Automatic centerline extraction of left coronary artery from X–ray rotational angiographic images
dc.contributor.author | Chacón, Gerardo | |
dc.contributor.author | Rodríguez, Johel | |
dc.contributor.author | Bermúdez, Valmore | |
dc.contributor.author | Vera, Miguel | |
dc.contributor.author | Madriz, Delia | |
dc.contributor.author | Bravo, Antonio | |
dc.date.accessioned | 2019-03-08T22:53:12Z | |
dc.date.available | 2019-03-08T22:53:12Z | |
dc.date.issued | 2018 | |
dc.description.abstract | Rotational X-ray coronary angiography is a medical imaging technique safe and effective in identifying of the luminal disease, which considers a significant reduction in radiation exposure and contrast medium volume compared to conventional angiography. The main objective of this research is to propose a computational approach to automatically extract a description of the morphopatological shape of the left coronary artery by means the centerlines of this vessel. The proposal is based on a sequential design which involves image enhancement, identification of all the types of vascular points belonging to the vascular system, construction of the coronary tree and tracking of the centerlines along the rotational angiography sequence. Some results obtained after applying this method to monoplane rotational X–ray image sequences are presented. | eng |
dc.identifier.issn | 0277786X | |
dc.identifier.uri | http://hdl.handle.net/20.500.12442/2768 | |
dc.language.iso | eng | eng |
dc.publisher | International Society For Optical Engineering | eng |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional | spa |
dc.source | Proceedings of SPIE | eng |
dc.source | 14th International Symposium on Medical Information Processing and Analysis | eng |
dc.source | Vol. 10975 (2018) | spa |
dc.source.uri | DOI: 10.1117/12.2511563 | eng |
dc.subject | Cardiac imaging | eng |
dc.subject | Rotational angiography | eng |
dc.subject | Left coronary artery | eng |
dc.subject | Diffusion enhancement | eng |
dc.subject | Optical flow | eng |
dc.title | Automatic centerline extraction of left coronary artery from X–ray rotational angiographic images | eng |
dc.type | article | eng |
dcterms.references | Pantos, I., Efstathopoulos, E. P., and Katritsis, D. G., “Two and three-dimensional quantitative coronary angiography,” Cardiology Clinics 27(3), 491–502 (2009). | eng |
dcterms.references | Windecker, S. and Meier, B., “X-ray coronary angiography,” in [Pan Vascular Medicine: Integrated Clinical Management ], Lanzer, P. and Topol, E. J., eds., 602–635, Springer, Berlin, Heidelberg (2002). | eng |
dcterms.references | Di Mario, C. and Sutaria, N., “Coronary angiography in the angioplasty era: projections with a meaning,” Heart 91(7), 968–976 (2005). | eng |
dcterms.references | Robb, G amd Steinberg, I., “Visualization of the chambers of the heart, the pulmonary circulation, and the great blood vessels in man: A practical method,” American Journal of Roentgenology 41(1), 1–17 (1939). | eng |
dcterms.references | Onnasch, D., Schmiel, F.-K., and Kramer, H.-H., “Problems in quantitative evaluations of biplane x-ray angiocardiograms,” International Congress Series 1230, 1010–1016 (2001). | eng |
dcterms.references | Sadick, V., Reed, W., Collins, L., Sadick, N., Heard, R., and Robinson, J., “Impact of biplane versus singleplane imaging on radiation dose, contrast load and procedural time in coronary angioplasty,” The British Journal of Radiology 83(989), 379–394 (2010). | eng |
dcterms.references | Kern, M., Sorajja, P., and Lim, M., [Cardiac Catheterization Handbook E-Book], Elsevier Health Sciences (2015). | eng |
dcterms.references | Cornelis, G., Bellet, A., van Eygen, B., Roisin, P., and Libon, E., “Rotational multiple sequence roentgenography of intracranial aneurysms,” Acta Radiologica: Diagnosis 13(1), 74–76 (1972). | eng |
dcterms.references | Thron, A. and Voigt, K., “Rotational cerebral angiography: procedure and value,” American Journal of Neuroradiology 4(3), 289–291 (1983). | eng |
dcterms.references | Schumacher, M., Kutluk, K., and Ott, D., “Digital rotational radiography in neuroradiology,” American Journal of Neuroradiology 10(3), 644–649 (1989). | eng |
dcterms.references | Carsin, M., Chabert, E., Croci, S., Romeas, R., and Scarabin, J.-M., “[The role of 3–dimensional reconstructions in the angiographic evaluation of cerebral vascular malformations: 3D morphometry],” Journal of Neuroradiology 24(2), 137–140 (1997). in French. | eng |
dcterms.references | Anxionnat, R., Bracard, S., Macho, J., Costa, E. D., Vaillant, R., Trousset, L. L. Y., Romeas, R., and Picard, L., “3D angiography clinical interest. First applications in interventional neuroradiology,” Journal of Neuroradiology 25(4), 251–262 (1998). | eng |
dcterms.references | Raman, S., Morford, R., Neff, M., Attar, T., Kukielka, G., Magorien, R., and Bush, C., “Rotational X–ray coronary angiography,” Catheterization Cardiovascular Interventions 63(2), 201–207 (2004). | eng |
dcterms.references | Green, N. E., Chen, S.-Y., Messenger, J. C., Groves, B. M., and Carroll, J. D., “Three-dimensional vascular angiography,” Current Problems in Cardiology 29(3), 104–142 (2004). | eng |
dcterms.references | Klein, A. J. and Garcia, J. A., “Rotational coronary angiography,” Cardiology Clinics 27(3), 395–405 (2009). | eng |
dcterms.references | Puentes, J., Roux, C., Garreau, M., and Coatrieux, J., “Dynamic feature extraction of coronary artery motion using DSA image sequences,” IEEE Transactions on Medical Imaging 17(6), 857–871 (1998). | eng |
dcterms.references | Blondel, C., Malandain, G., Vaillant, R., and Ayache, N., “Reconstruction of coronary arteries from a single rotational X–ray projection sequence,” IEEE Transaction on Medical Imaging 25(5), 653–663 (2006). | eng |
dcterms.references | Kelh, H., Jäger, J., Papazis, N., Dimitrelos, D., Gehrmann, J., Kassenböhmer, R., Vogt, J., and Sakas, G., “3D heart modeling from biplane rotational angiocardiographic X–ray sequences,” Computers & Graph- ics 24(5), 731–739 (2000). | eng |
dcterms.references | Cañero, C. and Radeva, P., “Vesselness enhancement diffusion,” Pattern Recognition Letters 24(16), 3141– 3151 (2003). | eng |
dcterms.references | Meijering, H., Image Enhancement in Digital X–Ray Angiography, PhD thesis, Utrecht University (Oct 2000). | eng |
dcterms.references | Frangi, A., Niessen, W., Vincken, K., and Viergever, M., “Multiscale vessel enhancement filtering,” in [Proceedings MICCAI ], LNCS, 130–137 (1998). | eng |
dcterms.references | Qian, X., Brennan, M. P., Dione, D. P., Dobrucki, W. L., Jackowski, M. P., Breuer, C. K., Sinusas, A. J., and Papademetris, X., “A non–parametric vessel detection method for complex vascular structures,” Medical Image Analysis 13(1), 49–61 (2009). | eng |
dcterms.references | Black, M. J. and Anandan, P., “The robust estimation of multiple motions: Parametric and piecewisesmooth flow fields,” Computer Vision and Image Understanding 63(1), 75–104 (1996). | eng |
dcterms.references | Sun, D., Roth, S., and Black, M. J., “Secrets of optical flow estimation and their principles,” in [IEEE Conf. on Computer Vision and Pattern Recognition (CVPR)], 2432–2439, IEEE (June 2010). | eng |
dcterms.references | Shelton, D., Stetten, G., Aylward, S., Ibez, L., Cois, A., and Stewart, C., “Teaching medical image analysis with the insight toolkit,” Medical Image Analysis 9(6), 605–611 (2005). | eng |