CREditing: a tool for gene tuning in Trypanosoma cruzi

datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
dc.contributor.authorPacheco-Lugo, Lisandro A.
dc.contributor.authorSáenz-García, José L.
dc.contributor.authorDíaz-Olmos, Yirys
dc.contributor.authorNetto-Costa, Rodrigo
dc.contributor.authorBrant, Rodrigo S. C.
dc.contributor.authorDaRocha, Wanderson D.
dc.date.accessioned2020-08-25T22:11:02Z
dc.date.available2020-08-25T22:11:02Z
dc.date.issued2020
dc.description.abstractThe genetic manipulation of Trypanosoma cruzi continues to be a challenge, mainly due to the lack of available and efficient molecular tools. The CRE-lox recombination system is a site-specific recombinase technology, widely used method of achieving conditional targeted deletions, inversions, insertions, gene activation, translocation, and other modifications in chromosomal or episomal DNA. In the present study, the CRE-lox system was adapted to expand the current genetic toolbox for this hard-to-manipulate parasite. For this, evaluations of whether direct protein delivery of CRE recombinase through electroporation could improve CRE-mediated recombination in T. cruzi were performed. CRE recombinase was fused to the C-terminus of T. cruzi histone H2B, which carries the nuclear localization signal and is expressed in the prokaryotic system. The fusion protein was affinity purified and directly introduced into epimastigotes and tissue culture-derived trypomastigotes. This enabled the control of gene expression as demonstrated by turning on a tdTomato (tandem dimer fluorescent protein) reporter gene that had been previously transfected into parasites, achieving CRE-mediated recombination in up to 85% of parasites. This system was further tested for its ability to turn off gene expression, remove selectable markers integrated into the genome, and conditionally knock down the nitroreductase gene, which is involved in drug resistance. Additionally, CREditing also enabled the control of gene expression in tissue culture trypomastigotes, which are more difficult to transfect than epimastigotes. The considerable advances in genomic manipulation of T. cruzi shown in this study can be used by others to aid in the greater understanding of this parasite through gain- or loss-of function approaches.eng
dc.format.mimetypepdfspa
dc.identifier.doihttps://doi.org/10.1016/j.ijpara.2020.06.010
dc.identifier.issn00207519
dc.identifier.urihttps://hdl.handle.net/20.500.12442/6343
dc.language.isoengeng
dc.publisherElseviereng
dc.publisherAustralian Society for Parasitologyeng
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rights.accessrightsinfo:eu-repo/semantics/openAccesseng
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourceInternational Journal for Parasitologyeng
dc.subjectTrypanosoma cruzieng
dc.subjectCREditingeng
dc.subjectCRE recombinaseeng
dc.subjectCRE-loxeng
dc.subjectConditional gene deletioneng
dc.subjectGene activationeng
dc.titleCREditing: a tool for gene tuning in Trypanosoma cruzieng
dc.type.driverinfo:eu-repo/semantics/articleeng
dc.type.spaArtículo científicospa
dcterms.referencesAlbert, H., Dale, E.C., Lee, E., Ow, D.W., 1995. Site-specific integration of DNA into wild-type and mutant lox sites placed in the plant genome. Plant J. Cell Mol. Biol. 7, 649–659.eng
dcterms.referencesBarrett, B., LaCount, D.J., Donelson, J.E., 2004. Trypanosoma brucei: a first-generation CRE-loxP site-specific recombination system. Exp. Parasitol. 106, 37–44. https://doi.org/10.1016/j.exppara.2004.01.004eng
dcterms.referencesBergemann, J., Kühlcke, K., Fehse, B., Ratz, I., Ostertag, W., Lother, H., 1995. Excision of specific DNA-sequences from integrated retroviral vectors via site-specific recombination. Nucleic Acids Res. 23, 4451–4456.eng
dcterms.referencesBurle-Caldas, G.A., Soares-Simões, M., Lemos-Pechnicki, L., DaRocha, W.D., Teixeira, S.M.R., 2018. Assessment of two CRISPR-Cas9 genome editing protocols for rapid generation of Trypanosoma cruzi gene knockout mutants. Int. J. Parasitol. 48, 591–596. https://doi.org/10.1016/j.ijpara.2018.02.002eng
dcterms.referencesBurle-Caldas Gde A, Grazielle-Silva V, Laibida LA, DaRocha WD, Teixeira SM, 2015. Expanding the tool box for genetic manipulation of Trypanosoma cruzi. Mol Biochem Parasitol. 203, 25-33. https://doi.org/10.1016/j.molbiopara.2015.10.004.eng
dcterms.referencesChen, C.-M., Behringer, R.R., 2001. CREating breakthroughs. Nat. Biotechnol. 19, 921–922. https://doi.org/10.1038/nbt1001-921eng
dcterms.referencesChiurillo, M.A., Lander, N., Bertolini, M.S., Storey, M., Vercesi, A.E., Docampo, R., 2017. Different Roles of Mitochondrial Calcium Uniporter Complex Subunits in Growth and Infectivity of Trypanosoma cruzi. mBio 8, e00574-17. https://doi.org/10.1128/mBio.00574-17eng
dcterms.referencesContreras, V.T., Salles, J.M., Thomas, N., Morel, C.M., Goldenberg, S., 1985. In vitro differentiation of Trypanosoma cruzi under chemically defined conditions. Mol. Biochem. Parasitol. 16, 315–327.eng
dcterms.referencesCruz-Bustos, T., Potapenko, E., Storey, M., Docampo, R., 2018. An Intracellular Ammonium Transporter Is Necessary for Replication, Differentiation, and Resistance to Starvation and Osmotic Stress in Trypanosoma cruzi. mSphere 3, e00377-17. https://doi.org/10.1128/mSphere.00377-17eng
dcterms.referencesDamasceno, J.D., Reis-Cunha, J., Crouch, K., Lapsley, C., Tosi, L.R.O. Bartholomeu, D., McCulloch, R., 2020. Conditional knockout of RAD51-related genes in Leishmania major reveals a critical role for homologous recombination during genome replication. PLoS Genet. 16(7): e1008828. http://doi: 10.1371/journal.pgen.1008828.eng
dcterms.referencesDaRocha, W.D., Otsu, K., Teixeira, S.M.R., Donelson, J.E., 2004a. Tests of cytoplasmic RNA interference (RNAi) and construction of a tetracycline-inducible T7 promoter system in Trypanosoma cruzi. Mol. Biochem. Parasitol. 133, 175–186.eng
dcterms.referencesDaRocha, W.D., Silva, R.A., Bartholomeu, D.C., Pires, S.F., Freitas, J.M., Macedo, A.M., Vazquez, M.P., Levin, M.J., Teixeira, S.M.R., 2004b. Expression of exogenous genes in Trypanosoma cruzi: improving vectors and electroporation protocols. Parasitol. Res. 92, 113–120. https://doi.org/10.1007/s00436-003-1004-5eng
dcterms.referencesDeora, A.A., Diaz, F., Schreiner, R., Rodriguez-Boulan, E., 2007. Efficient Electroporation of DNA and Protein into Confluent and Differentiated Epithelial Cells in Culture. Traffic 8, 1304–1312. https://doi.org/10.1111/j.1600-0854.2007.00617.xeng
dcterms.referencesFuruhata, Y., Sakai, A., Murakami, T., Morikawa, M., Nakamura, C., Yoshizumi, T., Fujikura, U., Nishida, K., Kato, Y., 2019. A method using electroporation for the protein delivery of Cre recombinase into cultured Arabidopsis cells with an intact cell wall. Sci. Rep. 9. https://doi.org/10.1038/s41598-018-38119-9eng
dcterms.referencesGonzález, L., García-Huertas, P., Triana-Chávez, O., García, G.A., Murta, S.M.F., Mejía-Jaramillo, A.M., 2017. Aldo-keto reductase and alcohol dehydrogenase contribute to benznidazole natural resistance in Trypanosoma cruzi: Benznidazole natural resistance in Trypanosoma cruzi. Mol. Microbiol. 106, 704–718. https://doi.org/10.1111/mmi.13830eng
dcterms.referencesHall, B.S., Bot, C., Wilkinson, S.R., 2011. Nifurtimox Activation by Trypanosomal Type I Nitroreductases Generates Cytotoxic Nitrile Metabolites. J. Biol. Chem. 286, 13088–13095. https://doi.org/10.1074/jbc.M111.230847eng
dcterms.referencesJullien, N., Sampieri, F., Enjalbert, A., Herman, J., 2003. Regulation of Cre recombinase by ligand-induced complementation of inactive fragments. Nucleic Acids Res. 31, 131e–1131. https://doi.org/10.1093/nar/gng131eng
