |
dcterms.references | Ovejero S, Baca-García E, Barrigón ML. Coronovirus infection as a novel delusional topic. Schizophrenia Research. 2020 May 8;S0920- 9964(20)30261-9. | eng |
dcterms.references | Huarcaya-Victoria J, Herrera D, Castillo C. Psychosis in a patient with anxiety related to COVID-19: A case report. Psychiatry Research. 2020;289:113052. | eng |
dcterms.references | Colizzi M, Bortoletto R, Silvestri M, Mondini F, Puttini E, Cainelli C, et al. Medically unexplained symptoms in the times of COVID-19 pandemic: A case-report. Brain, Behavior, & Immunity - Health. 2020;5:100073. | eng |
dcterms.references | Epstein D, Andrawis W, Lipsky AM, Ziad HA, Matan M. Anxiety and Suicidality in a Hospitalized Patient with COVID-19 Infection. European Journal of Case Reports in Internal Medicine. 2020;(Vol 7 No 5):1. | eng |
dcterms.references | Zayet S, Klopfenstein T, Kovẚcs R, Stancescu S, Hagenkötter B. Acute Cerebral Stroke with Multiple Infarctions and COVID-19, France, 2020. Emerg Infect Dis. 2020;26(9). | eng |
dcterms.references | Gunasekaran K, Amoah K, Rajasurya V, Buscher MG. Stroke in a young COVID-19 patient. QJM: An International Journal of Medicine.2020 May 22;hcaa177. | eng |
dcterms.references | Morassi M, Bagatto D, Cobelli M, D’Agostini S, Gigli GL, Bnà C, et al. Stroke in patients with SARS-CoV-2 infection: case series. Journal of Neurology. 2020;267(8):2185–92. | eng |
dcterms.references | Heman-Ackah SM, Su YS, Spadola M, Petrov D, Chen HI, Schuster J, et al. Neurologically Devastating Intraparenchymal Hemorrhage in COVID-19 Patients on Extracorporeal Membrane Oxygenation: A Case Series. Neurosurgery. 2020;87(2):E147-E151. | eng |
dcterms.references | Goldberg MF, Goldberg MF, Cerejo R, Tayal A. Cerebrovascular Disease in COVID-19. American Journal of Neuroradiology. 2020;41(7):1170–1172. | eng |
dcterms.references | Valderrama EV, Humbert K, Lord A, Frontera J, Yaghi S. Severe Acute Respiratory Syndrome Coronavirus 2 Infection and Ischemic Stroke. Stroke. 2020;51(7):e124-e127. | eng |
dcterms.references | Al Saiegh F, Ghosh R, Leibold A, et al. Status of SARS-CoV-2 in cerebrospinal fluid of patients with COVID-19 and stroke. J Neurol Neurosurg Psychiatry. 2020;jnnp-2020-323522. | eng |
dcterms.references | Hughes C, Nichols T, Pike M, Subbe C, Elghenzai S. Cerebral Venous Sinus Thrombosis as a Presentation of COVID-19. Eur J Case Rep Intern Med. 2020;7(5):001691. | eng |
dcterms.references | Avula A, Nalleballe K, Narula N, Sapozhnikov S, Dandu V, Toom S, et al. COVID-19 presenting as stroke. Brain, Behavior, and Immunity. 2020;87:115–119. | eng |
dcterms.references | Oxley TJ, Mocco J, Majidi S, Kellner CP, Shoirah H, Singh IP, et al. Large-Vessel Stroke as a Presenting Feature of Covid-19 in the Young. New England Journal of Medicine. 2020;382(20):e60. | eng |
dcterms.references | Lushina N, Kuo JS, Shaikh HA. Pulmonary, Cerebral, and Renal Thromboembolic Disease Associated with COVID-19 Infection. Radiology. 2020;:201623. | eng |
dcterms.references | Sharifi-Razavi A, Karimi N, Rouhani N. COVID-19 and intracerebral haemorrhage: causative or coincidental? New Microbes and New Infections. 2020;35:100669. | eng |
dcterms.references | Fernández-Domínguez J, Ameijide-Sanluis E, García-Cabo C, GarcíaRodríguez R, Mateos V. Miller–Fisher-like syndrome related to SARS-CoV-2 infection (COVID 19). Journal of Neurology. 2020 May 26;1-2. | eng |
dcterms.references | Riva N, Russo T, Falzone YM, Strollo M, Amadio S, Carro UD, et al. Post-infectious Guillain–Barré syndrome related to SARS-CoV-2 infection: a case report. Journal of Neurology. 2020 May 26;1-3. | eng |
dcterms.references | Su XW, Palka SV, Rao RR, Chen FS, Brackney CR, Cambi F. SARS‐ CoV ‐2–associated Guillain‐Barré syndrome with dysautonomia. Muscle & Nerve. 2020;62(2):E48-E49. | eng |
dcterms.references | Scheidl E, Canseco DD, Hadji‐Naumov A, Bereznai B. Guillain‐Barré syndrome during SARS‐CoV ‐2 pandemic: A case report and review of recent literature. Journal of the Peripheral Nervous System. 2020;25(2):204–207 | eng |
dcterms.references | Bigaut K, Mallaret M, Baloglu S. Guillain-Barré syndrome related to SARS-CoV-2 infection. Neurology - Neuroimmunology Neuroinflammation. 2020;7(5):e785. | eng |
dcterms.references | Coen M, Jeanson G, Almeida LAC, Hübers A, Stierlin F, Najjar I, et al. Guillain-Barré syndrome as a complication of SARS-CoV-2 infection. Brain, Behavior, and Immunity. 2020;87:111–112. | eng |
dcterms.references | Gutiérrez-Ortiz C, Méndez A, Rodrigo-Rey S, Pedro-Murillo ES, Bermejo-Guerrero L, Gordo-Mañas R, et al. Miller Fisher Syndrome and polyneuritis cranialis in COVID-19. Neurology Apr 2020, 10.1212/WNL.0000000000009619. | eng |
dcterms.references | Politi LS, Salsano E, Grimaldi M. Magnetic Resonance Imaging Alteration of the Brain in a Patient With Coronavirus Disease 2019 (COVID19) and Anosmia. JAMA Neurol [Internet]. 2020. [citado 01 jun 2020]. Disponible en: https://jamanetwork.com/journals/jamaneurology/fullarticle/2766765 | eng |
dcterms.references | Karimi N, Razavi AS, Rouhani N. Frequent Convulsive Seizures in an Adult Patient with COVID-19: A Case Report. Iranian Red Crescent Medical Journal. 2020;22(3). | eng |
dcterms.references | Vollono C, Rollo E, Romozzi M, Frisullo G, Servidei S, Borghetti A, et al. Focal status epilepticus as unique clinical feature of COVID-19: A case report. Seizure. 2020;78:109–112. | eng |
dcterms.references | Sohal S, Mansur M. COVID-19 Presenting with Seizures. IDCases. 2020;20:e00782. | eng |
dcterms.references | Balloy G, Leclair-Visonneau L, Péréon Y, Magot A, Peyre A, Mahé PJ, et al. Non-lesional status epilepticus in a patient with coronavirus disease 2019. Clinical Neurophysiology. 2020;131(8):2059–2061. | eng |
dcterms.references | Somani S, Pati S, Gaston T, Chitlangia A, Agnihotri S. De Novo Status Epilepticus in patients with COVID‐19. Annals of Clinical and Translational Neurology. 2020;7(7):1240–1244. | eng |
dcterms.references | Fasano A, Cavallieri F, Canali E, Valzania F. First motor seizure as presenting symptom of SARS-CoV-2 infection. Neurological Sciences. 2020;41(7):1651–1653. | eng |
dcterms.references | Rábano-Suárez P, Bermejo-Guerrero L, Méndez-Guerrero A, ParraSerrano J, Toledo-Alfocea D, Sánchez-Tejerina D, et al. Generalized myoclonus in COVID-19. Neurology. 2020 May 21;10.1212/WNL.0000000000009829. | eng |
dcterms.references | Elgamasy S, Kamel MG, Ghozy S, Khalil A, Morra ME, Islam SMS. First case of focal epilepsy associated with SARS‐coronavirus‐2. Journal of Medical Virology. 2020; Jun 2;10.1002/jmv.26113. | eng |
dcterms.references | Mukherjee D, Sarkar P, Dubey S, Ray BK, Pandit A, Lahiri D. Ataxia as a presenting manifestation of COVID -19: Report of a single case. medRxiv [Internet]. 2020. [citado 14 abr 2020]. Disponible en: https://www.medrxiv.org/content/10.1101/2020.05.24.20103648v1 | eng |
dcterms.references | de Freitas Ferreira ACA, Romão TT, SIlva Macedo Y, Pupe C, Nascimento OJ. COVID‐19 and herpes zoster co‐infection presenting with trigeminal neuropathy. European Journal of Neurology. 2020; May 24;10.1111/ene.14361. | eng |
dcterms.references | Franceschi A, Ahmed O, Giliberto L, Castillo M. Hemorrhagic Posterior Reversible Encephalopathy Syndrome as a Manifestation of COVID-19 Infection. American Journal of Neuroradiology. 2020;41(7):1173–1176. | eng |
dcterms.references | Goh Y, Beh DL, Makmur A, Somani J, Chan AC. Pearls and Oy-sters: Facial nerve palsy as a neurological manifestation of Covid-19 infection. Neurology. 2020 May 21;10.1212/WNL.0000000000009863. | eng |
dcterms.references | Delly F, Syed MJ, Lisak RP, Zutshi D. Myasthenic crisis in COVID-19. Journal of the Neurological Sciences. 2020;414:116888. | eng |
dcterms.references | Zanin L, Saraceno G, Panciani PP, Renisi G, Signorini L, Migliorati K, et al. SARS-CoV-2 can induce brain and spine demyelinating lesions. Acta Neurochirurgica. 2020;162(7):1491–1494. | eng |
dcterms.references | Dinkin M, Gao V, Kahan J, Bobker S, Simonetto M, Wechsler P, et al. COVID-19 presenting with ophthalmoparesis from cranial nerve palsy. Neurology. 2020 May 1;10.1212/WNL.0000000000009700 | eng |
dcterms.references | Abdelnour L, Abdalla ME, Babiker S. COVID 19 infection presenting as motor peripheral neuropathy. Journal of the Formosan Medical Association. 2020;119(6):1119–1120. | eng |
dcterms.references | Zhang T, Rodricks MB, Hirsh E. COVID-19-Associated Acute Disseminated Encephalomyelitis: A Case Report. medRxiv [Internet]. 2020. [citado 14 may 2020]. Disponible en:https://www.medrxiv.org/content/10.1101/2020.04.16.20068148v1.full.pdf | eng |
oaire.version | info:eu-repo/semantics/submittedVersion | spa |
sb.programa | Especialización en Neurología | spa |
sb.sede | Sede Barranquilla | spa |