Diclofenac Administration after Physical Training Blunts Adaptations of Peripheral Systems and Leads to Losses in Exercise Performance: In Vivo and In Silico Analyses
datacite.rights | http://purl.org/coar/access_right/c_abf2 | spa |
dc.contributor.author | Pillon Barcelos, Rômulo | |
dc.contributor.author | Diniz Lima, Frederico | |
dc.contributor.author | Alves Courtes, Aline | |
dc.contributor.author | Kich da Silva, Ingrid | |
dc.contributor.author | Vargas, José Eduardo | |
dc.contributor.author | Freire Royes, Luiz Fernando | |
dc.contributor.author | Trindade, Cristiano | |
dc.contributor.author | González-Gallego, Javier | |
dc.contributor.author | Antunes Soares, Félix Alexandre | |
dc.date.accessioned | 2021-08-04T18:23:40Z | |
dc.date.available | 2021-08-04T18:23:40Z | |
dc.date.issued | 2021 | |
dc.description.abstract | Recovery in athletes is hampered by soreness and fatigue. Consequently, nonsteroidal antiinflammatory drugs are used as an effective strategy to maintain high performance. However, impact of these drugs on adaptations induced by training remains unknown. This study assessed the effects of diclofenac administration (10 mg/kg/day) on rats subjected to an exhaustive test, after six weeks of swimming training. Over the course of 10 days, three repeated swimming bouts were performed, and diclofenac or saline were administered once a day. Trained animals exhibited higher muscle citrate synthase and lower plasma creatinine kinase activities as compared to sedentary animals, wherein diclofenac had no impact. Training increased time to exhaustion, however, diclofenac blunted this effect. It also impaired the increase in plasma and liver interleukin-6 levels. The trained group exhibited augmented catalase, glutathione peroxidase, and glutathione reductase activities, and a higher ratio of reduced-to-oxidized glutathione in the liver. However, diclofenac treatment blunted all these effects. Systems biology analysis revealed a close relationship between diclofenac and liver catalase. These results confirmed that regular exercise induces inflammation and oxidative stress, which are crucial for tissue adaptations. Altogether, diclofenac treatment might be helpful in preventing pain and inflammation, but its use severely affects performance and tissue adaptation | eng |
dc.format.mimetype | eng | |
dc.identifier.citation | Barcelos, R.P.; Lima, F.D.; Courtes, A.A.; Silva, I.K.d.; Vargas, J.E.; Royes, L.F.F.; Trindade, C.; González-Gallego, J.; Soares, F.A.A. Diclofenac Administration after Physical Training Blunts Adaptations of Peripheral Systems and Leads to Losses in Exercise Performance: In Vivo and In Silico Analyses. Antioxidants 2021, 10, 1246. https://doi.org/10.3390/ antiox10081246 | spa |
dc.identifier.doi | https://doi.org/10.3390/antiox10081246 | |
dc.identifier.issn | 20763921 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12442/8100 | |
dc.identifier.url | https://www.mdpi.com/2076-3921/10/8/1246 | |
dc.language.iso | eng | eng |
dc.publisher | MDPI | eng |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | eng |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.source | Antioxidants | eng |
dc.source | Vol. 10, No. 8 (2021) | |
dc.subject | NSAIDs | eng |
dc.subject | Physical training | eng |
dc.subject | Rat | eng |
dc.subject | Diclofenac | eng |
dc.subject | Inflammation | eng |
dc.subject | Oxidative stress | eng |
dc.subject | Systems biology | eng |
dc.subject | Systems pharmacology | eng |
dc.subject | Adaptation | eng |
dc.title | Diclofenac Administration after Physical Training Blunts Adaptations of Peripheral Systems and Leads to Losses in Exercise Performance: In Vivo and In Silico Analyses | eng |
dc.type.driver | info:eu-repo/semantics/article | eng |
dc.type.spa | Artículo científico | spa |