dcterms.referencesJullien, N., Goddard, I., Selmi-Ruby, S., Fina, J.-L., Cremer, H., Herman, J.-P., 2007. Conditional Transgenesis Using Dimerizable Cre (DiCre). PLoS ONE 2, e1355. https://doi.org/10.1371/journal.pone.0001355eng
dcterms.referencesKangussu-Marcolino, M.M., Cunha, A.P., Avila, A.R., Herman, J.-P., DaRocha, W.D., 2014. Conditional removal of selectable markers in Trypanosoma cruzi using a site-specific recombination tool: Proof of concept. Mol. Biochem. Parasitol. 198, 71–74. https://doi.org/10.1016/j.molbiopara.2015.01.001eng
dcterms.referencesLander, N., Chiurillo, M., Vercesi, A., Docampo, R., 2017. Endogenous C-terminal Tagging by CRISPR/Cas9 in Trypanosoma cruzi. BIO-Protoc. 7. https://doi.org/10.21769/BioProtoc.2299eng
dcterms.referencesLander, N., Chiurillo, M.A., Storey, M., Vercesi, A.E., Docampo, R., 2016. CRISPR/Cas9- mediated endogenous C-terminal tagging of Trypanosoma cruzi genes reveals the acidocalcisome localization of the inositol 1,4,5-trisphosphate receptor. J. Biol. Chem. 291, 25505–25515. https://doi.org/10.1074/jbc.M116.749655eng
dcterms.referencesLander, N., Li, Z.-H., Niyogi, S., Docampo, R., 2015. CRISPR/Cas9-Induced Disruption of Paraflagellar Rod Protein 1 and 2 Genes in Trypanosoma cruzi Reveals Their Role in Flagellar Attachment. mBio 6, e01012-15. https://doi.org/10.1128/mBio.01012-15eng
dcterms.referencesLaverrière, M., Cazzulo, J.J., Alvarez, V.E., 2012. Antagonic activities of Trypanosoma cruzi metacaspases affect the balance between cell proliferation, death and differentiation. Cell Death Differ. 19, 1358–1369. https://doi.org/10.1038/cdd.2012.12eng
dcterms.referencesLee, G., Saito, I., 1998. Role of nucleotide sequences of loxP spacer region in Cre-mediated recombination. Gene 216, 55–65. https://doi.org/10.1016/S0378-1119(98)00325-4eng
dcterms.referencesLewandoski, M., 2001. Mouse genomic technologies: conditional control of gene expression in the mouse. Nat. Rev. Genet. 2, 743–755. https://doi.org/10.1038/35093537 Liu, J., Willet, S.G., Bankaitis, E.D., Xu, Y., Wright, C.V.E., Gu, G., 2013. Non-parallel recombination limits cre-loxP-based reporters as precise indicators of conditional genetic manipulation: Cre-Recombinations are Non-Parallel Events. genesis 51, 436–442. https://doi.org/10.1002/dvg.22384eng
dcterms.referencesLoonstra, A., Vooijs, M., Beverloo, H.B., Allak, B.A., van Drunen, E., Kanaar, R., Berns, A., Jonkers, J., 2001. Growth inhibition and DNA damage induced by Cre recombinase in mammalian cells. Proc. Natl. Acad. Sci. U. S. A. 98, 9209–9214. https://doi.org/10.1073/pnas.161269798eng
dcterms.referencesMarchetti, M.A., Tschudi, C., Kwon, H., Wolin, S.L., Ullu, E., 2000. Import of proteins into the trypanosome nucleus and their distribution at karyokinesis. J. Cell Sci. 113 ( Pt 5), 899–906.eng
dcterms.referencesOlmo, F., Costa, F.C., Mann, G.S., Taylor, M.C., Kelly, J.M., 2018. Optimising genetic transformation of Trypanosoma cruzi using hydroxyurea-induced cell-cycle synchronisation. Mol. Biochem. Parasitol. 226, 34–36. https://doi.org/10.1016/j.molbiopara.2018.07.002eng
dcterms.referencesPacheco-Lugo, L., Díaz-Olmos, Y., Sáenz-García, J., Probst, C.M., DaRocha, W.D., 2017. Effective gene delivery to Trypanosoma cruzi epimastigotes through nucleofection. Parasitol. Int. 66, 236–239. https://doi.org/10.1016/j.parint.2017.01.019eng
dcterms.referencesPadmanabhan, P.K., Polidoro, R.B., Barteneva, N.S., Gazzinelli, R.T., Burleigh, B.A., 2014. Transient transfection and expression of foreign and endogenous genes in the intracelular stages of Trypanosoma cruzi. Mol. Biochem. Parasitol. 198, 100–103. https://doi.org/10.1016/j.molbiopara.2015.02.001eng
dcterms.referencesPeng, D., Kurup, S.P., Yao, P.Y., Minning, T.A., Tarleton, R.L., 2015. CRISPR-Cas9-mediated single-gene and gene family disruption in Trypanosoma cruzi. mBio 6, e02097-02014. https://doi.org/10.1128/mBio.02097-14eng
dcterms.referencesPiacenza, L., Irigoín, F., Alvarez, M.N., Peluffo, G., Taylor, M.C., Kelly, J.M., Wilkinson, S.R., Radi, R., 2007. Mitochondrial superoxide radicals mediate programmed cell death in Trypanosoma cruzi : cytoprotective action of mitochondrial iron superoxide dismutase overexpression. Biochem. J. 403, 323–334. https://doi.org/10.1042/BJ20061281eng
dcterms.referencesRomagnoli, B.A.A., Picchi, G.F.A., Hiraiwa, P.M., Borges, B.S., Alves, L.R., Goldenberg, S., 2018. Improvements in the CRISPR/Cas9 system for high efficiency gene disruption in Trypanosoma cruzi. Acta Trop. 178, 190–195. https://doi.org/10.1016/j.actatropica.2017.11.013eng
dcterms.referencesSantos, R.E.R.S., Silva, G.L.A., Santos, E.V., Duncan, S.M., Mottram, J.C., Damasceno, J.D., Tosi,eng
dcterms.referencesL.R.O., 2017. A DiCre recombinase-based system for inducible expression in Leishmania major. Mol. Biochem. Parasitol. 216, 45–48. https://doi.org/10.1016/j.molbiopara.2017.06.006eng
dcterms.referencesSauer, B., 1998. Inducible gene targeting in mice using the Cre/lox system. Methods San Diego Calif 14, 381–392. https://doi.org/10.1006/meth.1998.0593eng
dcterms.referencesScahill, M.D., Pastar, I., Cross, G.A.M., 2008. CRE recombinase-based positive-negative selection systems for genetic manipulation in Trypanosoma brucei. Mol. Biochem. Parasitol. 157:73-82. https://doi.org/10.1016/j.molbiopara.2007.10.003.eng
dcterms.referencesSchmidt, E.E., Taylor, D.S., Prigge, J.R., Barnett, S., Capecchi, M.R., 2000. Illegitimate Cre-dependent chromosome rearrangements in transgenic mouse spermatids. Proc. Natl. Acad. Sci. 97, 13702–13707. https://doi.org/10.1073/pnas.240471297eng
dcterms.referencesSchumann Burkard, G., Jutzi, P., Roditi, I., 2011. Genome-wide RNAi screens in bloodstream form trypanosomes identify drug transporters. Mol. Biochem. Parasitol. 175, 91–94. https://doi.org/10.1016/j.molbiopara.2010.09.002eng
dcterms.referencesSilver, D.P., Livingston, D.M., 2001. Self-excising retroviral vectors encoding the Cre recombinase overcome Cre-mediated cellular toxicity. Mol. Cell 8, 233–243.eng
dcterms.referencesSoares Medeiros, L.C., South, L., Peng, D., Bustamante, J.M., Wang, W., Bunkofske, M., Perumal, N., Sanchez-Valdez, F., Tarleton, R.L., 2017. Rapid, Selection-Free, High-Efficiency Genome Editing in Protozoan Parasites Using CRISPR-Cas9 Ribonucleoproteins. mBio 8, e01788-17. https://doi.org/10.1128/mBio.01788-17eng
dcterms.referencesSong, Y., Yuan, L., Wang, Y., Chen, M., Deng, J., Lv, Q., Sui, T., Li, Z., Lai, L., 2016. Efficient dual sgRNA-directed large gene deletion in rabbit with CRISPR/Cas9 system. Cell. Mol. Life Sci. 73, 2959–2968. https://doi.org/10.1007/s00018-016-2143-zeng
dcterms.referencesTaylor, M.C., Kelly, J.M., 2006. pTcINDEX: a stable tetracycline-regulated expression vector for Trypanosoma cruzi. BMC Biotechnol. 6, 32. https://doi.org/10.1186/1472-6750-6-32eng
dcterms.referencesTesta, G., Stewart, A.F., 2000. Cre ating a trans lox ation: Engineering interchromosomal translocations in the mouse. EMBO Rep. 1, 120–121. https://doi.org/10.1093/embo-reports/kvd035eng
dcterms.referencesTronche, F., Casanova, E., Turiault, M., Sahly, I., Kellendonk, C., 2002. When reverse genetics meets physiology: the use of site-specific recombinases in mice. FEBS Lett. 529, 116–121.eng
dcterms.referencesWyllie, S., Patterson, S., Fairlamb, A.H., 2013. Assessing the Essentiality of Leishmania donovani Nitroreductase and Its Role in Nitro Drug Activation. Antimicrob. Agents Chemother. 57, 901–906. https://doi.org/10.1128/AAC.01788-12eng
oaire.versioninfo:eu-repo/semantics/submittedVersioneng

Archivos

Bloque original
Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
IntJournalforPar.pdf
Tamaño:
2.82 MB
Formato:
Adobe Portable Document Format
Descripción:
PDF
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
381 B
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones