A Parallel Computing Method for the Computation of the Moore–Penrose Generalized Inverse for Shared-Memory Architectures
datacite.rights | http://purl.org/coar/access_right/c_abf2 | |
dc.contributor.author | Gelvez-Almeida, Elkin | |
dc.contributor.author | Barrientos, Ricardo | |
dc.contributor.author | Vilches, Karina | |
dc.contributor.author | Mora, Marco | |
dc.date.accessioned | 2025-01-30T14:40:25Z | |
dc.date.available | 2025-01-30T14:40:25Z | |
dc.date.issued | 2023 | |
dc.description.abstract | The computation of the Moore–Penrose generalized inverse is a commonly used operation in various fields such as the training of neural networks based on random weights. Therefore, a fast computation of this inverse is important for problems where such neural networks provide a solution. However, due to the growth of databases, the matrices involved have large dimensions, thus requiring a significant amount of processing and execution time. In this paper, we propose a parallel computing method for the computation of the Moore–Penrose generalized inverse of large-size full-rank rectangular matrices. The proposed method employs the Strassen algorithm to compute the inverse of a nonsingular matrix and is implemented on a shared-memory architecture. The results show a significant reduction in computation time, especially for high-rank matrices. Furthermore, in a sequential computing scenario (using a single execution thread), our method achieves a reduced computation time compared with other previously reported algorithms. Consequently, our approach provides a promising solution for the efficient computation of the Moore–Penrose generalized inverse of large-size matrices employed in practical scenarios. | eng |
dc.format.mimetype | ||
dc.identifier.citation | E. Gelvez-Almeida, R. J. Barrientos, K. Vilches-Ponce and M. Mora, "A Parallel Computing Method for the Computation of the Moore–Penrose Generalized Inverse for Shared-Memory Architectures," in IEEE Access, vol. 11, pp. 134834-134845, 2023, doi: 10.1109/ACCESS.2023.3338544 | eng |
dc.identifier.doi | https://doi.org/10.1109/ACCESS.2023.3338544 | |
dc.identifier.issn | 21693536 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12442/16177 | |
dc.identifier.url | https://ieeexplore.ieee.org/document/10336814 | |
dc.language.iso | eng | |
dc.publisher | Institute of Electrical and Electronics Engineers (IEEE) | eng |
dc.rights | Attribution-NonCommercial-NoDerivs 3.0 United States | eng |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/us/ | |
dc.source | IEEE Access | eng |
dc.source | Vol. 11 (2023) | spa |
dc.subject.keywords | High-performance computing | eng |
dc.subject.keywords | Moore–Penrose generalized inverse matrix | eng |
dc.subject.keywords | Neural networks with random weights | eng |
dc.subject.keywords | Parallel computing | eng |
dc.subject.keywords | Strassen algorithm | eng |
dc.title | A Parallel Computing Method for the Computation of the Moore–Penrose Generalized Inverse for Shared-Memory Architectures | eng |
dc.type.driver | info:eu-repo/semantics/article | |
dc.type.spa | Artículo científico | |
dcterms.references | J. C. A. Barata and M. S. Hussein, "The Moore–Penrose pseudoinverse: A tutorial review of the theory", Brazilian J. Phys., vol. 42, no. 1, pp. 146-165, Apr. 2012. | eng |
dcterms.references | X.-D. Zhang, A Matrix Algebra Approach to Artificial Intelligence, Singapore:Springer, 2020. | eng |
dcterms.references | A. K. Malik, R. Gao, M. A. Ganaie, M. Tanveer and P. N. Suganthan, "Random vector functional link network: Recent developments applications and future directions", Appl. Soft Comput., vol. 143, Aug. 2023. | eng |
dcterms.references | P. Courrieu, "Fast computation of Moore–Penrose inverse matrices", Neural Inf. Process.-Lett. Rev., vol. 8, no. 2, pp. 25-29, Aug. 2005. | eng |
dcterms.references | J. K. Baksalary and O. M. Baksalary, "Particular formulae for the Moore–Penrose inverse of a columnwise partitioned matrix", Linear Algebra Appl., vol. 421, no. 1, pp. 16-23, Feb. 2007. | eng |
dcterms.references | M. D. Petković and P. S. Stanimirović, "Generalized matrix inversion is not harder than matrix multiplication", J. Comput. Appl. Math., vol. 230, no. 1, pp. 270-282, Aug. 2009. | eng |
dcterms.references | M. Petkovic and P. Stanimirovic, "Block recursive computation of generalized inverses", Electron. J. Linear Algebra, vol. 26, pp. 394-405, Jan. 2013. | eng |
dcterms.references | F. Toutounian and A. Ataei, "A new method for computing Moore–Penrose inverse matrices", J. Comput. Appl. Math., vol. 228, no. 1, pp. 412-417, Jun. 2009. | eng |
dcterms.references | V. Katsikis and D. Pappas, "Fast computing of the Moore–Penrose inverse matrix", Electron. J. Linear Algebra, vol. 17, pp. 637-650, Jan. 2008. | eng |
dcterms.references | V. N. Katsikis, D. Pappas and A. Petralias, "An improved method for the computation of the Moore–Penrose inverse matrix", Appl. Math. Comput., vol. 217, no. 23, pp. 9828-9834, Aug. 2011. | eng |
dcterms.references | A. Marco and J.-J. Martínez, "Accurate computation of the Moore–Penrose inverse of strictly totally positive matrices", J. Comput. Appl. Math., vol. 350, pp. 299-308, Apr. 2019. | eng |
dcterms.references | W. Li and Z. Li, "A family of iterative methods for computing the approximate inverse of a square matrix and inner inverse of a non-square matrix", Appl. Math. Comput., vol. 215, no. 9, pp. 3433-3442, Jan. 2010. | eng |
dcterms.references | H. Chen and Y. Wang, "A family of higher-order convergent iterative methods for computing the Moore–Penrose inverse", Appl. Math. Comput., vol. 218, no. 8, pp. 4012-4016, Dec. 2011. | eng |
dcterms.references | P. S. Stanimirović, V. N. Katsikis, S. Srivastava and D. Pappas, "A class of quadratically convergent iterative methods", Revista de la Real Academia de Ciencias Exactas Físicas y Naturales. Serie A. Matemáticas, vol. 113, no. 4, pp. 3125-3146, May 2019. | eng |
dcterms.references | R. Behera, J. K. Sahoo, R. N. Mohapatra and M. Z. Nashed, "Computation of generalized inverses of tensors via t-product", Numer. Linear Algebra With Appl., vol. 29, no. 2, pp. e2416, 2022. | eng |
dcterms.references | V. Stanojević, L. Kazakovtsev, P. S. Stanimirović, N. Rezova and G. Shkaberina, "Calculating the Moore–Penrose generalized inverse on massively parallel systems", Algorithms, vol. 15, no. 10, pp. 348, Sep. 2022. | eng |
dcterms.references | J. Ma, F. Gao and Y. Li, "An efficient method to compute different types of generalized inverses based on linear transformation", Appl. Math. Comput., vol. 349, pp. 367-380, May 2019. | eng |
dcterms.references | P. S. Stanimirović, A. Kumar and V. N. Katsikis, " Further efficient hyperpower iterative methods for the computation of generalized inverses A T S ( 2) ", Revista de la Real Academia de Ciencias Exactas Físicas y Naturales. Serie A. Matemáticas, vol. 113, no. 4, pp. 3323-3339, May 2019 | eng |
dcterms.references | P. S. Stanimirović, V. N. Katsikis and D. Kolundžija, "Inversion and pseudoinversion of block arrowhead matrices", Appl. Math. Comput., vol. 341, pp. 379-401, Jan. 2019. | eng |
dcterms.references | P. S. Stanimirović, F. Roy, D. K. Gupta and S. Srivastava, "Computing the Moore–Penrose inverse using its error bounds", Appl. Math. Comput., vol. 371, Apr. 2020. | eng |
dcterms.references | X. Chen and J. Ji, "A divide-and-conquer approach for the computation of the Moore–Penrose inverses", Appl. Math. Comput., vol. 379, Aug. 2020. | eng |
dcterms.references | N. Aldhafeeri, D. Pappas, I. P. Stanimirović and M. Tasić, "Representations of generalized inverses via full-rank QDR decomposition", Numer. Algorithms, vol. 86, no. 3, pp. 1327-1337, Mar. 2021. | eng |
dcterms.references | A. Ben-Israel and T. N. E. Greville, Generalized Inverses: Theory and Applications, New York, NY, USA:Springer, 2003. | eng |
dcterms.references | G. Wang, Y. Wei, S. Qiao, P. Lin and Y. Chen, Generalized Inverses: Theory and Computations, vol. 53, 2018. | eng |
dcterms.references | R. Penrose, "A generalized inverse for matrices", Math. Proc. Cambridge Philos. Soc., vol. 51, no. 3, pp. 406-413, Jul. 1955. | eng |
dcterms.references | V. Strassen, "Gaussian elimination is not optimal", Numerische Math., vol. 13, no. 4, pp. 354-356, Aug. 1969. | eng |
dcterms.references | H. D. Macedo, "Gaussian elimination is not optimal revisited", J. Log. Algebr. Methods Program., vol. 85, no. 5, pp. 999-1010, Aug. 2016. | eng |
dcterms.references | R. A. Horn and F. Zhang, "Basic properties of the Schur complement" in The Schur Complement and Its Applications, New York, NY, USA:Springer, pp. 17-46, 2005. | eng |
dcterms.references | D. H. Bailey, K. Lee and H. D. Simon, "Using Strassen’s algorithm to accelerate the solution of linear systems", J. Supercomput., vol. 4, no. 4, pp. 357-371, Jan. 1991. | eng |
dcterms.references | S. Lu, X. Wang, G. Zhang and X. Zhou, "Effective algorithms of the Moore–Penrose inverse matrices for extreme learning machine", Intell. Data Anal., vol. 19, no. 4, pp. 743-760, Jul. 2015. | eng |
oaire.version | info:eu-repo/semantics/publishedVersion |