dcterms.references | Warburton, D.E.R.; Nicol, C.W.; Bredin, S.S.D. Health benefits of physical activity: The evidence. CMAJ 2006, 174, 801–809. | eng |
dcterms.references | Ruegsegger, G.N.; Booth, F.W. Health benefits of exercise. Cold Spring Harb. Perspect. Med. 2018, 8, a029694. | eng |
dcterms.references | Mikkelsen, U.R.; Schjerling, P.; Helmark, I.C.; Reitelseder, S.; Holm, L.; Skovgaard, D.; Langberg, H.; Kjaer, M.; Heinemeier, K.M. Local NSAID infusion does not affect protein synthesis and gene expression in human muscle after eccentric exercise. Scand. J. Med. Sci. Sports 2011, 21, 630–644. | eng |
dcterms.references | Schreijenberg, M.; Luijsterburg, P.A.J.; Van Trier, Y.D.M.; Rizopoulos, D.; Koopmanschap, M.A.; Voogt, L.; Maher, C.G.; Koes, B.W. Efficacy of paracetamol, diclofenac and advice for acute low back pain in general practice: Design of a randomized controlled trial (PACE Plus). BMC Musculoskelet. Disord. 2017, 18, 56. | eng |
dcterms.references | Vaso, M.; Weber, A.; Tscholl, P.M.; Junge, A.; Dvorak, J. Use and abuse of medication during 2014 FIFA World Cup Brazil: A retrospective survey. BMJ Open 2015, 5, e007608. | eng |
dcterms.references | Huang, S.H.; Johnson, K.; Pipe, A.L. The use of dietary supplements and medications by Canadian athletes at the Atlanta and Sydney Olympic Games. Clin. J. Sport Med. 2006, 16, 27–33. | eng |
dcterms.references | Ziltener, J.L.; Leal, S.; Fournier, P.E. Non-steroidal anti-inflammatory drugs for athletes: An update. Ann. Phys. Rehabil. Med. 2010, 53, 278–288 | eng |
dcterms.references | Barcelos, R.P.; Bresciani, G.; Cuevas, M.J.; Martínez-Flórez, S.; Soares, F.A.A.; González-Gallego, J. Diclofenac pretreatment modulates exercise-induced inflammation in skeletal muscle of rats through the TLR4/NF-κB pathway. Appl. Physiol. Nutr. Metab. 2017, 42, 757–764. | eng |
dcterms.references | Steckling, F.M.; Lima, F.D.; Farinha, J.B.; Rosa, P.C.; Royes, L.F.F.; Cuevas, M.J.; Bresciani, G.; Soares, F.A.; González-Gallego, J.; Barcelos, R.P. Diclofenac attenuates inflammation through TLR4 pathway and improves exercise performance after exhaustive swimming. Scand. J. Med. Sci. Sport. 2020, 30, 264–271 | eng |
dcterms.references | Moghetti, P.; Bacchi, E.; Brangani, C.; Donà, S.; Negri, C. Metabolic effects of Exercise. Front. Horm. Res. 2016, 47, 44–57. | eng |
dcterms.references | Murton, A.J.; Greenhaff, P.L. Resistance exercise and the mechanisms of muscle mass regulation in humans: Acute effects on muscle protein turnover and the gaps in our understanding of chronic resistance exercise training adaptation. Int. J. Biochem. Cell Biol. 2013, 45, 2209–2214. | eng |
dcterms.references | Vargas, J.E.; Puga, R.; Lenz, G.; Trindade, C.; Filippi-Chiela, E. Cellular Mechanisms triggered by the cotreatment of resveratrol and doxorubicin in breast cancer: A translational in vitro-in silico model. Oxidative Med. Cell. Longev. 2020, 2020, 5432651. | eng |
dcterms.references | Zhang, W.; Huai, Y.; Miao, Z.; Qian, A.; Wang, Y. Systems pharmacology for investigation of the mechanisms of action of traditional chinese medicine in drug discovery. Front. Pharmacol. 2019, 10, 743. | eng |
dcterms.references | Vargas, J.E.; Puga, R.; Poloni, J.D.F.; Saraiva Macedo Timmers, L.F.; Porto, B.N.; Norberto De Souza, O.; Bonatto, D.; Condessa Pitrez, P.M.; Tetelbom Stein, R. A network flow approach to predict protein targets and flavonoid backbones to treat respiratory syncytial virus infection. BioMed Res. Int. 2015, 2015, 301635. | eng |
dcterms.references | Lima, F.D.; Stamm, D.N.; Della Pace, I.D.; Ribeiro, L.R.; Rambo, L.M.; Bresciani, G.; Ferreira, J.; Rossato, M.F.; Silva, M.A.; Pereira, M.E.; et al. Ibuprofen intake increases exercise time to exhaustion: A possible role for preventing exercise-induced fatigue. Scand. J. Med. Sci. Sports 2015, 26, 1160–1170. | eng |
dcterms.references | De Araujo, G.G.; Papoti, M.; Manchado, F.e.B.; de Mello, M.A.; Gobatto, C.A. Protocols for hyperlactatemia induction in the lactate minimum test adapted to swimming rats. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2007, 148, 888–892 | eng |
dcterms.references | Barcelos, R.P.; Bresciani, G.; Rodriguez-Miguelez, P.; Cuevas, M.J.; Soares, F.A.A.; Barbosa, N.V.; González-Gallego, J. Diclofenac pretreatment effects on the toll-like receptor 4/nuclear factor kappa B-mediated inflammatory response to eccentric exercise in rat liver. Life Sci. 2016, 148, 247–253. | eng |
dcterms.references | Deng, X.; Stachlewitz, R.F.; Liguori, M.J.; Blomme, E.A.; Waring, J.F.; Luyendyk, J.P.; Maddox, J.F.; Ganey, P.E.; Roth, R.A. Modest inflammation enhances diclofenac hepatotoxicity in rats: Role of neutrophils and bacterial translocation. J. Pharmacol. Exp. Ther. 2006, 319, 1191–1199. | eng |
dcterms.references | Al-dossari Manal, H.; Fadda, L.M.; Attia, H.A.; Hasan, I.H.; Mahmoud, A.M. Curcumin and selenium prevent lipopolysaccharide/diclofenacinduced liver injury by suppressing inflammation and oxidative stress. Biol. Trace Elem. Res. 2020, 196, 173–183. | eng |
dcterms.references | Georgiou, C.D.; Papapostolou, I.; Grintzalis, K. Protocol for the quantitative assessment of DNA concentration and damage (fragmentation and nicks). Nat. Protoc. 2009, 4, 125–131. | eng |
dcterms.references | Aebi, H. Catalase in vitro. Methods Enzym. 1984, 105, 121–126. | eng |
dcterms.references | Flohé, L.; Günzler, W.A. Assays of glutathione peroxidase. Methods Enzym. 1984, 105, 114–121. | eng |
dcterms.references | Carlberg, I.; Mannervik, B. Glutathione reductase. Methods Enzym. 1985, 113, 484–490. | eng |
dcterms.references | Hissin, P.J.; Hilf, R. A fluorometric method for determination of oxidized and reduced glutathione in tissues. Anal. Biochem. 1976, 74, 214–226. | eng |
dcterms.references | Srere, P.A. Studies on purified citrate-enzymes: Metabolic interpretations. Biochem. Soc. Symp. 1968, 27, 11–21. | eng |
dcterms.references | Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. | eng |
dcterms.references | Rath, S.; Sharma, R.; Gupta, R.; Ast, T.; Chan, C.; Durham, T.J.; Goodman, R.P.; Grabarek, Z.; Haas, M.E.; Hung, W.H.W.; et al. MitoCarta3.0: An updated mitochondrial proteome now with sub-organelle localization and pathway annotations. Nucleic Acids Res. 2021, 49, D1541–D1547. | eng |
dcterms.references | Doncheva, N.T.; Morris, J.H.; Gorodkin, J.; Jensen, L.J. Cytoscape StringApp: Network analysis and visualization of proteomics data. J. Proteome Res. 2019, 18, 623–632. | eng |
dcterms.references | Bader, G.D.; Hogue, C.W.V. An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinform. 2003, 4, 2. | eng |
dcterms.references | Bindea, G.; Mlecnik, B.; Hackl, H.; Charoentong, P.; Tosolini, M.; Kirilovsky, A.; Fridman, W.H.; Pagès, F.; Trajanoski, Z.; Galon, J. ClueGO: A Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics 2009, 25, 1091–1093. | eng |
dcterms.references | Scardoni, G.; Petterlini, M.; Laudanna, C. Analyzing biological network parameters with CentiScaPe. Bioinformatics 2009, 25, 2857–2859. | eng |
dcterms.references | Meinild Lundby, A.K.; Jacobs, R.A.; Gehrig, S.; de Leur, J.; Hauser, M.; Bonne, T.C.; Flück, D.; Dandanell, S.; Kirk, N.; Kaech, A.; et al. Exercise training increases skeletal muscle mitochondrial volume density by enlargement of existing mitochondria and not de novo biogenesis. Acta Physiol. 2018, 222, e12905. | eng |
dcterms.references | Parry, H.A.; Roberts, M.D.; Kavazis, A.N. Human skeletal muscle mitochondrial adaptations following resistance exercise training. Int. J. Sports Med. 2020, 41, 349–359. | eng |
dcterms.references | Ravi Kiran, T.; Subramanyam, M.V.; Asha Devi, S. Swim exercise training and adaptations in the antioxidant defense system of myocardium of old rats: Relationship to swim intensity and duration. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2004, 137, 187–196. | eng |
dcterms.references | Lima, F.D.; Stamm, D.N.; Della-Pace, I.D.; Dobrachinski, F.; de Carvalho, N.R.; Royes, L.F.; Soares, F.A.; Rocha, J.B.; GonzálezGallego, J.; Bresciani, G. Swimming training induces liver mitochondrial adaptations to oxidative stress in rats submitted to repeated exhaustive swimming bouts. PLoS ONE 2013, 8, e55668. | eng |
dcterms.references | Merry, T.L.; Ristow, M. Do antioxidant supplements interfere with skeletal muscle adaptation to exercise training? J. Physiol. 2016, 594, 5135–5147. | eng |
dcterms.references | Higgins, M.R.; Izadi, A.; Kaviani, M. Antioxidants and exercise performance: With a focus on vitamin e and c supplementation. Int. J. Environ. Res. Public Health 2020, 17, 8452. | eng |
dcterms.references | Deshmukh, A.S.; Steenberg, D.E.; Hostrup, M.; Birk, J.B.; Larsen, J.K.; Santos, A.; Kjøbsted, R.; Hingst, J.R.; Schéele, C.C.; Murgia, M.; et al. Deep muscle-proteomic analysis of freeze-dried human muscle biopsies reveals fiber type-specific adaptations to exercise training. Nat. Commun. 2021, 12, 304. | eng |
dcterms.references | Pal, M.; Febbraio, M.A.; Whitham, M. From cytokine to myokine: The emerging role of interleukin-6 in metabolic regulation. Immunol. Cell Biol. 2014, 92, 331–339. | eng |
dcterms.references | Gonzalez-Gil, A.M.; Elizondo-Montemayor, L. The role of exercise in the interplay between myokines, hepatokines, osteokines, adipokines, and modulation of inflammation for energy substrate redistribution and fat mass loss: A review. Nutrients 2020, 12, 1899. | eng |
dcterms.references | Steensberg, A.; Fischer, C.P.; Keller, C.; Møller, K.; Pedersen, B.K. IL-6 enhances plasma IL-1ra, IL-10, and cortisol in humans. Am. J. Physiol. Endocrinol. Metab. 2003, 285, E433–E437. | eng |
dcterms.references | Schindler, R.; Mancilla, J.; Endres, S.; Ghorbani, R.; Clark, S.; Dinarello, C. Correlations and interactions in the production of interleukin-6 (IL-6), IL-1, and tumor necrosis factor (TNF) in human blood mononuclear cells: IL-6 suppresses IL-1 and TNF. Blood 1990, 75, 40–47. | eng |
dcterms.references | Georgakouli, K.; Manthou, E.; Fatouros, I.G.; Deli, C.K.; Spandidos, D.A.; Tsatsakis, A.M.; Kouretas, D.; Koutedakis, Y.; Theodorakis, Y.; Jamurtas, A.Z. Effects of acute exercise on liver function and blood redox status in heavy drinkers. Exp. Ther. Med. 2015, 10, 2015–2022. | eng |
dcterms.references | Magherini, F.; Fiaschi, T.; Marzocchini, R.; Mannelli, M.; Gamberi, T.; Modesti, P.A.; Modesti, A. Oxidative stress in exercise training: The involvement of inflammation and peripheral signals. Free Radic. Res. 2019, 53, 1155–1165. | eng |
dcterms.references | Pillon Barcelos, R.; Freire Royes, L.F.; Gonzalez-Gallego, J.; Bresciani, G. Oxidative stress and inflammation: Liver responses and adaptations to acute and regular exercise. Free Radic. Res. 2017, 51, 222–236. | eng |
dcterms.references | Harrold, J.M.; Ramanathan, M.; Mager, D.E. Network-based approaches in drug discovery and early development. Clin. Pharmacol. Ther. 2013, 94, 651–658 | eng |
dcterms.references | Lubiana, P.; Prokkola, J.M.; Nikinmaa, M.; Burmester, T.; Kanerva, M.; Götting, M. The effects of the painkiller diclofenac and hypoxia on gene transcription and antioxidant system in the gills of three-spined stickleback. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2016, 185–186, 147–154. | eng |
dcterms.references | Francaux, M. Toll-like receptor signalling induced by endurance exercise. Appl. Physiol. Nutr. Metab. 2009, 34, 454–458 | eng |
dcterms.references | Fischer, C.P. Interleukin-6 in acute exercise and training: What is the biological relevance? Exerc. Immunol. Rev. 2006, 12, 6–33. | eng |
oaire.version | info:eu-repo/semantics/publishedVersion | spa |