Diseño y evaluación de un prototipo de test para detección de nefropatía hipertensiva
datacite.rights | http://purl.org/coar/access_right/c_16ec | |
dc.contributor.advisor | Navarro Quiroz, Elkin | |
dc.contributor.advisor | Villa Medina, Joe Luis | |
dc.contributor.advisor | Pacheco Londoño, Leonardo Carlos | |
dc.contributor.author | Espinosa Garavito, Alberto Carlos | |
dc.date.accessioned | 2024-05-15T14:19:48Z | |
dc.date.available | 2024-05-15T14:19:48Z | |
dc.date.issued | 2024 | |
dc.description.abstract | La hipertensión arterial (HA) y la enfermedad renal crónica (ERC) presentan una carga sanitaria global considerable, con la HA actuando como un factor de riesgo silente pero potente para la ERC. El seguimiento de la progresión de la ERC en pacientes con HA es fundamental para prevenir el avance hacia la insuficiencia renal y las comorbilidades asociadas. Sin embargo, los métodos convencionales de detección, basados en la medición de la presión arterial y en biomarcadores como la proteinuria y la creatinina sérica, a menudo fallan en identificar las etapas tempranas del daño renal. | spa |
dc.description.abstract | High blood pressure (AH) and chronic kidney disease (CKD) present a considerable global health burden, with AH acting as a silent but potent risk factor for CKD. Monitoring the progression of CKD in patients with AH is essential to prevent progression to renal failure and associated comorbidities. However, conventional screening methods, based on blood pressure measurement and biomarkers such as proteinuria and serum creatinine, often fail to identify the early stages of kidney damage. | eng |
dc.format.mimetype | ||
dc.identifier.uri | https://hdl.handle.net/20.500.12442/14644 | |
dc.language.iso | spa | |
dc.publisher | Ediciones Universidad Simón Bolívar | spa |
dc.rights.accessrights | info:eu-repo/semantics/restrictedAccess | eng |
dc.subject | Hipertensión | spa |
dc.subject | Daño renal | spa |
dc.subject | Espectroscopia Raman de superficie mejorada | spa |
dc.subject | Nanopartículas de oro | spa |
dc.subject | Anticuerpos | spa |
dc.subject | Orina | spa |
dc.subject | Quimiometría | spa |
dc.subject | Hypertension | spa |
dc.subject | Renal damage | eng |
dc.subject | Surface-enhanced Raman spectroscopy | eng |
dc.subject | Gold nanoparticles | eng |
dc.subject | Antibodies | eng |
dc.subject | Urine | eng |
dc.subject | Chemometrics | eng |
dc.title | Diseño y evaluación de un prototipo de test para detección de nefropatía hipertensiva | spa |
dc.type.driver | info:eu-repo/semantics/doctoralThesis | |
dc.type.spa | Tesis de doctorado | |
dcterms.references | M. M. Lopera-Medina, “La enfermedad renal crónica en Colombia: Necesidades en salud y respuesta del Sistema General de Seguridad Social en Salud,” Revista Gerencia y Politicas de Salud, vol. 15, no. 30, pp. 212–233, Jan. 2016, doi: 10.11144/Javeriana.rgyps15-30.ercc | spa |
dcterms.references | S. D. Crowley and T. M. Coffman, “The inextricable role of the kidney in hypertension,” Journal of Clinical Investigation. 2014. doi: 10.1172/JCI72274. | eng |
dcterms.references | B. Williams et al., “2018 ESC/ESH Guidelines for themanagement of arterial hypertension,” European Heart Journal, vol. 39, no. 33. Oxford University Press, pp. 3021–3104, Sep. 01, 2018. doi: 10.1093/eurheartj/ehy339. | eng |
dcterms.references | B. Setters and H. M. Holmes, “Hypertension in the Older Adult,” Prim Care, vol. 44, no. 3, p. 529, Sep. 2017, doi: 10.1016/J.POP.2017.05.002. | eng |
dcterms.references | P. M. O’Shea, T. P. Griffin, and M. Fitzgibbon, “Hypertension: The role of biochemistry in the diagnosis and management,” Clin Chim Acta, vol. 465, pp. 131–143, Feb. 2017, doi: 10.1016/J.CCA.2016.12.014 | eng |
dcterms.references | S. M. Hamrahian and B. Falkner, “Hypertension in chronic kidney disease,” Adv Exp Med Biol, vol. 956, pp. 307–325, 2017, doi: 10.1007/5584_2016_84. | eng |
dcterms.references | D. Tousoulis, “Arterial hypertension: New concepts in diagnosis and treatment?,” Hellenic Journal of Cardiology, vol. 61, no. 3, pp. 145–147, May 2020, doi: 10.1016/J.HJC.2020.08.003 | eng |
dcterms.references | B. Zhou et al., “Worldwide trends in hypertension prevalence and progress in treatment and control from 1990 to 2019: a pooled analysis of 1201 populationrepresentative studies with 104 million participants,” The Lancet, vol. 398, no. 10304, pp. 957–980, Sep. 2021, doi: 10.1016/S0140-6736(21)01330-1. | eng |
dcterms.references | “Día mundial de la hipertensión arterial 2022 | Cuenta de Alto Costo.” Accessed: Oct. 10, 2022. [Online]. Available: https://cuentadealtocosto.org/site/general/diamundial-de-la-hipertension-arterial-2022/ | spa |
dcterms.references | “Situación de la enfermedad renal crónica, la hipertensión arterial y diabetes mellitus en Colombia 2020 | Cuenta de Alto Costo.” Accessed: Oct. 11, 2022. [Online]. Available: https://cuentadealtocosto.org/site/publicaciones/situacion-de-laenfermedad-renal-cronica-la-hipertension-arterial-y-diabetes-mellitus-en-colombia2020/?1665593257100 | spa |
dcterms.references | Fondo Colombiano de Enfermedades de Alto Costo Cuenta de Alto Costo (CAC), “Situación de la enfermedad renal crónica, la hipertensión arterial y la diabetes mellitus en Colombia 2022,” Bogotá, D.C., 2023. | spa |
dcterms.references | L. Acuña, P. Sánchez, L. A. Soler, and L. F. Alvis, “Enfermedad renal en Colombia: prioridad para la gestión de riesgo Investigación original.” | spa |
dcterms.references | J. B. Kopp et al., “Podocytopathies,” Nat Rev Dis Primers, vol. 6, no. 1, Dec. 2020, doi: 10.1038/s41572-020-0196-7. | eng |
dcterms.references | L. H. de Morais Pereira et al., “Podocin and uPAR are good biomarkers in cases of Focal and segmental glomerulosclerosis in pediatric renal biopsies,” PLoS One, vol. 14, no. 6, Jun. 2019, doi: 10.1371/journal.pone.0217569. | eng |
dcterms.references | M. Liu et al., “Sirt6 deficiency exacerbates podocyte injury and proteinuria through targeting Notch signaling,” Nat Commun, vol. 8, no. 1, Dec. 2017, doi: 10.1038/s41467-017-00498-4. | eng |
dcterms.references | H. Wang et al., “Glucocorticoid receptor wields chromatin interactions to tune transcription for cytoskeleton stabilization in podocytes,” Commun Biol, vol. 4, no. 1, Dec. 2021, doi: 10.1038/s42003-021-02209-8. | eng |
dcterms.references | S. Mennuni, S. Rubattu, G. Pierelli, G. Tocci, C. Fofi, and M. Volpe, “Hypertension and kidneys: Unraveling complex molecular mechanisms underlying hypertensive renal damage,” Journal of Human Hypertension, vol. 28, no. 2. pp. 74–79, 2014. doi: 10.1038/jhh.2013.55. | eng |
dcterms.references | S. e Arango, “Biomarcadores para la evaluación de riesgo en la salud humana,” Rev. Fac. Nac. Salud Pública, vol. 30, pp. 75–82, 2012. | spa |
dcterms.references | R. G. Fassett, S. K. Venuthurupalli, G. C. Gobe, J. S. Coombes, M. A. Cooper, and W. E. Hoy, “Biomarkers in chronic kidney disease: A review,” Kidney Int, vol. 80, no. 8, pp. 806–821, 2011, doi: 10.1038/ki.2011.198. | eng |
dcterms.references | M. A. Knepper, “Common sense approaches to urinary biomarker study design.,” J Am Soc Nephrol, vol. 20, no. 6, pp. 1175–8, Jun. 2009, doi: 10.1681/ASN.2009030321 | eng |
dcterms.references | M. I. Yilmaz et al., “Soluble TWEAK plasma levels as a novel biomarker of endothelial function in patients with chronic kidney disease,” Clinical Journal of the American Society of Nephrology, vol. 4, no. 11, pp. 1716–1723, 2009, doi: 10.2215/CJN.02760409. | eng |
dcterms.references | K. D. Liu et al., “Urine neutrophil gelatinase-associated lipocalin levels do not improve risk prediction of progressive chronic kidney disease,” Kidney Int, vol. 83, no. 5, pp. 909–914, 2013, doi: 10.1038/ki.2012.458 | eng |
dcterms.references | V. Menon et al., “C-reactive protein and albumin as predictors of all-cause and cardiovascular mortality in chronic kidney disease,” Kidney Int, vol. 68, no. 2, pp. 766–772, 2005, doi: 10.1111/j.1523-1755.2005.00455.x | eng |
dcterms.references | E. L. Penne et al., “Role of residual kidney function and convective volume on change in β2-microglobulin levels in hemodiafiltration patients,” Clinical Journal of the American Society of Nephrology, vol. 5, no. 1, pp. 80–86, 2010, doi: 10.2215/CJN.03340509 | eng |
dcterms.references | S. E. Jones and C. Jomary, “Molecules in focus Clusterin,” 2002. | eng |
dcterms.references | Z. Khan and M. Pandey, “Role of kidney biomarkers of chronic kidney disease: An update,” Saudi J Biol Sci, vol. 21, no. 4, pp. 294–299, 2014, doi: 10.1016/j.sjbs.2014.07.003. | eng |
dcterms.references | V. S. Sabbisetti et al., “Blood Kidney Injury Molecule-1 Is a Biomarker of Acute and Chronic Kidney Injury and Predicts Progression to ESRD in Type I Diabetes,” Journal of the American Society of Nephrology, vol. 25, no. 10, pp. 2177–2186, 2014, doi: 10.1681/ASN.2013070758. | eng |
dcterms.references | T. Y. Du et al., “Circulating serum trefoil factor 3 (TFF3) is dramatically increased in chronic kidney disease,” PLoS One, vol. 8, no. 11, pp. 6–11, 2013, doi: 10.1371/journal.pone.0080271. | eng |
dcterms.references | S. A. Price et al., “Characterization of Renal Papillary Antigen 1 (RPA-1), a Biomarker of Renal Papillary Necrosis,” Toxicol Pathol, vol. 38, no. 3, pp. 346–358, 2010, doi: 10.1177/0192623310362246. | eng |
dcterms.references | E. D. Siew et al., “Elevated urinary IL-18 levels at the time of ICU admission predict adverse clinical outcomes,” Clinical Journal of the American Society of Nephrology, vol. 5, no. 8, pp. 1497–1505, 2010, doi: 10.2215/CJN.09061209. | eng |
dcterms.references | G. Mayer, “Capillary rarefaction, hypoxia, VEGF and angiogenesis in chronic renal disease,” Nephrology Dialysis Transplantation, vol. 26, no. 4, pp. 1132–1137, 2011, doi: 10.1093/ndt/gfq832. | eng |
dcterms.references | Á. Fernández-Galiana, O. Bibikova, S. Vilms Pedersen, and M. M. Stevens, “Fundamentals and Applications of Raman-Based Techniques for the Design and Development of Active Biomedical Materials,” Advanced Materials. John Wiley and Sons Inc, 2023. doi: 10.1002/adma.202210807. | eng |
dcterms.references | G. Cutshaw, S. Uthaman, N. Hassan, S. Kothadiya, X. Wen, and R. Bardhan, “The Emerging Role of Raman Spectroscopy as an Omics Approach for Metabolic Profiling and Biomarker Detection toward Precision Medicine,” Chem Rev, Jul. 2023, doi: 10.1021/acs.chemrev.2c00897. | eng |
dcterms.references | N. M. Ralbovsky and I. K. Lednev, “Towards development of a novel universal medical diagnostic method: Raman spectroscopy and machine learning,” Chemical Society Reviews, vol. 49, no. 20. Royal Society of Chemistry, pp. 7428–7453, Oct. 21, 2020. doi: 10.1039/d0cs01019g. | eng |
dcterms.references | N. M. Ralbovsky and I. K. Lednev, “Raman spectroscopy and chemometrics: A potential universal method for diagnosing cancer,” Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, vol. 219. Elsevier B.V., pp. 463–487, Aug. 05, 2019. doi: 10.1016/j.saa.2019.04.067. | eng |
dcterms.references | K. Kong, C. Kendall, N. Stone, and I. Notingher, “Raman spectroscopy for medical diagnostics - From in-vitro biofluid assays to in-vivo cancer detection,” Advanced Drug Delivery Reviews, vol. 89. Elsevier B.V., pp. 121–134, Jul. 15, 2015. doi: 10.1016/j.addr.2015.03.009. | eng |
dcterms.references | V. Moisoiu et al., “Breast cancer diagnosis by surface-enhanced raman scattering (SERS) of urine,” Applied Sciences (Switzerland), vol. 9, no. 4, Feb. 2019, doi: 10.3390/app9040806 | eng |
dcterms.references | Y. Ma, J. Chi, Z. Zheng, A. Attygalle, I. Y. Kim, and H. Du, “Therapeutic prognosis of prostate cancer using surface-enhanced Raman scattering of patient urine and multivariate statistical analysis,” J Biophotonics, vol. 14, no. 1, Jan. 2021, doi: 10.1002/jbio.202000275. | eng |
dcterms.references | J. Lin et al., “Rapid and label-free urine test based on surface-enhanced Raman spectroscopy for the non-invasive detection of colorectal cancer at different stages,” Biomed Opt Express, vol. 11, no. 12, p. 7109, Dec. 2020, doi: 10.1364/boe.406097. | eng |
dcterms.references | R. Pappu, A. Prakasarao, K. Dornadula, and G. Singaravelu, “Raman spectroscopic characterization of urine of normal and cervical cancer subjects,” in Advanced Biomedical and Clinical Diagnostic and Surgical Guidance Systems XV, SPIE, Feb. 2017, p. 1005404. doi: 10.1117/12.2255878. | eng |
dcterms.references | J. L. Flores-Guerrero et al., “Novel assessment of urinary albumin excretion in type 2 diabetes patients by Raman spectroscopy,” Diagnostics, vol. 10, no. 3, Feb. 2020, doi: 10.3390/diagnostics10030141. | eng |
dcterms.references | E. E. de Souza Vieira, J. A. M. Bispo, L. Silveira, and A. B. Fernandes, “Discrimination model applied to urinalysis of patients with diabetes and hypertension aiming at diagnosis of chronic kidney disease by Raman spectroscopy,” Lasers Med Sci, vol. 32, no. 7, pp. 1605–1613, Sep. 2017, doi: 10.1007/S10103-017-2288-5. | eng |
dcterms.references | C. Chen et al., “Urine Raman spectroscopy for rapid and inexpensive diagnosis of chronic renal failure (CRF) using multiple classification algorithms,” Optik (Stuttg), vol. 203, Feb. 2020, doi: 10.1016/j.ijleo.2019.164043. | eng |
dcterms.references | S. Aitekenov et al., “Surface-enhanced Raman spectroscopy (SERS) for protein determination in human urine,” Sens Biosensing Res, vol. 38, Dec. 2022, doi: 10.1016/j.sbsr.2022.100535. | eng |
dcterms.references | E. I. Nikelshparg et al., “Detection of Hypertension-Induced Changes in Erythrocytes by SERS Nanosensors,” Biosensors (Basel), vol. 12, no. 1, Jan. 2022, doi: 10.3390/bios12010032. | eng |
dcterms.references | E. E. de Sousa Vieira, L. Silveira, H. C. Carvalho, J. A. M. Bispo, F. B. Fernandes, and A. B. Fernandes, “Biochemical Analysis of Urine Samples from Diabetic and Hypertensive Patients without Renal Dysfunction Using Spectrophotometry and Raman Spectroscopy Techniques Aiming Classification and Diagnosis,” Bioengineering, vol. 9, no. 10, Oct. 2022, doi: 10.3390/bioengineering9100500. | eng |
dcterms.references | H. Yang et al., “Noninvasive and prospective diagnosis of coronary heart disease with urine using surface-enhanced Raman spectroscopy,” Analyst, vol. 143, no. 10, pp. 2235–2242, May 2018, doi: 10.1039/c7an02022h. | eng |
dcterms.references | T. Ware, “Chronic kidney disease,” InnovAiT: Education and inspiration for general practice, vol. 11, no. 1, pp. 35–40, 2018, doi: 10.1177/1755738017738272 | eng |
dcterms.references | C. M. M. Lawes, S. Vander Hoorn, and A. Rodgers, “Global burden of bloodpressure-related disease, 2001,” 2008. [Online]. Available: www.thelancet.com | eng |
dcterms.references | S. Dolff et al., “Urinary CD8+ T-cell counts discriminate between active and inactive lupus nephritis.,” Arthritis Res Ther, vol. 15, no. 1, p. R36, 2013, doi: 10.1186/ar4189. | eng |
dcterms.references | F. Gil Hernández, “The role of biomarkers in human toxicology.” | eng |
dcterms.references | C. R. Parikh, “Urine IL-18 Is an Early Diagnostic Marker for Acute Kidney Injury and Predicts Mortality in the Intensive Care Unit,” Journal of the American Society of Nephrology, vol. 16, no. 10, pp. 3046–3052, 2005, doi: 10.1681/ASN.2005030236. | eng |
dcterms.references | L. Cirillo et al., “Defining diagnostic trajectories in patients with podocytopathies,” Clinical Kidney Journal, vol. 15, no. 11. Oxford University Press, pp. 2006–2019, Nov. 01, 2022. doi: 10.1093/ckj/sfac123. | eng |
dcterms.references | M. Nagata, “Podocyte injury and its consequences,” Kidney International, vol. 89, no. 6. Elsevier B.V., pp. 1221–1230, 2016. doi: 10.1016/j.kint.2016.01.012. | eng |
dcterms.references | Z. Wang, H. Bao, Y. Ge, S. Zhuang, A. Peng, and R. Gong, “Pharmacological targeting of GSK3β confers protection against podocytopathy and proteinuria by desensitizing mitochondrial permeability transition,” Br J Pharmacol, vol. 172, no. 3, pp. 895–909, 2015, doi: 10.1111/bph.12952. | eng |
dcterms.references | M. A. Martín-Gómez et al., “Glomerulonefritis colapsante con marcadores de desdiferenciación podocitaria en síndrome hemofagocítico secundario a linfoma hepatoesplénico de células T,” Biomedica, vol. 38, no. 4, pp. 456–462, 2018, doi: 10.7705/biomedica.v38i4.3893 | spa |
dcterms.references | M. Sekulic and S. Pichler Sekulic, “A compendium of urinary biomarkers indicative of glomerular podocytopathy,” Pathology Research International, vol. 2013. 2013. doi: 10.1155/2013/782395. | eng |
dcterms.references | C. de Souza et al., “Nephrin and podocin mRNA detection in urine sediment of dogs with chronic kidney disease: Preliminary observations,” Journal of Veterinary Research (Poland), vol. 66, no. 2, pp. 281–288, Jun. 2022, doi: 10.2478/jvetres2022-0019. | eng |
dcterms.references | B. Szczepankiewicz et al., “Early detection of active glomerular lesions in dogs and cats using podocin,” Journal of Veterinary Research (Poland), vol. 63, no. 4. Sciendo, pp. 573–577, Dec. 01, 2019. doi: 10.2478/jvetres-2019-0062. | eng |
dcterms.references | B. Szczepankiewicz et al., “Evaluation of tryptic podocin peptide in urine sediment using LC-MS-MRM method as a potential biomarker of glomerular injury in dogs with clinical signs of renal and cardiac disorders,” Molecules, vol. 24, no. 17, Aug. 2019, doi: 10.3390/molecules24173088. | eng |
dcterms.references | N. Siwińska et al., “Evaluation of podocin in urine in horses using qualitative and quantitative methods,” PLoS One, vol. 15, no. 10 October, Oct. 2020, doi: 10.1371/journal.pone.0240586. | eng |
dcterms.references | A. J. Won et al., “Discovery of urinary metabolomic biomarkers for early detection of acute kidney injury,” Mol Biosyst, vol. 12, no. 1, pp. 133–144, 2016, doi: 10.1039/c5mb00492f. | eng |
dcterms.references | L. H. de Morais Pereira et al., “Podocin and uPAR are good biomarkers in cases of Focal and segmental glomerulosclerosis in pediatric renal biopsies,” PLoS One, vol. 14, no. 6, Jun. 2019, doi: 10.1371/journal.pone.0217569. | eng |
dcterms.references | M. Suvanto, T. Jahnukainen, M. Kestilä, and H. Jalanko, “Podocyte proteins in congenital and minimal change nephrotic syndrome,” Clin Exp Nephrol, vol. 19, no. 3, pp. 481–488, Jun. 2015, doi: 10.1007/s10157-014-1020-z. | eng |
dcterms.references | P. B. Shankar, R. Nada, K. Joshi, A. Kumar, C. S. Rayat, and V. Sakhuja, “Podocin and Beta Dystroglycan expression to study Podocyte-Podocyte and basement membrane matrix connections in adult protienuric states,” Diagn Pathol, vol. 9, no. 1, Feb. 2014, doi: 10.1186/1746-1596-9-40 | eng |
dcterms.references | G. Cara-Fuentes et al., “CD80, suPAR and Nephrotic Syndrome in a case of NPHS2 mutation,” Nefrologia, vol. 33, no. 5, pp. 727–731, 2013, doi: 10.3265/Nefrologia.pre2013.Jun.12085. | eng |
dcterms.references | T. Martineau, M. Boutin, A. M. Côté, B. Maranda, D. G. Bichet, and C. Auray-Blais, “Tandem mass spectrometry analysis of urinary podocalyxin and podocin in the investigation of podocyturia in women with preeclampsia and Fabry disease patients,” Clinica Chimica Acta, vol. 495, pp. 67–75, Aug. 2019, doi: 10.1016/j.cca.2019.03.1615. | eng |
dcterms.references | R. Bąchor et al., “Detection of podocin in human urine sediment samples by charge derivatization and Lc-Ms-Mrm method,” Int J Mol Sci, vol. 21, no. 9, May 2020, doi: 10.3390/ijms21093225. | eng |
dcterms.references | S. Lee et al., “Nanoparticle-Enabled Multiplexed Electrochemical Immunoassay for Detection of Surface Proteins on Extracellular Vesicles.” | eng |
dcterms.references | B. Saugel, K. Kouz, A. S. Meidert, L. Schulte-Uentrop, and S. Romagnoli, “How to measure blood pressure using an arterial catheter: A systematic 5-step approach,” Critical Care, vol. 24, no. 1. BioMed Central, Apr. 24, 2020. doi: 10.1186/s13054- 020-02859-w. | eng |
dcterms.references | K. Javorka, “History of Blood Pressure Measurement in Newborns and Infants,” Physiological Research, vol. 72, no. 5. Czech Academy of Sciences, pp. 543–555, 2023. doi: 10.33549/physiolres.935173. | eng |
dcterms.references | “Understanding Blood Pressure Readings | American Heart Association.” Accessed: Dec. 26, 2022. [Online]. Available: https://www.heart.org/en/healthtopics/high-blood-pressure/understanding-blood-pressure-readings | eng |
dcterms.references | B. Weisser, T. Mengden, R. Dü, H. Vetter, and W. Vetter, “Normal Values of Blood Pressure Self-Measurement in View of the 1999 World Health OrganizationInternational Society of Hypertension Guidelines,” 2000. [Online]. Available: https://academic.oup.com/ajh/article/13/8/940/162487 | eng |
dcterms.references | S. Magder, “The meaning of blood pressure Luigi Forni,” Critical Care, vol. 22, no. 1. BioMed Central Ltd, Oct. 11, 2018. doi: 10.1186/s13054-018-2171-1. | eng |
dcterms.references | F. L. Plavnik, S. A. Ajzen, D. M. J. Christofalo, C. S. P. Barbosa, and O. Kohlmann, “Endothelial function in normotensive and high-normal hypertensive subjects,” J Hum Hypertens, vol. 21, no. 6, pp. 467–472, Jun. 2007, doi: 10.1038/sj.jhh.1002164. | eng |
dcterms.references | R. Gargiulo, F. Suhail, and E. V. Lerma, “Hypertension and chronic kidney disease,” Disease-a-Month, vol. 61, no. 9. Mosby Inc., pp. 387–395, Sep. 01, 2015. doi: 10.1016/j.disamonth.2015.07.003 | eng |
dcterms.references | “Anatomy and physiology series: infrastructure of the kidney,” 2013 | eng |
dcterms.references | R. M. Soriano, D. Penfold, and S. W. Leslie, “Anatomy, Abdomen and Pelvis, Kidneys,” StatPearls, Jul. 2022, Accessed: Nov. 05, 2022. [Online]. Available: https://www.ncbi.nlm.nih.gov/books/NBK482385/ | eng |
dcterms.references | C. S. Bowdino, J. Owens, and P. M. Shaw, “Anatomy, Abdomen and Pelvis, Renal Veins,” StatPearls, Jan. 2022, Accessed: Nov. 05, 2022. [Online]. Available: https://www.ncbi.nlm.nih.gov/books/NBK538298/ | eng |
dcterms.references | E. Vazquez Martul and M. Praga, “Anatomía patológica y nefrología. La necesidad de un cambio,” Nefrología, vol. 38, no. 3, pp. 247–249, May 2018, doi: 10.1016/j.nefro.2017.11.002. | spa |
dcterms.references | P. Anil Kumar, G. I. Welsh, M. A. Saleem, and R. K. Menon, “Molecular and cellular events mediating glomerular podocyte dysfunction and depletion in diabetes mellitus,” Frontiers in Endocrinology, vol. 5, no. SEP. Frontiers Research Foundation, 2014. doi: 10.3389/fendo.2014.00151. | eng |
dcterms.references | ] I. Ogobuiro and F. Tuma, “Physiology, Renal,” StatPearls, Jul. 2022, Accessed: Nov. 05, 2022. [Online]. Available: https://www.ncbi.nlm.nih.gov/books/NBK538339/ | eng |
dcterms.references | A. Pätäri-Sampo, P. Ihalmo, and H. Holthöfer, “Molecular basis of the glomerular filtration: Nephrin and the emerging protein complex at the podocyte slit diaphragm,” Annals of Medicine, vol. 38, no. 7. pp. 483–492, Nov. 01, 2006. doi: 10.1080/07853890600978149 | eng |
dcterms.references | K. Tryggvason, “Unraveling the Mechanisms of Glomerular Ultrafiltration: Nephrin, a Key Component of the Slit Diaphragm,” 1999. | eng |
dcterms.references | “Renal system 1 the anatomy and physiology of the kidneys” | eng |
dcterms.references | J. E. Hall, “The kidney, hypertension, and obesity,” in Hypertension, Mar. 2003, pp. 625–633. doi: 10.1161/01.HYP.0000052314.95497.78. | eng |
dcterms.references | A. C. Webster, E. V. Nagler, R. L. Morton, and P. Masson, “Chronic Kidney Disease,” The Lancet, vol. 389, no. 10075, pp. 1238–1252, 2017, doi: 10.1016/S0140-6736(16)32064-5. | eng |
dcterms.references | Sica Domenic A., “The Kidney and Hypertension causes and Treatment,” The Kidney and Hypertension, vol. 10, no. ID: 8189, pp. 541–548, 2008. | eng |
dcterms.references | A. K. B. D. G. V. Karen A. Griffin, “Hypertension and Kidney Damage,” The journal of clinical Hypertension, vol. 8, no. 1524–6175, 2006 | eng |
dcterms.references | B. E. Noresson M Hallback and A. Hjalmarsson, “Structural ‘Resetting’ of the Coronary Vascular Bed in Spontaneously Hypertensive Rats,” 1977 | eng |
dcterms.references | M. E. Pueyo, W. Gonzalez, A. Nicoletti, F. Savoie, J.-F. Arnal, and J.-B. Michel, “Angiotensin II Stimulates Endothelial Vascular Cell Adhesion Molecule-1 via Nuclear Factor-B Activation Induced by Intracellular Oxidative Stress,” 2000. [Online]. Available: http://www.atvbaha.org | eng |
dcterms.references | H. Pavenstädt, W. Kriz, and M. Kretzler, “Cell biology of the glomerular podocyte,” Physiological Reviews, vol. 83, no. 1. American Physiological Society, pp. 253– 307, 2003. doi: 10.1152/physrev.00020.2002 | eng |
dcterms.references | N. Queisser, P. I. Oteiza, H. Stopper, R. G. Oli, and N. Schupp, “Aldosterone induces oxidative stress, oxidative DNA damage and NF-κB-activation in kidney tubule cells,” Mol Carcinog, vol. 50, no. 2, pp. 123–135, Feb. 2011, doi: 10.1002/mc.20710 | eng |
dcterms.references | C. S. Wilcox, “Oxidative stress and nitric oxide deficiency in the kidney: a critical link to hypertension?,” Am J Physiol Regul Integr Comp Physiol, vol. 289, pp. 913– 935, 2005, doi: 10.1152/ajpregu.00250.2005.-There. | eng |
dcterms.references | B. Ponnuchamy and R. A. Khalil, “Cellular mediators of renal vascular dysfunction in hypertension,” Am J Physiol Regul Integr Comp Physiol, vol. 296, pp. 1001– 1018, 2009, doi: 10.1152/ajpregu.90960.2008.-The | eng |
dcterms.references | N. Frey and E. N. Olson, “Cardiac Hypertrophy: The Good, the Bad, and the Ugly,” Annual Review of Physiology, vol. 65. pp. 45–79, 2003. doi: 10.1146/annurev.physiol.65.092101.142243. | eng |
dcterms.references | C. R. Neal et al., “Glomerular filtration into the subpodocyte space is highly restricted under physiological perfusion conditions,” Am J Physiol Renal Physiol, vol. 293, pp. 1787–1798, 2007, doi: 10.1152/ajprenal.00157.2007.-Production. | eng |
dcterms.references | M. Nagase and T. Fujita, “Role of Rac1-mineralocorticoid-receptor signalling in renal and cardiac disease,” Nature Reviews Nephrology, vol. 9, no. 2. pp. 86–98, Feb. 2013. doi: 10.1038/nrneph.2012.282. | eng |
dcterms.references | S. J. Shankland, “The podocyte’s response to injury: Role in proteinuria and glomerulosclerosis,” Kidney International, vol. 69, no. 12. pp. 2131–2147, Jun. 03, 2006. doi: 10.1038/sj.ki.5000410 | eng |
dcterms.references | P. A. Doris, “Genetic susceptibility to hypertensive renal disease,” Cellular and Molecular Life Sciences, vol. 69, no. 22. pp. 3751–3763, Nov. 2012. doi: 10.1007/s00018-012-0996-3. | eng |
dcterms.references | J. D. Lundgren, J. Baxter, S. G. Deeks, and H. C. Lane, “Biomarkers in HIV disease,” Current Opinion in HIV and AIDS, vol. 5, no. 6. pp. 459–462, Nov. 2010. doi: 10.1097/COH.0b013e32833f2ed6 | eng |
dcterms.references | E. A. Lock and J. V Bonventre, “Biomarkers in translation; past, present and future.,” Toxicology, vol. 245, no. 3, pp. 163–6, Mar. 2008, doi: 10.1016/j.tox.2007.12.004. | eng |
dcterms.references | Chronic Kidney Disease Prognosis Consortium et al., “Association of estimated glomerular filtration rate and albuminuria with all-cause and cardiovascular mortality in general population cohorts: a collaborative meta-analysis.,” Lancet, vol. 375, no. 9731, pp. 2073–81, Jun. 2010, doi: 10.1016/S0140-6736(10)60674-5. | eng |
dcterms.references | U. Salzer and R. Prohaska, “Brief report Stomatin, flotillin-1, and flotillin-2 are major integral proteins of erythrocyte lipid rafts,” 2001. | eng |
dcterms.references | M. Seijas, C. Baccino, N. Nin, and J. A. Lorente, “Definición y biomarcadores de daño renal agudo: Nuevas perspectivas,” Medicina Intensiva, vol. 38, no. 6. Ediciones Doyma, S.L., pp. 376–385, 2014. doi: 10.1016/j.medin.2013.09.001. | spa |
dcterms.references | F. Lombi, A. Muryan, R. Canzonieri, and H. Trimarchi, “Biomarkers in acute kidney injury: Evidence or paradigm?,” Nefrologia : publicacion oficial de la Sociedad Espanola Nefrologia, vol. 36, no. 4. pp. 339–346, Jul. 01, 2016. doi: 10.1016/j.nefro.2016.01.012. | eng |
dcterms.references | N. Boute et al., “NPHS2, encoding the glomerular protein podocin, is mutated in autosomal recessive steroid-resistant nephrotic syndrome,” 2000. [Online]. Available: http://genetics.nature.com/supplemetary_info/ | eng |
dcterms.references | A. Berdeli et al., “NPHS2 (podicin) mutations in Turkish children with idiopathic nephrotic syndrome,” Pediatric Nephrology, vol. 22, no. 12, pp. 2031–2040, Dec. 2007, doi: 10.1007/s00467-007-0595-y | eng |
dcterms.references | S. K. N. Mulukala et al., “Structural features and oligomeric nature of human podocin domain,” Biochem Biophys Rep, vol. 23, Sep. 2020, doi: 10.1016/j.bbrep.2020.100774. | eng |
dcterms.references | K. Schwarz et al., “Podocin, a raft-associated component of the glomerular slit diaphragm, interacts with CD2AP and nephrin,” Journal of Clinical Investigation, vol. 108, no. 11, pp. 1621–1629, 2001, doi: 10.1172/JCI200112849. | eng |
dcterms.references | T. B. Huber, B. Schermer, and T. Benzing, “Podocin organizes ion channel-lipid supercomplexes: Implications for mechanosensation at the slit diaphragm,” Nephron - Experimental Nephrology, vol. 106, no. 2. Jun. 2007. doi: 10.1159/000101789. | eng |
dcterms.references | M. Varadi et al., “AlphaFold Protein Structure Database: Massively expanding the structural coverage of protein-sequence space with high-accuracy models,” Nucleic Acids Res, vol. 50, no. D1, pp. D439–D444, Jan. 2022, doi: 10.1093/nar/gkab1061. | eng |
dcterms.references | S. K. N. Mulukala, R. Nishad, L. P. Kolligundla, M. A. Saleem, N. P. Prabhu, and A. K. Pasupulati, “In silico Structural characterization of podocin and assessment of nephrotic syndrome-associated podocin mutants,” IUBMB Life, pp. 578–588, Jul. 2016, doi: 10.1002/iub.1515. | eng |
dcterms.references | L. E. Hood’, “Immunoglobulin Genetics,” Amer J Hum Genet, vol. 24, pp. 702–704, 1972. | eng |
dcterms.references | H. W. Schroeder and L. Cavacini, “Structure and function of immunoglobulins,” Journal of Allergy and Clinical Immunology, vol. 125, no. 2 SUPPL. 2, Feb. 2010, doi: 10.1016/j.jaci.2009.09.046. | eng |
dcterms.references | Bradley John, “Immunoglobulins,” J Med Genet, pp. 11–80, 1974. | eng |
dcterms.references | Z. Chen, X. Qiu, and J. Gu, “Immunoglobulin expression in non-lymphoid lineage and neoplastic cells,” American Journal of Pathology, vol. 174, no. 4. Elsevier Inc., pp. 1139–1148, 2009. doi: 10.2353/ajpath.2009.080879. | eng |
dcterms.references | S. L. Maibom-Thomsen et al., “Immunoglobulin G structure and rheumatoid factor epitopes,” PLoS One, vol. 14, no. 6, Jun. 2019, doi: 10.1371/journal.pone.0217624. | eng |
dcterms.references | N. Kumar, C. P. Arthur, C. Ciferri, and M. L. Matsumoto, “Structure of the human secretory immunoglobulin M core,” Structure, vol. 29, no. 6, pp. 564-571.e3, Jun. 2021, doi: 10.1016/j.str.2021.01.002 | eng |
dcterms.references | S. Pan, N. Manabe, and Y. Yamaguchi, “3d structures of iga, igm, and components,” International Journal of Molecular Sciences, vol. 22, no. 23. MDPI, Dec. 01, 2021. doi: 10.3390/ijms222312776 | eng |
dcterms.references | C. Nacional de Verificación de Maquinaria -María José Quintana San José -Miren Agurtzane Zugasti Macazaga -María del Carmen Uribe Zallo -Begoña Uribe Ortega, C. Nacional de Nuevas Tecnologías -Virginia Gálvez Pérez -María Encarnación Sousa Rodríguez -María Teresa Sánchez Cabo -Mercedes Colorado Soriano -Josefa Aguilar Franco Colaboradores, and -Rosa Méndez Zurutuza - Natividad Montes Beneitez -José Maria Rojo Aparicio -Antonia Hernández Castañeda -Silvia Torres Ruiz, “Elaborado por.” [Online]. Available: http://publicacionesoficiales.boe.eshttp://www.insht.es/catalogopublicaciones/ | spa |
dcterms.references | F. De Química and L. Casas Quiroga, “SÍNTESIS Y CARACTERIZACIÓN DE NANOPARTÍCULAS DE ORO CON RECUBRIMIENTO POLIMÉRICO QUIRAL,” 2015. | spa |
dcterms.references | D. A. Cruz, M. C. Rodríguez, J. M. López, V. M. Herrera, A. G. Orive, and A. H. Creus, “NANOPARTÍCULAS METÁLICAS Y PLASMONES DE SUPERFICIE: UNA RELACIÓN PROFUNDA METALLIC NANOPARTICLES AND SURFACE PLASMONS: A DEEP RELATIONSHIP.” [Online]. Available: http://www.exeedu.com/publishing.cl/av_cienc_ing/67 | spa |
dcterms.references | M.-C. Daniel and D. Astruc, “Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology,” 2004, doi: 10.1021/cr030698. | eng |
dcterms.references | M. Auffan, J. Rose, J. Y. Bottero, G. V. Lowry, J. P. Jolivet, and M. R. Wiesner, “Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective,” Nature Nanotechnology, vol. 4, no. 10. Nature Publishing Group, pp. 634–641, 2009. doi: 10.1038/nnano.2009.242. | eng |
dcterms.references | B. John Turkevich, P. Cooper Stevenson, and J. Hillier, “A STUDY OF THE NUCLEATION AND GROWTH PROCESSES I N THE SYNTHESIS OF COLLOIDAL GOLD,” Turkevich and Hillier, 1941. | eng |
dcterms.references | A. Bueno Costa, “Estudio de la conjugación de antifolatos a nanopartículas de oro,” 2015. | spa |
dcterms.references | P. Mulvaney, “Surface Plasmon Spectroscopy of Nanosized Metal Particles,” 1996. | eng |
dcterms.references | S. Geetha, K. K. S. Kumar, C. R. K. Rao, M. Vijayan, and D. C. Trivedi, “EMI shielding: Methods and materials - A review,” J Appl Polym Sci, vol. 112, no. 4, pp. 2073–2086, May 2009, doi: 10.1002/app.29812. | eng |
dcterms.references | S. de S. Araújo, S. Paparella, D. Dondi, A. Bentivoglio, D. Carbonera, and A. Balestrazzi, “Physical methods for seed invigoration: Advantages and challenges in seed technology,” Frontiers in Plant Science, vol. 7, no. MAY2016. Frontiers Media S.A., May 12, 2016. doi: 10.3389/fpls.2016.00646. | eng |
dcterms.references | “What is Raman Spectroscopy? - HORIBA.” Accessed: Jan. 03, 2023. [Online]. Available: https://www.horiba.com/esp/scientific/technologies/raman-imaging-andspectroscopy/raman-spectroscopy/ | eng |
dcterms.references | “Conceptos básicos de la espectroscopia Raman.” Accessed: Jan. 03, 2023. [Online]. Available: https://www.inta.es/ExoMarsRaman/es/instrumentorls/espectroscopia-raman/# | spa |
dcterms.references | “Espectroscopia Raman | Instrumentación, introducción y principios.” Accessed: Jan. 03, 2023. [Online]. Available: https://www.mt.com/mx/es/home/applications/L1_AutoChem_Applications/RamanSpectroscopy.html | spa |
dcterms.references | N. Abril Díaz et al., “Espectrofometría: Espectros de absorción y cuantificación colorimétrica de biomoléculas.” | spa |
dcterms.references | M. Picollo, M. Aceto, and T. Vitorino, “UV-Vis spectroscopy,” Physical Sciences Reviews, vol. 4, no. 4, Apr. 2019, doi: 10.1515/psr-2018-0008. | eng |
dcterms.references | N. Narband, M. Uppal, C. W. Dunnill, G. Hyett, M. Wilson, and I. P. Parkin, “The interaction between gold nanoparticles and cationic and anionic dyes: Enhanced UV-visible absorption,” Physical Chemistry Chemical Physics, vol. 11, no. 44, pp. 10513–10518, 2009, doi: 10.1039/b909714g. | eng |
dcterms.references | R. Cerbino and V. Trappe, “Differential dynamic microscopy: Probing wave vector dependent dynamics with a microscope,” Phys Rev Lett, vol. 100, no. 18, May 2008, doi: 10.1103/PhysRevLett.100.188102. | eng |
dcterms.references | Z. Jia, J. Li, L. Gao, D. Yang, and A. Kanaev, “Dynamic Light Scattering: A Powerful Tool for In Situ Nanoparticle Sizing,” Colloids and Interfaces, vol. 7, no. 1. MDPI, Mar. 01, 2023. doi: 10.3390/colloids7010015. | eng |
dcterms.references | B. J. Kirby and E. F. Hasselbrink, “Zeta potential of microfluidic substrates: 1. Theory, experimental techniques, and effects on separations,” Electrophoresis, vol. 25, no. 2. Wiley-VCH Verlag, pp. 187–202, 2004. doi: 10.1002/elps.200305754. | eng |
dcterms.references | Z. Zhang et al., “Investigation of halide-induced aggregation of Au nanoparticles into spongelike gold,” Langmuir, vol. 30, no. 10, pp. 2648–2659, Mar. 2014, doi: 10.1021/la4046447 | eng |
dcterms.references | J. E. Butler, “Enzyme-linked immunosorbent assay,” Journal of Immunoassay, vol. 21, no. 2–3. Marcel Dekker Inc., pp. 165–209, 2000. doi: 10.1080/01971520009349533. | eng |
dcterms.references | M. C. Dita, “Enzyme Linked Immunosorbent Assay (ELISA),” Natural Sciences Engineering and Technology Journal, vol. 1, no. 2, pp. 29–38, Aug. 2021, doi: 10.37275/nasetjournal.v1i2.6. | eng |
dcterms.references | S. Paulie, P. Perlmann, and H. Perlmann, “Enzyme Linked Immunosorbent Assay,” Cell Biology: A Laboratory Handbook, pp. 533–538, Feb. 2022, doi: 10.1016/B978- 012164730-8/50065-4 | eng |
dcterms.references | “Enzyme Linked Immunosorbent Assay - StatPearls - NCBI Bookshelf.” Accessed: Jan. 03, 2023. [Online]. Available: https://www.ncbi.nlm.nih.gov/books/NBK555922/ | eng |
dcterms.references | M. Singh, P. Weerathunge, P. D. Liyanage, E. Mayes, R. Ramanathan, and V. Bansal, “Competitive Inhibition of the Enzyme-Mimic Activity of Gd-Based Nanorods toward Highly Specific Colorimetric Sensing of l -Cysteine,” Langmuir, vol. 33, no. 38, pp. 10006–10015, Sep. 2017, doi: 10.1021/acs.langmuir.7b01926. | eng |
dcterms.references | T. O. Kohl and C. A. Ascoli, “Direct competitive enzyme-linked immunosorbent assay (ELISA),” Cold Spring Harb Protoc, vol. 2017, no. 7, pp. 564–568, 2017, doi: 10.1101/pdb.prot093740. | eng |
dcterms.references | K. Boguszewska, M. Szewczuk, S. Urbaniak, and B. T. Karwowski, “Review: immunoassays in DNA damage and instability detection,” Cellular and Molecular Life Sciences, vol. 76, no. 23. Birkhauser Verlag AG, pp. 4689–4704, Dec. 01, 2019. doi: 10.1007/s00018-019-03239-6. | eng |
dcterms.references | K. Héberger, “Chemoinformatics-multivariate mathematical-statistical methods for data evaluation,” 2008. doi: 10.1016/B978-0-444-51980-1.50009-4. | eng |
dcterms.references | R. Rousseau, B. Govaerts, M. Verleysen, and B. Boulanger, “Comparison of some chemometric tools for metabonomics biomarker identification,” Chemometrics and Intelligent Laboratory Systems, vol. 91, no. 1, pp. 54–66, Mar. 2008, doi: 10.1016/j.chemolab.2007.06.008. | eng |
dcterms.references | A. Kotłowska, “Application of chemometric techniques in search of clinically applicable biomarkers of disease,” Drug Development Research, vol. 75, no. 5. Wiley-Liss Inc., pp. 283–290, 2014. doi: 10.1002/ddr.21213. | eng |
dcterms.references | L. C. Lee and A. A. Jemain, “Predictive modelling of colossal ATR-FTIR spectral data using PLS-DA: Empirical differences between PLS1-DA and PLS2-DA algorithms,” Analyst, vol. 144, no. 8, pp. 2670–2678, Apr. 2019, doi: 10.1039/c8an02074d | eng |
dcterms.references | G. Theophilou, K. M. G. Lima, P. L. Martin-Hirsch, H. F. Stringfellow, and F. L. Martin, “ATR-FTIR spectroscopy coupled with chemometric analysis discriminates normal, borderline and malignant ovarian tissue: Classifying subtypes of human cancer,” Analyst, vol. 141, no. 2, pp. 585–594, Jan. 2016, doi: 10.1039/c5an00939a | eng |
dcterms.references | B. M. Wise, J. M. Shaver, N. B. Gallagher, W. W. Rasmus, and B. R. S. Koch, “Continuum Parameter Number of LVs PRESS Chemometrics Tutorial for PLS_Toolbox and Solo.” [Online]. Available: www.eigenvector.com | eng |
dcterms.references | D. Ruiz-Perez, H. Guan, P. Madhivanan, K. Mathee, and G. Narasimhan, “So you think you can PLS-DA?,” BMC Bioinformatics, vol. 21, Dec. 2020, doi: 10.1186/s12859-019-3310-7. | eng |
dcterms.references | S. Roy, D. Perez-Guaita, S. Bowden, P. Heraud, and B. R. Wood, “Spectroscopy goes viral: Diagnosis of hepatitis B and C virus infection from human sera using ATR-FTIR spectroscopy,” Clinical Spectroscopy, vol. 1, p. 100001, Dec. 2019, doi: 10.1016/j.clispe.2020.100001. | eng |
dcterms.references | L. C. Lee, C. Y. Liong, and A. A. Jemain, “Partial least squares-discriminant analysis (PLS-DA) for classification of high-dimensional (HD) data: A review of contemporary practice strategies and knowledge gaps,” Analyst, vol. 143, no. 15. Royal Society of Chemistry, pp. 3526–3539, Aug. 07, 2018. doi: 10.1039/c8an00599k. | eng |
dcterms.references | D. V Nguyen and D. M. Rocke, “Tumor classification by partial least squares using microarray gene expression data,” 2002 | eng |
dcterms.references | Y. V. Zontov, O. Y. Rodionova, S. V. Kucheryavskiy, and A. L. Pomerantsev, “PLSDA – A MATLAB GUI tool for hard and soft approaches to partial least squares discriminant analysis,” Chemometrics and Intelligent Laboratory Systems, vol. 203, Aug. 2020, doi: 10.1016/j.chemolab.2020.104064. | eng |
dcterms.references | C. Bouveyron and S. Girard, “Robust supervised classification with mixture models: Learning from data with uncertain labels,” Pattern Recognit, vol. 42, no. 11, pp. 2649–2658, Nov. 2009, doi: 10.1016/j.patcog.2009.03.027. | eng |
dcterms.references | M. Barker and W. Rayens, “Partial least squares for discrimination,” J Chemom, vol. 17, no. 3, pp. 166–173, Mar. 2003, doi: 10.1002/cem.785. | eng |
dcterms.references | L. Stahle and S. Wold, “PARTIAL LEAST SQUARES ANALYSIS WITH A MONTE CARL0 STUDY CROSS-VALIDATION FOR THE TWO-CLASS PROBLEM,” 1987. | eng |
dcterms.references | F. Rohart, B. Gautier, A. Singh, and K. A. Lê Cao, “mixOmics: An R package for ‘omics feature selection and multiple data integration,” PLoS Comput Biol, vol. 13, no. 11, Nov. 2017, doi: 10.1371/journal.pcbi.1005752. | fre |
dcterms.references | J. A. Hanley and B. J. McNeil, “The Meaning and Use of the Area under a Receiver Operating Characteristic (ROC) Curve1.” | eng |
dcterms.references | Roy Garcia IA; Paredes-Palcios J; Rivas-Ruis R; Flores-Pulido AA, “ROC curves: general characteristics and their usefulness in clinical practice,” Revsta Medica Instituto Mexicano del seguro social, vol. 61, Feb. 2023, doi: 10.5281/zenodo.8319791. | eng |
dcterms.references | “Bioconjugate Techniques - Greg T. Hermanson - Google Books.” Accessed: Oct. 11, 2022. [Online]. Available: https://books.google.com.co/books?hl=en&lr=&id=6aO207lhdgC&oi=fnd&pg=PP1&dq=bioconjugate+techniques+pdf&ots=aL4Ly7IpPU&s ig=HdCGSFCW2VzBeERKxNgku2DAAVQ#v=onepage&q&f=false | eng |
dcterms.references | F. Di Nardo, S. Cavalera, C. Baggiani, C. Giovannoli, and L. Anfossi, “Direct vs Mediated Coupling of Antibodies to Gold Nanoparticles: The Case of Salivary Cortisol Detection by Lateral Flow Immunoassay,” ACS Appl Mater Interfaces, vol. 11, no. 36, pp. 32758–32768, Sep. 2019, doi: 10.1021/acsami.9b11559. | eng |
dcterms.references | K. Chauhan, P. Singh, and R. K. Singhal, “New Chitosan-Thiomer: An Efficient Colorimetric Sensor and Effective Sorbent for Mercury at Ultralow Concentration,” ACS Appl Mater Interfaces, vol. 7, no. 47, pp. 26069–26078, Dec. 2015, doi: 10.1021/acsami.5b06078 | eng |
dcterms.references | D. S. and D. M. Volker Thomsen, “Limits of Detection in Spectroscopy,” Spectroscopy, vol. 18, pp. 112–114, 2003. | eng |
dcterms.references | A. S. Naik et al., “Podocyte stress and detachment measured in urine are related to mean arterial pressure in healthy humans,” Kidney Int, vol. 98, no. 3, pp. 699–707, Sep. 2020, doi: 10.1016/j.kint.2020.03.038. | eng |
dcterms.references | S. H. Kwon et al., “Elevated urinary podocyte-derived extracellular microvesicles in renovascular hypertensive patients,” Nephrology Dialysis Transplantation, vol. 32, no. 5, pp. 800–807, May 2017, doi: 10.1093/ndt/gfw077. | eng |
dcterms.references | I. M. Craici et al., “Podocyturia Predates Proteinuria and Clinical Features of Preeclampsia Longitudinal Prospective Study,” 2013, doi: 10.1161/HYPERTENSIONAHA. | eng |
dcterms.references | S. I. Gilani et al., “Urinary extracellular vesicles of podocyte origin and renal injury in preeclampsia,” Journal of the American Society of Nephrology, vol. 28, no. 11, pp. 3363–3372, Nov. 2017, doi: 10.1681/ASN.2016111202. | eng |
dcterms.references | M. Larraona-Puy et al., “Development of Raman microspectroscopy for automated detection and imaging of basal cell carcinoma,” J Biomed Opt, vol. 14, no. 5, p. 054031, 2009, doi: 10.1117/1.3251053 | eng |
dcterms.references | F. B. Roberto et al., “Podocyturia in pregnant women with chronic hypertension may predict kidney injury?,” Revista Brasileira de Ginecologia e Obstetricia, vol. 37, no. 4, pp. 172–177, Jun. 2015, doi: 10.1590/SO100-720320150005238. | eng |
dcterms.references | M. Y. Yu et al., “Krüppel-like factor 15 is a key suppressor of podocyte fibrosis under rotational force-driven pressure,” Exp Cell Res, vol. 386, no. 1, Jan. 2020, doi: 10.1016/j.yexcr.2019.111706. | eng |
dcterms.references | V. D. Garovic et al., “Urinary podocyte excretion as a marker for preeclampsia,” Am J Obstet Gynecol, vol. 196, no. 4, pp. 320.e1-320.e7, 2007, doi: 10.1016/j.ajog.2007.02.007 | eng |
dcterms.references | “Quantitative Polymerase Chain Reaction–Based Analysis of Podocyturia Is a Feasible Diagnostic Tool in Preeclampsia,” 2012, doi: 10.1161/HYPERTENSIONAHA. | eng |
dcterms.references | V. D. Garovic et al., “Glomerular expression of nephrin and synaptopodin, but not podocin, is decreased in kidney sections from women with preeclampsia,” Nephrology Dialysis Transplantation, vol. 22, no. 4, pp. 1136–1143, Apr. 2007, doi: 10.1093/ndt/gfl711 | eng |
dcterms.references | T. Zhai et al., “Alteration of podocyte phenotype in the urine of women with preeclampsia,” Sci Rep, vol. 6, Apr. 2016, doi: 10.1038/srep24258. | eng |
dcterms.references | G. Chen, X. Jin, L. Zhang, J. Niu, and Y. Gu, “Decreased Ang-(1-7) and Downregulated Intrarenal RAS May Contribute to the Direct Podocyte Injury With Proteinuria in Preeclampsia,” Reproductive Sciences, vol. 26, no. 8, pp. 1146– 1157, Aug. 2019, doi: 10.1177/1933719118813200. | eng |
dcterms.references | Y. Wang, Y. Gu, S. Loyd, X. Jia, L. J. Groome, and Y. Wang, “Increased urinary levels of podocyte glycoproteins, matrix metallopeptidases, inflammatory cytokines, and kidney injury biomarkers in women with preeclampsia,” Am J Physiol Renal Physiol, vol. 309, pp. 1009–1017, 2015, doi: 10.1152/ajprenal.00257.2015.-To | eng |
dcterms.references | Y. Wang, S. Zhao, S. Loyd, and L. J. Groome, “Increased urinary excretion of nephrin, podocalyxin, and βig-h3 in women with preeclampsia,” Am J Physiol Renal Physiol, vol. 302, no. 9, 2012, doi: 10.1152/ajprenal.00597.2011. | eng |
dcterms.references | G. Wang et al., “Intrarenal expression of miRNAs in patients with hypertensive nephrosclerosis,” Am J Hypertens, vol. 23, no. 1, pp. 78–84, Jan. 2010, doi: 10.1038/ajh.2009.208 | eng |
dcterms.references | W. P. H. O. L. N. C. S. J. Z. and R. P. V. D. Jeffrey N. Anker, “Biosensing with plasmonic nanosensors,” Nat Mater, vol. 7, pp. 442–453, Jun. 2008, doi: 10.1038/nmat2162. | eng |
dcterms.references | J. M. Surmacki, B. J. Woodhams, A. Haslehurst, B. A. J. Ponder, and S. E. Bohndiek, “Raman micro-spectroscopy for accurate identification of primary human bronchial epithelial cells,” Sci Rep, vol. 8, no. 1, Dec. 2018, doi: 10.1038/s41598- 018-30407-8. | eng |
dcterms.references | P. Banerjee et al., “Identification of key contributory factors responsible for vascular dysfunction in idiopathic recurrent spontaneous miscarriage,” PLoS One, vol. 8, no. 11, Nov. 2013, doi: 10.1371/journal.pone.0080940 | eng |
dcterms.references | “Raman Spectroscopy of Biological Tissues _ Enhanced Reader”. | eng |
dcterms.references | L. P. Moreira, L. Silveira, A. G. da Silva, A. B. Fernandes, M. T. T. Pacheco, and D. D. F. M. Rocco, “Raman spectroscopy applied to identify metabolites in urine of physically active subjects,” J Photochem Photobiol B, vol. 176, pp. 92–99, Nov. 2017, doi: 10.1016/j.jphotobiol.2017.09.019 | eng |
dcterms.references | O. M. Primera-Pedrozo, J. I. Jerez-Rozo, E. De La Cruz-Montoya, T. Luna-Pineda, L. C. Pacheco-Londoño, and S. P. Hernández-Rivera, “Nanotechnology-based detection of explosives and biological agents simulants,” IEEE Sens J, vol. 8, no. 6, pp. 963–973, Jun. 2008, doi: 10.1109/JSEN.2008.923936 | eng |
dcterms.references | J. Li et al., “Raman spectroscopy as a diagnostic tool for monitoring acute nephritis,” J Biophotonics, vol. 9, no. 3, pp. 260–269, Mar. 2016, doi: 10.1002/jbio.201500109. | eng |
dcterms.references | R. Pappu, A. Prakasarao, K. Dornadula, and G. Singaravelu, “Raman spectroscopic characterization of urine of normal and cervical cancer subjects,” in Advanced Biomedical and Clinical Diagnostic and Surgical Guidance Systems XV, SPIE, Feb. 2017, p. 1005404. doi: 10.1117/12.2255878. | eng |
dcterms.references | Q. Zhou et al., “Epigenetic analysis of cell-free DNA by fragmentomic profiling,” 2022, doi: 10.1073/pnas. | eng |
dcterms.references | E. D. C. Zarate-Peñata, O. Fiorillo-Moreno, C. Meza-Torres, and E. NavarroQuiroz, “Cytokines, Chemokines, Inflammasomes, Myokines and ComplementRelated Factors in Acute Kidney Injury,” in Organ Crosstalk in Acute Kidney Injury, 2023. doi: 10.1007/978-3-031-36789-2_5. | eng |
dcterms.references | E. D. C. Zarate-Peñata et al., “Genetic, Epigenetics, and Cell Adhesion in Acute Kidney Injury,” in Organ Crosstalk in Acute Kidney Injury, 2023. doi: 10.1007/978- 3-031-36789-2_6. | eng |
dcterms.references | E. Navarro-Quiroz et al., “High-throughput sequencing reveals circulating miRNAs as potential biomarkers of kidney damage in patients with systemic lupus erythematosus,” PLoS One, vol. 11, no. 11, Nov. 2016, doi: 10.1371/journal.pone.0166202. | eng |
dcterms.references | M. Kuwabara et al., “Update in uric acid, hypertension, and cardiovascular diseases,” Hypertension Research, vol. 46, no. 7. 2023. doi: 10.1038/s41440-023- 01273-3 | eng |
dcterms.references | J. Ortmann et al., “Role of podocytes for reversal of glomerulosclerosis and proteinuria in the aging kidney after endothelin inhibition,” Hypertension, vol. 44, no. 6, pp. 974–981, Dec. 2004, doi: 10.1161/01.HYP.0000149249.09147.b4. | eng |
dcterms.references | S. Shibata, M. Nagase, S. Yoshida, H. Kawachi, and T. Fujita, “Podocyte as the target for aldosterone: Roles of oxidative stress and Sgk1,” Hypertension, vol. 49, no. 2, pp. 355–364, Feb. 2007, doi: 10.1161/01.HYP.0000255636.11931.a2 | eng |
dcterms.references | O. D. Navarro-Ulloa et al., “Usefulness of 24-hour ambulatory blood pressure monitoring in a population with high cardiovascular risk,” Cirugia y Cirujanos (English Edition), vol. 88, no. 5, pp. 617–623, 2020, doi: 10.24875/CIRU.20001576. | eng |
dcterms.references | S. Martin, “Daño renal agudo en niños críticos: incidencia y factores de riesgo de mortalidad,” Arch Argent Pediatr, vol. 111, no. 5, pp. 412–417, Oct. 2013, doi: 10.5546/aap.2013.412. | spa |
dcterms.references | J. S. Chávez-Iñiguez et al., “Procalcitonina como biomarcador de daño renal agudo en pacientes con sepsis y choque séptico,” Revista Colombiana de Nefrología, vol. 6, no. 2, pp. 130–137, Nov. 2019, doi: 10.22265/acnef.6.2.351. | spa |
dcterms.references | A. Jara and S. Mezzano, “Daño vascular en la enfermedad renal crónica,” Revista medica Chilena, vol. 136, pp. 1476–1484, May 2008 | spa |
dcterms.references | S. A. Vetrone et al., “Osteopontin promotes fibrosis in dystrophic mouse muscle by modulating immune cell subsets and intramuscular TGF-β,” Journal of Clinical Investigation, vol. 119, no. 6, pp. 1583–1594, Jun. 2009, doi: 10.1172/JCI37662. | eng |
dcterms.references | J. Rangaswami et al., “Cardiorenal Syndrome: Classification, Pathophysiology, Diagnosis, and Treatment Strategies: A Scientific Statement From the American Heart Association,” Circulation, vol. 139, no. 16, pp. E840–E878, Apr. 2019, doi: 10.1161/CIR.0000000000000664. | eng |
dcterms.references | C. R. Parikh et al., “Postoperative biomarkers predict acute kidney injury and poor outcomes after adult cardiac surgery,” Journal of the American Society of Nephrology, vol. 22, no. 9, pp. 1748–1757, Sep. 2011, doi: 10.1681/ASN.2010121302. | eng |
dcterms.references | M. Walters et al., “Serum Uric Acid Level, Longitudinal Blood Pressure, Renal Function, and Long-Term Mortality in Treated Hypertensive Patients,” Hypertension, vol. 62, pp. 105–111, 2013, doi: 10.1161/HYPERTENSIONAHA | eng |
dcterms.references | A. O. Oluboyo, “EVALUATION OF SELECTED RENAL MARKERS IN HYPERTENSIVE SUBJECTS IN EKITI STATE, NIGERIA,” 2020. [Online]. Available: www.ijmlr.com/IJMLR©Allrightarereserved | eng |
dcterms.references | L. M. E. D. F. Xiaoyan Zhou, “Uric Acid: Its Relationship to Renal Hemodynamics and the Renal Renin-Angiotensin System,” Hypertension and Metabolic Disarray, no. 1522–6417, pp. 120–124, 2006. | eng |
dcterms.references | M. Trudu et al., “Common noncoding UMOD gene variants induce salt-sensitive hypertension and kidney damage by increasing uromodulin expression,” Nat Med, vol. 19, no. 12, pp. 1655–1660, Dec. 2013, doi: 10.1038/nm.3384 | eng |
dcterms.references | Y. Shamoo, L. R. Ghosaini, K. M. Keating, K. R. Williams, J. M. Sturtevant, and W. H. Konigsberg, “Site-Specific Mutagenesis of T4 Gene 32: The Role of Tyrosine Residues in ProteineNucleic Acid Interactionst,” 1989. | eng |
dcterms.references | M. E. Cogswell et al., “Validity of predictive equations for 24-H urinary sodium excretion in adults aged 18-39 y1-5,” American Journal of Clinical Nutrition, vol. 98, no. 6, pp. 1502–1513, Dec. 2013, doi: 10.3945/ajcn.113.059436. | eng |
oaire.version | info:eu-repo/semantics/acceptedVersion | eng |
sb.programa | Doctorado en Genética y Biología Molecular | spa |
sb.sede | Sede Barranquilla | spa |
Archivos
Bloque original
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- PDF_Resumen.pdf
- Tamaño:
- 414 KB
- Formato:
- Adobe Portable Document Format
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 2.93 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: