Quantum cascade laser back‐reflection spectroscopy at grazing‐angle incidence using the fast Fourier transform as a data preprocessing algorithm

dc.contributor.authorPacheco‐Londoño, Leonardo C.
dc.contributor.authorGalán‐Freyle, Nataly J.
dc.contributor.authorFigueroa, Amanda
dc.contributor.authorInfante‐Castillo, Ricardo
dc.contributor.authorRuiz‐Caballero, José L.
dc.contributor.authorHernández‐Rivera, Samuel P.
dc.date.accessioned2019-09-20T13:36:45Z
dc.date.available2019-09-20T13:36:45Z
dc.date.issued2019
dc.description.abstractA simple optical layout for a grazing‐angle probe (GAP) mount for coupling to a midinfrared (MIR) quantum cascade laser (QCL) spectrometer is described. This assembly enables reflectance measurements at high incident angles. In the case of optically thin films and deposits on MIR reflective substrates, a double‐pass effect occurs, which is accompanied by the absorption of deposited samples in a reflection‐absorption infrared spectroscopy modality. The optical system allows MIR light to pass through the sample twice. Applications to cleaning validation and detection of traces of explosives using the QCL‐GAP is reported. Principal component analysis and partial least squares multivariate chemometrics methods were employed to analyze MIR spectra to evaluate an analytical methodology for confirming the presence of residues of pharmaceutically active ingredients (irbesartan) and of traces of explosives (cyclotrimethylenetrinitramine [RDX]) that have been deposited on metallic substrates. The performance of spectral preprocessing via fast Fourier transform (FFT) analysis was evaluated for the ability to extract more powerful and accurate information from the obtained reflectance spectra. According to the figures of merit of this new technique, FFT with chemometric routines can obtain sensitivity and specificity values of 1.000. The limits of detection that were obtained for irbesartan and RDX were 31 and 7 ng/cm2, respectively. The experimental results demonstrate that the proposed system, when used together with proper chemometrics routines, constitutes a powerful tool for the development of methodologies that have lower detection limits for a range of applications that involve detecting traces of analytes that reside on substrates as contaminants.eng
dc.identifier.issn1099128X
dc.identifier.urihttps://hdl.handle.net/20.500.12442/4003
dc.language.isoengeng
dc.publisherWiley Online Libraryeng
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacionaleng
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccesseng
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourceJournal of Chemometricseng
dc.source.urihttps://doi. org/10.1002/cem.3167eng
dc.subjectFast Fourier transform (FFT)eng
dc.subjectGrazing angle MIR laser spectroscopyeng
dc.subjectIrbesartan/RDXeng
dc.subjectPartial least squares (PLS)eng
dc.subjectPrincipal component analysis (PCA)eng
dc.titleQuantum cascade laser back‐reflection spectroscopy at grazing‐angle incidence using the fast Fourier transform as a data preprocessing algorithmeng
dc.typearticleeng
dcterms.referencesGalán‐Freyle NJ, Pacheco‐Londoño LC, Figueroa‐Navedo AM, Hernandez‐Rivera SP. Standoff detection of highly energetic materials using laser‐induced thermal excitation of infrared emission. Appl Spectrosc. 2015;69(5):535‐544.eng
dcterms.referencesHugger S, Fuchs F, Jarvis J, et al. Broadband‐tunable external‐cavity quantum cascade lasers for the spectroscopic detection of hazardous substances. Proc SPIE. 2013;86312I:86312I‐86313I.eng
