Tomografía computarizada por rayos X en cardiología

dc.contributor.authorBravo, Antonio J.
dc.contributor.authorRoa, Felida
dc.contributor.authorVera, Miguel
dc.contributor.authorContreras-Velásquez, Julio
dc.contributor.authorHuérfano, Yoleidy
dc.contributor.authorChacón, José
dc.contributor.authorWilches-Durán, Sandra
dc.contributor.authorGraterol-Rivas, Modesto
dc.contributor.authorRiaño-Wilches, Daniela
dc.contributor.authorRojas, Joselyn
dc.contributor.authorBermúdez, Valmore
dc.date.accessioned2018-03-12T14:41:49Z
dc.date.available2018-03-12T14:41:49Z
dc.date.issued2017
dc.description.abstractLa tomografía computarizada por rayos X es una modalidad utilizada rutinariamente en la práctica clínica. Esta modalidad genera un conjunto de imágenes en bidimensionales, cada una de las cuales representa una rodaja que incluye información sobre la anatomía interna del paciente. Las imágenes tridimensionales son obtenidas a partir de proyecciones radiológicas mediante técnicas de reconstrucción. Las proyecciones son obtenidas por la exposición del objeto a radiaciones de rayos X según distintos ángulos y por la medición del grado de absorción del haz que atraviesa al objeto. El presente artículo muestra la aplicación de esta tecnología de imágenes médicas y sus avances en cardiología.spa
dc.description.abstractX-ray computed tomography is a modality routinely used in clinical practice. This modality generates a set of two-dimensional images, each representing a slice that includes information about the patient’s anatomy. Three-dimensional images are obtained from radiological projections using reconstruction techniques. The projections are obtained by exposing the object to X-ray radiation at different angles and by measuring the degree of absorption of the beam passing through the object. The present article shows the application of this technology of medical images and its advances in cardiology.eng
dc.identifier.issn18564550
dc.identifier.urihttp://hdl.handle.net/20.500.12442/1846
dc.language.isospaspa
dc.publisherCooperativa servicios y suministros 212518 RSspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseLicencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacionalspa
dc.sourceRevista Latinoamericana de Hipertensiónspa
dc.sourceVol. 12, No.2 (2017)spa
dc.source.urihttps://www.redalyc.org/articulo.oa?id=170252186003
dc.subjectTomografía computarizadaspa
dc.subjectRayos Xspa
dc.subjectCardiologíaspa
dc.subjectComputerized tomographyeng
dc.subjectX rayeng
dc.subjectCardiologyeng
dc.titleTomografía computarizada por rayos X en cardiologíaspa
dc.title.alternativeX-ray computed tomography in cardiologyeng
dc.typearticlespa
dcterms.referencesHajnal JV, Hill DLG, Hawkes DJ. Medical Image Registration. Philadelphia: CRC Press LLC; 2001.eng
dcterms.referencesBoyd DP, Farmer DW. (1980). Cardiac computed tomography. En: Collins S, Skorton D. eds. Cardiac Imaging and Image Processing. New York: McGraw Hill Book Company; 1980:57–87.eng
dcterms.referencesRobb RA, Morin ML. Principles and instrumentation for dynamic X–ray computed tomography. En: Marcus M, Schelbert H, Skorton D, Wolf G. editors: Cardiac Imaging. A Companion to Braunwald’s Heart Disease. Philadelphia: W.B. Saunders Company; 1991:634–668.eng
dcterms.referencesBoyd DP, Haugland C. Recent progress in electron beam tomography. Medical Imaging Technology. 1993; 11(4):578–585.eng
dcterms.referencesBudoff MJ, Georgiou D, Brody A, Agatston AS, Kennedy J, Wolfkiel C, Rich S. Ultrafast computed tomography as a diagnostic modality in the detection of coronary artery disease. Circulation. 1996; 93(5): 898-904.eng
dcterms.referencesMoshage WEL, Achenbach S, Seese B, Bachmann K. y Kirchgeorg M. Coronary artery stenoses: Three–dimensional imaging with electrocardiographically triggered, contrast agent–enhanced, electron–beam CT. Radiology. 1995; 196(3):707–714.eng
dcterms.referencesArad Y, Spadaro LA, Goodman K, Lledo-Perez A, Sherman S, Lerner G, Guerci AD. Predictive value of electron beam computed tomography of the coronary arteries. Circulation. 1996; 93(11):1951–1953.eng
dcterms.referencesKalender WA, Sissler W, Klotz E, Vock P. Spiral volumetric CT with single– breath–hold technique, continuos transport, and continuos scanner rotation. Radiology. 1990; 176(1):181–183.eng
dcterms.referencesHeiken JP, Brink JA, Vannier MW. Spiral (helical) CT. Radiology. 1993; 189(3):647–656.eng
dcterms.referencesBaskin KM, Stanford W, Thompsom BH, Tajik J, Heery SD, Hoffman EA. Helical versus electron–beam CT in assessment of coronary artery calcification. Radiology. 1995; 197(1):182–185.eng
dcterms.referencesBecker C, Jakobs TF, Aydemir, S. Helical and single–slice conventional CT versus electron–beam CT for quantification of coronary artery calcification. American Journal of Roentgenology. 2000; 174(1):1–5.eng
dcterms.referencesEggen DA, Strong JP, McGill HC. Coronary calcification: relationship to clinically significant coronary lesions and race, sex, and topographic distribution. Circulation. 1965; 32(5):948–955.eng
dcterms.referencesMochizuki T, Murase K, Higashino H, Koyama Y, Doi M, Miyagawa M, Nakata S, Shimizu K. y Ikezoe J. Two– and three– dimensional CT ventriculography: A new application of helical CT. American Journal of Roentgenology. 2000; 174(1):203–208.eng
dcterms.referencesFrangi AJ, Niessen WJ, Viergever MA. Three–dimensional modeling for functional analysis of cardiac images: A review. IEEE Transactions on Medical Imaging. 2001; 20(1):2–25.eng
dcterms.referencesBrooks RA, Chiro GD. Theory of image reconstruction in computed tomography. Radiology. 1975; 117:561–572.eng
dcterms.referencesGore JC, Orr JS. Image formation by back-projection: A reappraisal. Physics in Medicine and Biology. 1979; 24(4):793–801.eng
dcterms.referencesTaguchi K, Aradate H. Algorithm for image reconstruction in multi–slice helical CT. Medical Physics. 1998; 25(5):550–561.eng
dcterms.referencesHu H. Multi-slice helical CT: Scan and reconstruction. Medical Physics. 1999; 26(1):5–18.eng
dcterms.referencesHu H, Pan T, Shen Y. Multi–slice helical ct: Image temporal resolution. IEEE Transactions on Medical Imaging. 2000b; 19(5):384–390.eng
dcterms.referencesGordon R, Bender R, Herman G. Algebraic reconstruction techniques (ART) for three–dimensional electron microscopy and X–ray photography. Journal of Theoretical Biology. 1970; 29(9):471–482.spa
dcterms.referencesJiang M, Wang G. Convergence studies on iterative algorithms for image reconstruction. IEEE Transactions on Medical Imaging. 2003; 22(5):569– 579.spa
dcterms.referencesLange K, Carson R. EM reconstruction algorithms for emission and transmission tomography. Journal of Computed Assited Tomography. 1984; 8(3):306–316.spa
dcterms.referencesLange K, Fessler JA. Globally convergent algorithms for maximum a posteriori transmission tomography. IEEE Transactions on Image Proceesing. 1995; 4(10):1430–1438.spa
dcterms.referencesFessler JA, Ficaro EP, Clinthorne NH, Lange K. Gruoped–coordinate ascent algorithms for penalized–likelihood transmission image reconstruction. IEEE Transactions on Medical Imaging. 1997; 16(2):166–177.spa
dcterms.referencesWang G, Crawford CR. Guest editorial: Multirow detector and conebeam spiral/helical CT. IEEE Transactions on Medical Imaging. 2000; 19(9):817–820.spa
dcterms.referencesMorgan C. Physics of Radiology. Baltimore: University Park Press; 1983.spa
dcterms.referencesWolbarst A. Basic Principles of Computed Tomography. St. Norwalk: Appleton & Lange; 1993.spa
dcterms.referencesOhnesorge B, Flohr T, Becker C, Kopp AF, Schoepf UJ, Baum U, Knez A, Klingenbeck-Regn K, y Reiser MF. Cardiac imaging by means of electrocardiographically gated multisection spiral CT: Initial experience. Radiology. 2000; 217(2):564–671.spa
dcterms.referencesHong C, Becker C, Huber A, Schoepf UJ, Ohnesorge B, Knez A, Rr¨uning, Reiser MF. ECG–gated reconstructed multi–detector row CT coronary angiography: Effect of varying trigger delay on image quality. Radiology. 2001; 220(3):712–717.eng
dcterms.referencesCline HE, Lorensen WE, Ludke S, Crawford CR, Teeter BC. Two algorithms for three–dimensional reconstruction of tomograms. Medical Physics. 1988; 15(3):320–327.eng
dcterms.referencesHiggins WE, Chung N, Ritman EL. Extraction of left–ventricular chamber from 3–D CT images of the heart. IEEE Transactions on Medical Imaging. 1990; 9(4):384–395.eng
dcterms.referencesMcInerney T, Terzopoulos D. A dynamic finite element surface model for segmentation and tracking in multidimensional medical images with application to cardiac 4D image analysis. Computerized Medical Imaging and Graphics. 1995; 19(1):69–83.eng
dcterms.referencesStaib L, Duncan JS. Model–based deformable surface finding for medical images. IEEE Transactions on Medical Imaging. 1996; 15(5):720–731.eng
dcterms.referencesNiessen WJ, ter Haar Romeny BM, Viergever MA. Geodesic deformable models for medical image analysis. IEEE Transactions on Medical Imaging. 1998; 17(4):634–641.spa
dcterms.referencesEcabert O, Peters J, Schramm H, Lorenz C, Berg JV, Walker M, Vembar M, Olszewski M, Subramanyan K, Lavi G, Weese J. Automatic model–based segmentation of the heart in CT images. IEEE Transactions on Medical Imaging. 2008; 27(9):1189–1201.eng
dcterms.referencesGiesler T, Baum U, Ropers D, Ulzheimer S, Wenkel E, Mennicke M, Bautz W, Kalender WA, Daniel WG, Achenbach S. Noninvasive visualization of coronary arteries using contrast-enhanced multidetector CT: Influence of heart rate on image quality and stenosis detection. American Journal of Roentgenology. 2002; 179(5):911–916.eng
dcterms.referencesShim SS, Kim Y, Lim SM. Improvement of image quality with–blocker premedication on ECG–gated 16–MDCT coronary angiography. American Journal of Roentgenology. 2005; 184(2):649–654.eng
dcterms.referencesGeneral Electric. Advanced CT. A GE HealthCare Publication. 2004; páginas 49–59.eng
dcterms.referencesFuchs T, Kachelriess M, Kalender W. Systems performance multislice spiral computed tomography. IEEE Engineering in Medicine and Biology Magazine. 2000; 19(5):63–70.eng
dcterms.referencesSeeram E. Computed Tomography: Physical Principles, Clinical Applications, and Quality Control. New York: WB. Saunders Company; 2001.eng
dcterms.referencesKalender W. Computed Tomography: Fundamentals, System Technology, Image Quality and Applications. Munich: Publicis MCD Verlag; 2000.eng
dcterms.referencesRydberg J, Buckwalter KA, Caldemeyer KS, Phillips MD, Conces DJ, Aisen AM, Persohn SA, Kopecky KK. Multisection CT: Scanning techniques and clinical applications. RadioGraphics. 2000; 20(6): 1787–1806.eng
dcterms.referencesHu H, He HD, Foley WD, Fox SH. Four multidetector–row helical CT: Image quality and volume coverage speed. Radiology. 2000a; 215(1):55– 62.eng
dcterms.referencesKelly DM, Hasegawa I, Borders R, Boiselle PM, Hatabu H. High-resolution CT using MDCT: Comparison of degree of motion artifact between volumetric and axial methods. American Journal of Roentgenology. 2004; 182(3):757–759.eng
dcterms.referencesSchoenhagen P, Halliburton SS, Stillman AE, Kuzmiak SA, Nissen SE, Tuzcu EM, White RD. Noninvasive imaging of coronary arteries: Current and future role of multidetector row CT. Radiology. 2004; 232(1):7–17.eng
dcterms.referencesBoiselle PM, Ernst A. Recent advances in central airway imaging. Chest. 2002; 121(5):1651–1660.eng
dcterms.referencesHoffmann MHK, Shi H, Schmitz BL, Schmid FT, Lieberknecht M, Schulze R, Ludwig B, Kroschel U, Jahnke N, Haerer W, Brambs H-J, Aschoff AJ. Noninvasive coronary angiography with Multislice Computed Tomography. The Journal of the American Medical Association. 2005; 293(20):2471–2478.eng
dcterms.referencesKatz DS, Hon M. CT angiography of the lower extremities and aortoiliac system with a multi–detector row helical CT scanner: Promise of new opportunities fulfilled. Radiology. 2001; 221(1):7–10.eng
dcterms.referencesChen T, Metaxas DN, Axel L. 3D cardiac anatomy reconstruction using high resolution ct data. En: Barillot C, Haynor DR, Hellier P. (eds). MICCAI (1). Springer: volumen 3216 de Lecture Notes in Computer Science; 2004: 411–418.eng
dcterms.referencesFleureau J, Garreau M, Hernáde, A, Simon A, Boulmier D. (2006). Multi– object and N–D segmentation of cardiac MSCT data using SVM classifiers and a connectivity algorithm. Computers in Cardiology, páginas 817–820.eng
dcterms.referencesFleureau J, Garreau M, Hernádez A, Simon A, Boulmier D. (2007). 3D multi–object segmentation of cardiac MSCT imaging by using a multi– agent approach. 29th Conference IEEE EMBS, páginas 817–820.eng
dcterms.referencesSermesant M, Delingette H, Ayache N. An electromechanical model of the heart for image analysis and simulation. IEEE Transactions on Medical Imaging. 2006; 25(5):612–615.eng
dcterms.referencesVan Assen H, Danilouchkine M, Dirksen M, Reiber J, Lelieveldt B. A 3D active shape model driven by fuzzy inference: Application to cardiac CT and MR. IEEE Transactions on Information Technology in Biomedicine. 2008; 12(5):595–605.eng
dcterms.referencesBravo A, Vera M, Garreau M, Medina R. Three–dimensional segmentation of ventricular heart chambers from multi–slice computerized tomography: An hybrid approach. In: Editors. Cherifi H, Zain JM, El- Qawasmeh E. Proceedings of Digital Information and Communication Technology and Its Applications.Springer, Berlin, Heidelberg: Communications in Computer and Information Science; 2011. P.287–301.eng
dcterms.referencesHuérfano Y, Vera M, Del Mar A, Vera M-I, Salazar W, Chacón J, Wilches S, Graterol M, Torres M, Arias V, Rojas J, Prieto C, Siguencia W, Angarita L, Ortiz R, Rojas D, Garicano C, Chacín M, Contreras J, Bermúdez W, Bravo A. Segmentación computacional de la aurícula derecha en imágenes de tomografía cardiaca. Latinoamericana de Hipertensión. 2015; 10(4):79-84.spa
dcterms.referencesVera M, Huérfano Y, Contreras J, Vera M-I, Del Mar A, Chacón J, Wilches S, Graterol M, Riaño D, Rojas J, Bermúdez W. Segmentación automática de la arteria aorta torácica en imagines de tomografía computarizada cardiaca. 2016a; 11(4):110-116.spa
dcterms.referencesVera M, Huérfano Y, Valbuena O, Chacón J, Contreras J, Vera M-I, Wilches S, Graterol M, Riaño D, Salazar J, Rojas J, Bermúdez W. Segmentación automática de la aurícula izquierda en imágenes de tomografía computarizada cardiaca. Latinoamericana de Hipertensión. 2016a; 11(3):54- 59.spa
dcterms.referencesHuérfano Y, Vera M, Del Mar A, Vera M-I, Contreras J, Chacón J, Wilches S, Graterol M, Torres M, Arias V, Rojas J, Prieto C, Siguencia W, Angarita L, Ortiz R, Rojas D, Garicano C, Riaño D, Chacín M, Bermúdez W, Bravo A. Modelo computacional de la válvula pulmonar en contextos hipertensivos. Latinoamericana de Hipertensión. 2016a; 11(2):7-11.spa
dcterms.referencesHuérfano Y, Vera M, Del Mar A, Vera M-I, Chacón J, Wilches S, Graterol M, Torres M, Arias V, Rojas J, Prieto C, Siguencia W, Angarita L, Ortiz R, Rojas D, Garicano C, Riaño D, Chacín M, Contreras J, Bermúdez W, Bravo A. Segmentación computacional de la vena cava superior y procesos hipertensivos. Latinoamericana de Hipertensión. 2016b; 11(2):25-29.spa
dcterms.referencesFan L, Chen CW. LV motion estimation based on the integration of continuum mechanics and estimation theory.San Diego: International Society for Optics and Photonics; 1999.eng
dcterms.referencesShi P, Sinusas AJ, Constable RT, Ritman E, Duncan JS. Point-tracked quantitative analysis of left ventricular surface motion from 3–D image sequences. IEEE Transactions on Medical Imaging. 2000; 19(1):36–50.eng
dcterms.referencesBravo A, Medina R, Passariello G, Garreau M. “Estimation of the deformation field for the left ventricle walls in 4–D multislice computerized tomography”. Lecture Notes in Computer Science. 2005; 3773(1): 348–359.eng
dcterms.referencesBravo A, Mantilla J, Clemente J, Vera M, Medina R. “Left Ventricle Segmentation and Motion Analysis in Multi–Slice ComputerizedTomography”, In: Editors: Gonz´alez Fabio, Romero–Castro Eduardo. Biomedical Image Analysis and Machine Learning Technologies: Applications and Techniques. New York, USA: Medical Information Science Reference; 2010. p. 307–322.eng
dcterms.referencesAchenbach S, Ropers D, Holle J, Muschiol G, Daniel WG, Moshage W. In–plane coronary arterial motion velocity: Measurement with electron– beam CT. Radiology. 2000; 216(2):457–463.eng

Archivos

Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones