Elaboración de bioinsumos para diagnóstico de biología molecular mediante la síntesis de nanopartículas magnéticas y la sobreexpresión de proteínas.

datacite.rightshttp://purl.org/coar/access_right/c_16ecspa
dc.contributor.advisorMachado Sierra, Elwi Guillermo
dc.contributor.advisorPacheco Londoño, Leonardo Carlos
dc.contributor.authorRincón Mendoza, Laura Vanessa
dc.contributor.authorCastellar Vergara, Ramiro José
dc.contributor.authorNegrete Julio, Alexey Alberto
dc.date.accessioned2023-11-28T16:31:05Z
dc.date.available2023-11-28T16:31:05Z
dc.date.issued2023
dc.description.abstractLa pandemia del SARS-CoV-2 ha dejado una huella imborrable en la conciencia global, no solo en términos de salud pública, sino también en la percepción de la autonomía y la dependencia tecnológica en diversos sectores. Uno de los aspectos más reveladores de esta dependencia ha sido la escasez de suministros esenciales, particularmente los kits diagnósticos para el SARS-CoV-2. En un abrir y cerrar de ojos, estos kits se convirtieron en un bien preciado, una herramienta vital para detectar y rastrear el virus. Sin embargo, la producción nacional no pudo estar a la altura de la creciente demanda, lo que puso en evidencia la vulnerabilidad de depender en gran medida de insumos extranjeros en tiempos de crisis. Fue en este contexto que surgió la necesidad de buscar una solución local y autónoma para abordar esta carestía de suministros críticos. En esta búsqueda de autonomía biotecnológica, se decidió estandarizar una metodología que permitiera la sobreexpresión heteróloga de la enzima polimerasa de Thermus aquaticus, o Taq pol. Esta enzima desempeña un papel crucial en la reacción en cadena de la polimerasa (PCR), una técnica ampliamente utilizada en la amplificación del material genético. La decisión de sobreexpresar la Taq pol tenía como objetivo reducir la dependencia de la importación de esta enzima y, al mismo tiempo, fortalecer la capacidad de llevar a cabo pruebas de diagnóstico a nivel local. El proceso comenzó con la obtención de un vector de expresión denominado pOPENTaq, que incluía un promotor inducible con IPTG y un gen de resistencia a la ampicilina. Este vector se usó para transformar bacterias de Escherichia coli BL21, con el objetivo de lograr la sobreexpresión de la Taq pol. Simultáneamente, se llevó a cabo la estandarización de un protocolo eficiente para la extracción de plásmido, una molécula de ADN circular que se utiliza en la clonación y otras aplicaciones biotecnológicas. La transformación se verificó mediante el crecimiento bacteriano en un medio LB suplementado con ampicilina. Sin embargo, en estas etapas iniciales del proyecto, no se logró la sobreexpresión funcional de la Taq pol. Como resultado, se tomó la decisión de cambiar a una cepa diferente de E. coli, conocida como E. coli Rosseta (DE3), que es resistente al cloranfenicol y, según la literatura, presenta una maquinaria de expresión más eficiente. Este cambio tenía como objetivo superar las limitaciones observadas en la sobreexpresión de la proteína esencial para la PCR. El siguiente paso en este proceso involucra la purificación y concentración de la enzima Taq pol una vez que se logre su sobreexpresión en E. coli Rosseta (DE3). Esto implica la aplicación de técnicas de laboratorio para separar y refinar la enzima, asegurando que esté libre de contaminantes y en una concentración adecuada para su uso en aplicaciones de PCR. Una vez que se haya completado con éxito la purificación y concentración de la enzima, se procederá a evaluar su actividad de polimerización mediante una PCR. Este proceso implica utilizar la enzima Taq pol purificada en una reacción de PCR para amplificar una región específica de ADN, lo que permitirá confirmar su funcionalidad. Mientras tanto, en paralelo a estos esfuerzos para lograr la autonomía en la producción de Taq pol, se llevó a cabo un proyecto destinado a abordar otra faceta crítica de la dependencia biotecnológica. Con el objetivo de lograr una extracción de ADN más eficiente y rápida, se planteó la síntesis de nanopartículas magnéticas (NPM) a partir de una solución de FeCl3 y FeCl2. Las NPM se diseñaron con características específicas para la extracción de ácidos nucleicos y se estandarizó el protocolo de síntesis para obtener partículas de 5-20 nm de tamaño. Estas NPM se utilizaron para optimizar una metodología de extracción de ADN genómico bacteriano. Comparando esta metodología con las soluciones comerciales que emplean NPM o columnas de sílice, se logró reducir significativamente el tiempo de trabajo, lo que presentó ventajas evidentes en términos de eficiencia y ahorro de costos. No se necesitaba el uso de equipos costosos, como las centrifugas, lo que hacía que esta metodología fuera especialmente atractiva para aplicaciones en entornos con recursos limitados. La eficacia de este protocolo polivalente para la extracción de ADN se validó mediante la cuantificación del ADN utilizando espectrofotometría de luz UV. La electroforesis en gel de agarosa reveló la presencia de ADN íntegro y de alta calidad en más del 76% de las muestras analizadas, lo que subraya la utilidad de esta metodología en la obtención de ADN para su uso en diagnóstico y análisis genético. Un aspecto clave de este enfoque fue su polivalencia, ya que servía como base para la extracción de ARN y ADN plasmídico, ampliando aún más su utilidad en una variedad de aplicaciones de biología molecular. Esta versatilidad reveló que la síntesis autónoma de insumos es crucial para el diagnóstico y la investigación, reduciendo los gastos y el tiempo de espera en comparación con las metodologías comerciales convencionales. La capacidad de utilizar las mismas nanopartículas magnéticas para extraer tanto ácidos nucleicos como ADN plasmídico demuestra la versatilidad y el potencial de esta tecnología en diversas aplicaciones biotecnológicas. En última instancia, reconocemos que esta investigación no está exenta de limitaciones, y cada desafío encontrado ha proporcionado oportunidades para investigaciones futuras. La optimización de los protocolos de síntesis y extracción, así como la caracterización de las nanopartículas magnéticas, son áreas que merecen un seguimiento continuo. Además, la exploración de diferentes sistemas de sobreexpresión de enzimas también puede ofrecer nuevas perspectivas para mejorar la producción de Taq pol y otros componentes esenciales en biología molecular. Este trabajo no solo ha contribuido a abordar desafíos críticos en un contexto de emergencia sanitaria, sino que también ha sentado las bases para futuras investigaciones y avances en la dirección de la autonomía biotecnológica. Esperamos que inspire a la comunidad científica a continuar explorando nuevas vías de investigación y desarrollo en biotecnología y biología molecular, impulsando así la innovación en estos campos y fortaleciendo la capacidad del país para enfrentar desafíos futuros con recursos propios.spa
dc.description.abstractThe SARS-CoV-2 pandemic has left an indelible mark on the global consciousness, not only in terms of public health, but also in the perception of autonomy and technological dependence in various sectors. One of the most telling aspects of this dependence has been the shortage of essential supplies, particularly diagnostic kits for SARS-CoV-2. In the blink of an eye, these kits became a precious commodity, a vital tool for detecting and tracking the virus. However, domestic production could not keep up with the growing demand, highlighting the vulnerability of relying heavily on foreign inputs in times of crisis. It was in this context that the need arose to seek a local and autonomous solution to address this shortage of critical supplies. In this search for biotechnological autonomy, it was decided to standardize a methodology that would allow heterologous overexpression of the Thermus aquaticus polymerase enzyme, or Taq pol. This enzyme plays a crucial role in the polymerase chain reaction (PCR), a technique widely used in the amplification of genetic material. The decision to overexpress Taq pol was aimed at reducing dependence on the importation of this enzyme and, at the same time, strengthening the ability to carry out diagnostic tests locally. The process began with obtaining an expression vector called pOPENTaq, which included an IPTG-inducible promoter and an ampicillin resistance gene. This vector was used to transform Escherichia coli BL21 bacteria, with the aim of achieving overexpression of Taq pol. Simultaneously, standardization of an efficient protocol for the extraction of plasmid, a circular DNA molecule used in cloning and other biotechnological applications, was carried out. Transformation was verified by bacterial growth in LB medium supplemented with ampicillin. However, in these initial stages of the project, functional overexpression of Taq pol was not achieved. As a result, the decision was made to switch to a different strain of E. coli, known as E. coli Rosseta (DE3), which is resistant to chloramphenicol and, according to the literature, has a more efficient expression machinery. This change was intended to overcome the limitations observed in the overexpression of the essential protein for PCR. The next step in this process involves the purification and concentration of the Taq pol enzyme once its overexpression in E. coli Rosseta (DE3) is achieved. This involves the application of laboratory techniques to separate and refine the enzyme, ensuring that it is free of contaminants and at a concentration suitable for use in PCR applications. Once the purification and concentration of the enzyme has been successfully completed, its polymerization activity will be assessed by PCR. This process involves using the purified Taq pol enzyme in a PCR reaction to amplify a specific region of DNA, which will allow its functionality to be confirmed. Meanwhile, in parallel to these efforts to achieve autonomy in Taq pol production, a project aimed at addressing another critical facet of biotechnology dependence was undertaken. To achieve more efficient and faster DNA extraction, the synthesis of magnetic nanoparticles (MNP) from a solution of FeCl3 and FeCl2 was proposed, The NPM were designed with specific characteristics for nucleic acid extraction and the synthesis protocol was standardized to obtain particles of 5-20 nm in size. These NPM were used to optimize a methodology for bacterial genomic DNA extraction. Comparing this methodology with commercial solutions using NPM or silica columns, a significant reduction in working time was achieved, which presented obvious advantages in terms of efficiency and cost savings. The use of expensive equipment, such as centrifuges, was not required, making this methodology particularly attractive for applications in resource-limited environments. The efficacy of this multi-purpose protocol for DNA extraction was validated by DNA quantification using UV light spectrophotometry. Agarose gel electrophoresis revealed the presence of high-quality, intact DNA in more than 76% of the samples tested, underscoring the utility of this methodology in obtaining DNA for use in diagnostics and genetic analysis. A key aspect of this approach was its versatility, as it served as a basis for RNA and plasmid DNA extraction, further extending its utility in a variety of molecular biology applications, this versatility revealed that autonomous input synthesis is crucial for diagnostics and research, reducing costs and lead time compared to conventional commercial methodologies. The ability to use the same magnetic nanoparticles to extract both nucleic acids and plasmid DNA demonstrates the versatility and potential of this technology in diverse biotechnological applications. Ultimately, we recognize that this research is not without limitations, and each challenge encountered has provided opportunities for future research. Optimization of synthesis and extraction protocols, as well as characterization of magnetic nanoparticles, are areas that warrant continued follow-up. In addition, the exploration of different enzyme overexpression systems may also offer new perspectives to improve the production of Taq pol and other essential components in molecular biology. This work has not only contributed to addressing critical challenges in a context of health emergency but has also laid the groundwork for future research and advances in the direction of biotechnological autonomy. We hope that it will inspire the scientific community to continue exploring new avenues of research and development in biotechnology and molecular biology, thus promoting innovation in these fields and strengthening the country's capacity to face future challenges with its own resources.eng
dc.format.mimetypepdfspa
dc.identifier.urihttps://hdl.handle.net/20.500.12442/13455
dc.language.isospaspa
dc.publisherEdiciones Universidad Simón Bolívarspa
dc.publisherFacultad de Ciencias Básicas y Biomédicasspa
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccessspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectBioinsumosspa
dc.subjectNanopartículas magnéticasspa
dc.subjectTaq polimerasaspa
dc.subjectAutonomía biotecnológicaspa
dc.subjectBio-inputsspa
dc.subjectMagnetic nanoparticlesspa
dc.subjectTaq polymerasespa
dc.subjectBiotechnological autonomyspa
dc.titleElaboración de bioinsumos para diagnóstico de biología molecular mediante la síntesis de nanopartículas magnéticas y la sobreexpresión de proteínas.spa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.spaTrabajo de grado másterspa
dcterms.referencesJones, K.E.; Patel, N.G.; Levy, M.A.; Storeygard, A.; Balk, D.; Gittleman, J.L.; Daszak, P. Global Trends in Emerging Infectious Diseases. Nature 2008, 451, 990–993, doi:10.1038/nature06536.eng
dcterms.referencesKaresh, W.B.; Dobson, A.; Lloyd-Smith, J.O.; Lubroth, J.; Dixon, M.A.; Bennett, M.; Aldrich, S.; Harrington, T.; Formenty, P.; Loh, E.H.; et al. Ecology of Zoonoses: Natural and Unnatural Histories. The Lancet 2012, 380, 1936–1945, doi:10.1016/S0140-6736(12)61678-X.eng
dcterms.referencesSánchez-González, M.A. HISTORIA Y FUTURO DE LAS PANDEMIAS. Revista Médica Clínica Las Condes 2021, 32, 7–13, doi: 10.1016/j.rmclc.2020.12.007spa
dcterms.referencesMaguiña Vargas, C.; Gastelo Acosta, R.; Tequen Bernilla, A. El Nuevo Coronavirus y La Pandemia Del Covid-19. Revista Médica Herediana 2020, 31, 125–131, doi:10.20453/rmh. v31i2.3776.spa
dcterms.referencesIntituto Nacional de Salud COVID-19 En Colombia.spa
dcterms.referencesOrganizacion Panamerinaca de la Salud Indicadores de Incidencia; 2021;spa
dcterms.referencesAmerican Society for Microbiology Supply Shortages Impacting COVID-19 and Non- COVID Testing. 2021.eng
dcterms.referencesOspina Ramirez, M.L. Covid-19: Need for Technological Independence. Colomb Med 2020, 1–2, doi:10.25100/cm. v51i2.4334.eng
dcterms.referencesNaciones Unidas Objetivos de Desarrollo Sostenible: Objetivo 9 Available online: https://www.un.org/sustainabledevelopment/es/infrastructure/ (accessed on 4 May 2023).spa
dcterms.referencesDahm, R. From Discovering to Understanding. EMBO Rep 2010, 11, 153–160, doi:10.1038/embor.2010.14.eng
dcterms.referencesWATSON, J.D.; CRICK, F.H.C. Molecular Structure of Nucleic Acids: A Structure for Deoxyribose Nucleic Acid. Nature 1953, 171, 737–738, doi:10.1038/171737a0.eng
dcterms.referencesWikipedia contributors DNA Available online: https://en.wikipedia.org/wiki/DNA#External_links (accessed on 7 May 2023).spa
dcterms.referencesCox, M.M., & N.D.L. Lehninger: Principles of Biochemistry. 2008.eng
dcterms.referencesKornberg, T.; Gefter, M.L. DNA Synthesis in Cell-Free Extracts of a DNA Polymerase- Defective Mutant. Biochem Biophys Res Commun 1970, 40, 1348–1355, doi:10.1016/0006- 291X (70)90014-8.eng
dcterms.referencesThe Biologic Synthesis of Deoxyribonucleic Acid.eng
dcterms.referencesOjeda-Fernández, C. ADN Polimerasa. 2022, doi:10.5281/zenodo.7247865spa
dcterms.referencesChien, A.; Edgar, D.B.; Trela, J.M. Deoxyribonucleic Acid Polymerase from the Extreme Thermophile Thermus Aquaticus. J Bacteriol 1976, 127, 1550–1557, doi:10.1128/jb.127.3.1550-1557.1976.eng
dcterms.referencesFarooqui, A.K.; Ahmad, H.; Rehmani, M.U.; Husain, A. Quick and Easy Method for Extraction and Purification of Pfu-Sso7d, a High Processivity DNA Polymerase. Protein Expr Purif 2023, 208–209, 106276, doi: 10.1016/j.pep.2023.106276.eng
dcterms.referencesEngelke, D.R.; Krikos, A.; Bruck, M.E.; Ginsburg, D. Purification of Thermus Aquaticus DNA Polymerase Expressed in Escherichia Coli. Anal Biochem 1990, 191, 396–400, doi:10.1016/0003-2697(90)90238-5.eng
dcterms.referencesLawyer, F.C.; Stoffel, S.; Saiki, R.K.; Myambo, K.; Drummond, R.; Gelfand, D.H. Isolation, Characterization, and Expression in Escherichia Coli of the DNA Polymerase Gene from Thermus Aquaticus. Journal of Biological Chemistry 1989, 264, 6427–6437, doi:10.1016/S0021-9258(18)83367-1.eng
dcterms.referencesMoazen, F.; Rastegari, A.; Hoseini, S.; Panjehpour, M.; Miroliaei, M.; Sadeghi, H.M. Optimization of Taq DNA Polymerase Enzyme Expression in Escherichia Coli. Adv Biomed Res 2012, 1, 82, doi:10.4103/2277-9175.103004.eng
dcterms.referencesDin, R.U.; Khan, M.I.; Jan, A.; Khan, S.A.; Ali, I. A Novel Approach for High-Level Expression and Purification of GST-Fused Highly Thermostable Taq DNA Polymerase in Escherichia Coli. Arch Microbiol 2020, 202, 1449–1458, doi:10.1007/s00203-020-01860-9.eng
dcterms.referencesPpyun, H.; Kim, I.; Cho, S.S.; Seo, K.J.; Yoon, K.; Kwon, S.-T. Improved PCR Performance Using Mutant Tpa-S DNA Polymerases from the Hyperthermophilic Archaeon Thermococcus Pacificus. J Biotechnol 2013, 164, 363–370, doi: 10.1016/j.jbiotec.2013.01.022eng
dcterms.referencesTatti, K.M.; Moran, C.P. [13] RNA Polymerase σ Factors of Bacillus Subtilis: Purification and Characterization. In; 1996; pp. 149–162.eng
dcterms.referencesKoreeda, A.; Taguchi, R.; Miyamoto, K.; Kuwahara, Y.; Hirooka, K. Protein Expression Systems Combining a Flavonoid-Inducible Promoter and T7 RNA Polymerase in Bacillus Subtilis. Biosci Biotechnol Biochem 2023, 87, 1017–1028, doi:10.1093/bbb/zbad072.eng
dcterms.referencesSáez Moreno, D.; Qimron, U.; Azeredo, J.; Domingues, L. Towards T7 RNA Polymerase (T7RNAP)-Based Expression System in Yeast: Challenges and Opportunities. Bioengineered 2022, 13, 14947–14959, doi:10.1080/21655979.2023.2180579.eng
dcterms.referencesBromham, L. An Introduction to Molecular Evolution and Phylogenetics. 2015, 2.eng
dcterms.referencesLu, A.-H.; Salabas, E.L.; Schüth, F. Magnetic Nanoparticles: Synthesis, Protection, Functionalization, and Application. Angewandte Chemie International Edition 2007, 46, 1222–1244, doi:10.1002/anie.200602866.eng
dcterms.referencesIzuyama, T.; Kim, D.-J.; Kubo, R. Band Theoretical Interpretation of Neutron Diffraction Phenomena in Ferromagnetic Metals. J Physical Soc Japan 1963, 18, 1025–1042, doi:10.1143/JPSJ.18.1025.eng
dcterms.referencesRobinson, P.J.; Dunnill, P.; Lilly, M.D. The Properties of Magnetic Supports in Relation to Immobilized Enzyme Reactors. Biotechnol Bioeng 1973, 15, 603–606, doi:10.1002/bit.260150318eng
dcterms.referencesVogelstein, B.; Gillespie, D. Preparative and Analytical Purification of DNA from Agarose. Proceedings of the National Academy of Sciences 1979, 76, 615–619, doi:10.1073/pnas.76.2.615.eng
dcterms.referencesMassart, R. Preparation of Aqueous Magnetic Liquids in Alkaline and Acidic Media. IEEE Trans Magn 1981, 17, 1247–1248, doi:10.1109/TMAG.1981.1061188.eng
dcterms.referencesTorres Rodríguez, J.; Alonso López Medina Dra Edna Lorena Hernández López Jesús Alberto Maytorena Córdova Daniel Sauceda Carvajal, J. Extracción de Ácidos Nucleicos Usando Nanopartículas Núcleo-Coraza; 2017.eng
dcterms.referencesJ Sambrook Molecular Cloning This Is a Free Sample of Content from Molecular Cloning: A Laboratory Manual, 4th Edition. Click Here for More Information or to Buy the Book; 2012.eng
dcterms.referencesRoca, A.G.; Marco, J.F.; Morales, M. del P.; Serna, C.J. Effect of Nature and Particle Size on Properties of Uniform Magnetite and Maghemite Nanoparticles. The Journal of Physical Chemistry C 2007, 111, 18577–18584, doi:10.1021/jp075133m.eng
dcterms.referencesOberacker, P.; Stepper, P.; Bond, D.M.; Höhn, S.; Focken, J.; Meyer, V.; Schelle, L.; Sugrue, V.J.; Jeunen, G.J.; Moser, T.; et al. Bio-On-Magnetic-Beads (BOMB): GDNA Extraction Using GITC Lysis. PLoS Biol 2019, 17, doi: 10.1371/journal.pbio.3000107.eng
dcterms.referencesSadeghi, H.M.; Hoseini, S.; Miroliaei, M.; Moazen, F.; Panjehpour, M.; Rastegari, A. Optimization of Taq DNA Polymerase Enzyme Expression in Escherichia Coli. Avd. Biomed Res 2012, 1, 82, doi:10.4103/2277-9175eng
oaire.versioninfo:eu-repo/semantics/acceptedVersionspa
sb.programaMicrobiologíaspa
sb.sedeSede Barranquillaspa

Archivos

Bloque original
Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
PDF_Resumen.pdf
Tamaño:
218.94 KB
Formato:
Adobe Portable Document Format
No hay miniatura disponible
Nombre:
PDF.pdf
Tamaño:
2.4 MB
Formato:
Adobe Portable Document Format

Colecciones