dcterms.referencesYang CSC, Brown EE, Hommerich U, et al. Long‐wave, infrared laser‐induced breakdown (LIBS) spectroscopy emissions from energetic materials. Appl Spectrosc. 2012;66(12):1397‐1402.eng
dcterms.referencesMisra AK, Sharma SK, Acosta TE, Porter JN, Bates DE. Single‐pulse standoff Raman detection of chemicals from 120 m distance during daytime. Appl Spectrosc. 2012;66(11):1279‐1285.eng
dcterms.referencesCiaffoni L, Hancock G, Harrison JJ, et al. Demonstration of a mid‐infrared cavity enhanced absorption spectrometer for breath acetone detection. Anal Chem. 2012;85(2):846‐850.eng
dcterms.referencesOrtiz‐Rivera W, Pacheco‐Londoño LC, Castro‐Suarez JR, Felix‐Rivera H, Hernandez‐Rivera SP. Vibrational spectroscopy standoff detection of threat chemicals. Proc SPIE. 2011; 803129;803129‐803110.eng
dcterms.referencesRamírez ML, Pacheco LC, Barreto MA, Hernández‐Rivera SP. Enhanced Raman detection using spray‐on nanoparticles/remote sensed Raman spectroscopy. In: Nagarajan R, Zukas W, Hatton TA, Lee S, eds. Nanoscience and Nanotechnology for Chemical and Biological Defense. ACS Symposium Series # 1016, Ch. 10. New York, NY: Oxford University Press; 2009:131‐140.eng
dcterms.referencesPatel CKN. Laser based in‐situ and standoff detection of chemical warfare agents and explosives. Proc SPIE. 2009;7484:748402.eng
dcterms.referencesPrimera‐Pedrozo OM, Jerez‐Rozo JI, De La Cruz‐Montoya E, Luna‐Pineda T, Pacheco‐Londoño LC, Hernandez‐Rivera SP. Nanotechnology‐ based detection of explosives and biological agents simulants. Sensors Journal IEEE 2008; 8(6): 963‐973.eng
dcterms.referencesGottfried JL, De Lucia FC, Munson CA, Miziolek AW. Standoff detection of chemical and biological threats using laser‐induced breakdown spectroscopy. Appl Spectrosc. 2008;62(4):353‐363.eng
dcterms.referencesAverett LA, Griffiths PR. Mid‐infrared diffuse reflection of a strongly absorbing analyte on non‐absorbing and absorbing matrices. Part II: thin liquid layers on powdered substrates. Appl Spectrosc. 2008;62(4):383‐388.eng
dcterms.referencesTorres A, Padilla I, Hwang S. Physical modeling of 2,4‐DNT gaseous diffusion through unsaturated soil. Proc SPIE. 2007;6553:65531Q‐ 65531Q‐65512.eng
dcterms.referencesHernández MD, Santiago I, Padilla IY. Macro‐sorption of 2,4‐dinitrotoluene onto sandy and clay soils. Proc SPIE 2006; 6217(621736‐ 621736‐621738.eng
dcterms.referencesManrique‐Bastidas CA, Mina N, Castro ME, Hernandez‐Rivera SP. Raman microspectroscopy and FTIR crystallization studies of 2,4,6‐ TNT in soil. Proc SPIE. 2005;5794:1358‐1365.eng
dcterms.referencesDuxbury G, Langford N, McCulloch MT, Wright S. Quantum cascade semiconductor infrared and far‐infrared lasers: from trace gas sensing to non‐linear optics. Chem Soc Rev. 2005;34(11):921‐934.eng
dcterms.referencesBlanco A, Mina N, Castro ME, Castillo‐Chará J, Hernandez‐Rivera SP. Effect of environmental conditions on the spectroscopic signature of DNT in sand. Proc SPIE. 2005;5794:1281‐1289.eng
dcterms.referencesHernandez‐Rivera SP, Manrique‐Bastidas CA, Blanco A, et al. Spectroscopic characterization of nitroaromatic landmine signature explosives. Proc SPIE. 2004;5415:474‐485.eng
dcterms.referencesBáez B, Correa SN, Hernández‐Rivera SP, et al. Transport of explosives I: TNT in soil and its equilibrium vapor. Proc SPIE. 2004;5415:1389‐1399.eng
dcterms.referencesEwing RG, Atkinson DA, Eiceman GA, Ewing GJ. A critical review of ion mobility spectrometry for the detection of explosives and explosive related compounds. Talanta. 2001;54(3):515‐529.eng
dcterms.referencesNamjou K, Cai S, Whittaker EA, et al. Sensitive absorption spectroscopy with a room‐temperature distributed‐feedback quantum‐cascade laser. Opt Lett. 1998;23(3):219‐221.eng
dcterms.referencesCastro‐Suarez JR, Pacheco‐Londoño LC, Aparicio‐Bolaño J, Hernández‐Rivera SP. Active mode remote infrared spectroscopy detection of TNT and PETN on aluminum substrates. J Spectrosc. 2017;2017:2730371.eng
dcterms.referencesCastro‐Suarez JR, Hidalgo‐Santiago M, Hernández‐Rivera SP. Detection of highly energetic materials on non‐reflective substrates using quantum cascade laser spectroscopy. Appl Spectrosc. 2015;69(9):1023‐1035.eng
dcterms.referencesFigueroa‐Navedo AM, Galán‐Freyle NJ, Pacheco‐Londoño LC, Hernández‐Rivera SP. Chemometrics‐enhanced laser‐induced thermal emission detection of PETN and other explosives on various substrates. J Chemometr. 2015;29(6):329‐337.eng
dcterms.referencesGalán‐Freyle NJ, Pacheco‐Londoño LC, Román‐Ospino AD, Hernández‐Rivera SP. Applications of quantum cascade laser spectroscopy in the analysis of pharmaceutical formulations. Appl Spectrosc. 2016;70(9):1511‐1519.eng
dcterms.referencesHamilton ML, Perston BB, Harland PW, Williamson BE, Thomson MA, Melling PJ. Grazing‐angle fiber‐optic IRRAS for in situ cleaning validation. Org Process Res Dev. 2005;9(3):337‐343.eng
dcterms.referencesMehta NK, Goenaga‐Polo J, Hernandez‐Rivera SP, Hernandez D, Thomson MA, Melling PJ. Development of an in situ spectroscopic method for cleaning validation using mid‐IR fiber‐optics. BioPharm. 2002;15:36‐42.eng
dcterms.referencesCenter for Drug Evaluation and Research, Center for Biologics Evaluation and Research. Current Good Manufacturing Practice. US FDA Department of Health and Human Services. In: Guidance for Industry Sterile Drug Products Produced by Aseptic Processing. Maryland: Office of Regulatory Affairs Ed; 2004.eng
dcterms.referencesH. Laboratories (Ed). Total organic carbon (TOC) in water samples. In: Technical Notes. New Zealand: Hill‐Laboratories, Hamilton; 2015.eng
dcterms.referencesPrabu SL, Suriyaprakash T. Cleaning validation and its importance in pharmaceutical industry. Pharm Times. 2010;42(7):21‐25.eng
dcterms.referencesWalsh A. Cleaning Validation for the 21st century: overview of the new ISPE cleaning guide. Pharmaceutical Eng. 2011;31(6).eng
dcterms.referencesYang P, Burson K, Feder D, Macdonald F. Swab sampling for cleaning validation. Pharm Tech. 2005; Jan;84‐94.eng
dcterms.referencesLewen N, Nugent D. The use of inductively coupled plasma‐atomic emission spectroscopy (ICP‐AES) in the determination of lithium in cleaning validation swabs. J Pharm Biomed Anal. 2010;52(5):652‐655.eng
dcterms.referencesForsyth RJ, van Nostrand V, Martin GP. Visible residue limit for cleaning validation and its potential application in a pharmaceutical research facility. Pharm Tech. 2004;28(10):58‐72.eng
dcterms.referencesGriffiths PR, De Haseth JA. Fourier Transform Infrared Spectrometry. 2nd ed. Hoboken, NJ, USA: John Wiley & Sons; 2007.eng
dcterms.referencesLove JC, Wolfe DB, Haasch R, et al. Formation and structure of self‐assembled monolayers of alkanethiolates on palladium. J Am Chem Soc. 2003;125(9):2597‐2609.eng
dcterms.referencesHoffmann H, Mayer U, Brunner H, Krischanitz A. Reflection‐absorption infrared spectroscopy of self‐assembled monolayers on gold and silicon surfaces. Vib Spectrosc. 1995;8(2):151‐157.eng
dcterms.referencesFaist J, Capasso F, Sivco DL, Sirtori C, Hutchinson AL, Cho AY. Quantum cascade laser. Science. 1994;264(5158):553‐556.eng
dcterms.referencesHvozdara L, Pennington N, Kraft M, Karlowatz M, Mizaikoff B. Quantum cascade lasers for mid‐infrared spectroscopy. Vib Spectrosc. 2002;30(1):53‐58.eng
dcterms.referencesvan Helden JH, Lang N, Macherius U, Zimmermann H, Röpcke J. Addendum: sensitive trace gas detection with cavity enhanced absorption spectroscopy using a continuous wave external‐cavity quantum cascade laser. Appl Phys Lett. 2013;103(13):131114.eng
dcterms.referencesReidl‐Leuthner C, Ofner J, Tomischko W, Lohninger H, Lendl B. Simultaneous open‐path determination of road side mono‐nitrogen oxides employing mid‐IR laser spectroscopy. Atmos Environ. 2015;112(Supplement C):189‐195.eng
dcterms.referencesPadilla‐Jiménez AC, Ortiz‐Rivera W, Rios‐Velazquez C, Vazquez‐Ayala I, Hernández‐Rivera SP. Detection and discrimination of microorganisms on various substrates with quantum cascade laser spectroscopy. J Opt Eng. 2014;53(6):061611‐061611.eng
dcterms.referencesHernandez‐Rivera SP. Applications of quantum cascade laser scanners for remote detection of chemical and biological threats and weapons of mass destruction. DTIC Document, 2014.eng
dcterms.referencesCastro‐Suarez JR, Hidalgo‐Santiago M, Hernandez‐Rivera SP. Detection of highly energetic materials on non‐reflective substrates using quantum cascade laser spectroscopy. Appl Spectrosc. 2015;69(9):1023‐1035.eng
dcterms.referencesLiu X, Van Neste CW, Gupta M, Tsui YY, Kim S, Thundat T. Standoff reflection–absorption spectra of surface adsorbed explosives measured with pulsed quantum cascade lasers. Sens Actuator B‐Chem. 2014;191:450‐456.eng
dcterms.referencesKotidis P, Deutsch E, Zhu N, Cavicchio D, QCL spectroscopy system and applications therefor. US Patent: 2012/0033220 A1eng
dcterms.referencesCastro‐Suarez JR, Pacheco‐Londoño LC, Vélez‐Reyes M, Diem M, Tague TJ, Hernandez‐Rivera SP. FT‐IR standoff detection of thermally excited emissions of trinitrotoluene (TNT) deposited on aluminum substrates. Appl Spectrosc. 2013;67(2):181‐186.eng
dcterms.referencesHernández‐Rivera SP, Castro‐Suarez JR, Pacheco‐Londoño LC, Primera‐Pedrozo OM, Rey‐Villamizar N, Vélez‐Reyes M, Diem M. Midinfrared vibrational spectroscopy standoff detection of highly energetic materials: new developments Spectroscopy Magazine: Defense and Security Supplement 2011; April: 2‐9.eng
dcterms.referencesCastro‐Suarez JR., Ortiz‐Rivera W, Galán‐Freyle N, Figueroa‐Navedo A, Pacheco‐Londoño LC, Hernández‐Rivera SP. Multivariate analysis in vibrational spectroscopy of highly energetic materials and chemical warfare agents simulants. (https://doi.org/10.5772/54104), in Multivariate Analysis in Management, Engineering and the Sciences. Valim de Freitas L, Barbosa Rodrigues de Freitas AP. Eds. ISBN 978‐ 953‐51‐0921‐1, InTech, Rijeka, Croatia, 2013, DOI: https://doi.org/10.5772/3301.eng
dcterms.referencesCastro‐Suarez JR, Pacheco‐Londoño LC, Ortiz‐Rivera W, Vélez‐Reyes M, Diem M, Hernández‐Rivera SP. Open path FTIR detection of threat chemicals in air and on surfaces. Proc SPIE. 2011; 801209;801209‐801213.eng
dcterms.referencesHernandez‐Rivera SP, Galán‐Freyle NY, Castro‐Suarez JR, Ortega‐Zúñiga CA, Ortiz W, Figueroa A. Vibrational spectroscopy standoff detection of explosives. Optical Sensors (Optical Society of America, 2013: SW1B. 1.eng
dcterms.referencesGalan‐Freyle NJ, Figueroa‐Navedo AM, Pacheco‐Londoño YC, Ortiz‐Rivera W, Pacheco‐Londoño LC, Hernández‐Rivera SP. Chemometrics‐enhanced fiber optic Raman detection, discrimination and quantification of chemical agents simulants concealed in commercial bottles. Anal Chem Res. 2014;2:15‐22.eng
dcterms.referencesPacheco‐Londoño LC, Ortiz‐Rivera W, Primera‐Pedrozo OM, Hernández‐Rivera SP. Vibrational spectroscopy standoff detection of explosives. Anal Bioanal Chem. 2009;395(2):323‐335.eng
dcterms.referencesPrimera‐Pedrozo O, Soto‐Feliciano Y, Pacheco‐Londoño L, Hernández‐Rivera S. High explosives mixtures detection using fiber optics coupled: grazing angle probe/Fourier transform reflection absorption infrared spectroscopy. Sens Imaging. 2008;9(3‐4):27‐40.eng
dcterms.referencesWrable‐Rose M, Primera‐Pedrozo O, Pacheco‐Londoño L, Hernandez‐Rivera S. Preparation of TNT, RDX and ammonium nitrate standards on gold‐on‐silicon surfaces by thermal inkjet technology. Sens Imaging. 2010;11(4):147‐169.eng
dcterms.referencesFrisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K., Zakrzewski V. G, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas J, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ. "Gaussian 09, Revision B.01” Wallingford, CT, 2009.eng
dcterms.referencesBecke AD. Density‐functional thermochemistry. III. The role of exact exchange. J Chem Phys. 1992;98(7):5648.eng
dcterms.referencesInfante‐Castillo R, Pacheco‐Londoño LC, Hernández‐Rivera SP. Monitoring the a→β solid–solid phase transition of RDX with Raman spectroscopy: a theoretical and experimental study. J Mol Struct. 2010;970(1–3):51‐58.eng
dcterms.referencesInfante‐Castillo R, Pacheco‐Londoño L, Hernández‐Rivera SP. Vibrational spectra and structure of RDX and its 13C‐ and 15N‐labeled derivatives: a theoretical and experimental study. Spectrochim Acta A. 2010;76(2):137‐141.eng
dcterms.referencesFelipe‐Sotelo M, Cal‐Prieto MJ, Ferre J, Boque R, Andrade JM, Carlosena A. Linear PLS regression to cope with interferences of major concomitants in the determination of antimony by ETAAS. J Anal aAt Spectrom. 2006;21(1):61‐68.eng
dcterms.referencesBlanco M, Bautista M, Alcalá M. Preparing calibration sets for use in pharmaceutical analysis by NIR spectroscopy. J Pharm Sci. 2008;97(3):1236‐1245.eng
dcterms.referencesAllegrini F, Olivieri AC. Analytical figures of merit for partial least‐squares coupled to residual multilinearization. Anal Chem. 2012;84(24):10823‐10830.eng
dcterms.referencesOstra M, Ubide C, Vidal M, Zuriarrain J. Detection limit estimator for multivariate calibration by an extension of the IUPAC recommendations for univariate methods. Analyst. 2008;133(4):532‐539.eng
dcterms.referencesOlivieri AC, Faber NM, Ferré J, Boqué R, Kalivas JH, Mark H. Uncertainty estimation and figures of merit for multivariate calibration (IUPAC Technical Report). Pure Appl Chem. 2006;78(3):633‐661.eng
dcterms.referencesBoqué R, Faber NM, Rius FX. Detection limits in classical multivariate calibration models. Anal Chim Acta. 2000;423(1):41‐49.eng
dcterms.referencesBoqué R, Rius FX. Multivariate detection limits estimators. Chemometr Intell Lab. 1996;32(1):11‐23.eng
dcterms.referencesFaber K, Kowalski BR. Improved estimation of the limit of detection in multivariate calibration. Fresen J Anal Chem. 1997;357(7):789‐795.eng
dcterms.referencesBauer G, Wegscheider W, Ortner H. Limits of detection in multivariate calibration. Fresen J Anal Chem. 1991;340(3):135‐139.eng
dcterms.referencesThomsen V, Schatzlein D, Mercuro D. Limits of detection in spectroscopy. Spectroscopy. 2003;18(12):112‐114.eng
dcterms.referencesCawley GC, Leave‐one‐out cross‐validation based model selection criteria for weighted LS‐SVMs. in Neural Networks. 2006; International Joint Conference on Neural Networks. 2006; 1661‐1668.eng

Archivos

Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
368 B
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones