A Parallel Computing Method for the Computation of the Moore–Penrose Generalized Inverse for Shared-Memory Architectures

datacite.rightshttp://purl.org/coar/access_right/c_abf2
dc.contributor.authorGelvez-Almeida, Elkin
dc.contributor.authorBarrientos, Ricardo
dc.contributor.authorVilches, Karina
dc.contributor.authorMora, Marco
dc.date.accessioned2025-01-30T14:40:25Z
dc.date.available2025-01-30T14:40:25Z
dc.date.issued2023
dc.description.abstractThe computation of the Moore–Penrose generalized inverse is a commonly used operation in various fields such as the training of neural networks based on random weights. Therefore, a fast computation of this inverse is important for problems where such neural networks provide a solution. However, due to the growth of databases, the matrices involved have large dimensions, thus requiring a significant amount of processing and execution time. In this paper, we propose a parallel computing method for the computation of the Moore–Penrose generalized inverse of large-size full-rank rectangular matrices. The proposed method employs the Strassen algorithm to compute the inverse of a nonsingular matrix and is implemented on a shared-memory architecture. The results show a significant reduction in computation time, especially for high-rank matrices. Furthermore, in a sequential computing scenario (using a single execution thread), our method achieves a reduced computation time compared with other previously reported algorithms. Consequently, our approach provides a promising solution for the efficient computation of the Moore–Penrose generalized inverse of large-size matrices employed in practical scenarios.eng
dc.format.mimetypepdf
dc.identifier.citationE. Gelvez-Almeida, R. J. Barrientos, K. Vilches-Ponce and M. Mora, "A Parallel Computing Method for the Computation of the Moore–Penrose Generalized Inverse for Shared-Memory Architectures," in IEEE Access, vol. 11, pp. 134834-134845, 2023, doi: 10.1109/ACCESS.2023.3338544eng
dc.identifier.doihttps://doi.org/10.1109/ACCESS.2023.3338544
dc.identifier.issn21693536
dc.identifier.urihttps://hdl.handle.net/20.500.12442/16177
dc.identifier.urlhttps://ieeexplore.ieee.org/document/10336814
dc.language.isoeng
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)eng
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 United Stateseng
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/
dc.sourceIEEE Accesseng
dc.sourceVol. 11 (2023)spa
dc.subject.keywordsHigh-performance computingeng
dc.subject.keywordsMoore–Penrose generalized inverse matrixeng
dc.subject.keywordsNeural networks with random weightseng
dc.subject.keywordsParallel computingeng
dc.subject.keywordsStrassen algorithmeng
dc.titleA Parallel Computing Method for the Computation of the Moore–Penrose Generalized Inverse for Shared-Memory Architectureseng
dc.type.driverinfo:eu-repo/semantics/article
dc.type.spaArtículo científico
dcterms.referencesJ. C. A. Barata and M. S. Hussein, "The Moore–Penrose pseudoinverse: A tutorial review of the theory", Brazilian J. Phys., vol. 42, no. 1, pp. 146-165, Apr. 2012.eng
dcterms.referencesX.-D. Zhang, A Matrix Algebra Approach to Artificial Intelligence, Singapore:Springer, 2020.eng
dcterms.referencesA. K. Malik, R. Gao, M. A. Ganaie, M. Tanveer and P. N. Suganthan, "Random vector functional link network: Recent developments applications and future directions", Appl. Soft Comput., vol. 143, Aug. 2023.eng
dcterms.referencesP. Courrieu, "Fast computation of Moore–Penrose inverse matrices", Neural Inf. Process.-Lett. Rev., vol. 8, no. 2, pp. 25-29, Aug. 2005.eng
dcterms.referencesJ. K. Baksalary and O. M. Baksalary, "Particular formulae for the Moore–Penrose inverse of a columnwise partitioned matrix", Linear Algebra Appl., vol. 421, no. 1, pp. 16-23, Feb. 2007.eng
dcterms.referencesM. D. Petković and P. S. Stanimirović, "Generalized matrix inversion is not harder than matrix multiplication", J. Comput. Appl. Math., vol. 230, no. 1, pp. 270-282, Aug. 2009.eng
dcterms.referencesM. Petkovic and P. Stanimirovic, "Block recursive computation of generalized inverses", Electron. J. Linear Algebra, vol. 26, pp. 394-405, Jan. 2013.eng
dcterms.referencesF. Toutounian and A. Ataei, "A new method for computing Moore–Penrose inverse matrices", J. Comput. Appl. Math., vol. 228, no. 1, pp. 412-417, Jun. 2009.eng
dcterms.referencesV. Katsikis and D. Pappas, "Fast computing of the Moore–Penrose inverse matrix", Electron. J. Linear Algebra, vol. 17, pp. 637-650, Jan. 2008.eng
dcterms.referencesV. N. Katsikis, D. Pappas and A. Petralias, "An improved method for the computation of the Moore–Penrose inverse matrix", Appl. Math. Comput., vol. 217, no. 23, pp. 9828-9834, Aug. 2011.eng
dcterms.referencesA. Marco and J.-J. Martínez, "Accurate computation of the Moore–Penrose inverse of strictly totally positive matrices", J. Comput. Appl. Math., vol. 350, pp. 299-308, Apr. 2019.eng
dcterms.referencesW. Li and Z. Li, "A family of iterative methods for computing the approximate inverse of a square matrix and inner inverse of a non-square matrix", Appl. Math. Comput., vol. 215, no. 9, pp. 3433-3442, Jan. 2010.eng
dcterms.referencesH. Chen and Y. Wang, "A family of higher-order convergent iterative methods for computing the Moore–Penrose inverse", Appl. Math. Comput., vol. 218, no. 8, pp. 4012-4016, Dec. 2011.eng
dcterms.referencesP. S. Stanimirović, V. N. Katsikis, S. Srivastava and D. Pappas, "A class of quadratically convergent iterative methods", Revista de la Real Academia de Ciencias Exactas Físicas y Naturales. Serie A. Matemáticas, vol. 113, no. 4, pp. 3125-3146, May 2019.eng
dcterms.referencesR. Behera, J. K. Sahoo, R. N. Mohapatra and M. Z. Nashed, "Computation of generalized inverses of tensors via t-product", Numer. Linear Algebra With Appl., vol. 29, no. 2, pp. e2416, 2022.eng
dcterms.referencesV. Stanojević, L. Kazakovtsev, P. S. Stanimirović, N. Rezova and G. Shkaberina, "Calculating the Moore–Penrose generalized inverse on massively parallel systems", Algorithms, vol. 15, no. 10, pp. 348, Sep. 2022.eng
dcterms.referencesJ. Ma, F. Gao and Y. Li, "An efficient method to compute different types of generalized inverses based on linear transformation", Appl. Math. Comput., vol. 349, pp. 367-380, May 2019.eng
dcterms.referencesP. S. Stanimirović, A. Kumar and V. N. Katsikis, " Further efficient hyperpower iterative methods for the computation of generalized inverses A T S ( 2) ", Revista de la Real Academia de Ciencias Exactas Físicas y Naturales. Serie A. Matemáticas, vol. 113, no. 4, pp. 3323-3339, May 2019eng
dcterms.referencesP. S. Stanimirović, V. N. Katsikis and D. Kolundžija, "Inversion and pseudoinversion of block arrowhead matrices", Appl. Math. Comput., vol. 341, pp. 379-401, Jan. 2019.eng
dcterms.referencesP. S. Stanimirović, F. Roy, D. K. Gupta and S. Srivastava, "Computing the Moore–Penrose inverse using its error bounds", Appl. Math. Comput., vol. 371, Apr. 2020.eng
dcterms.referencesX. Chen and J. Ji, "A divide-and-conquer approach for the computation of the Moore–Penrose inverses", Appl. Math. Comput., vol. 379, Aug. 2020.eng
dcterms.referencesN. Aldhafeeri, D. Pappas, I. P. Stanimirović and M. Tasić, "Representations of generalized inverses via full-rank QDR decomposition", Numer. Algorithms, vol. 86, no. 3, pp. 1327-1337, Mar. 2021.eng
dcterms.referencesA. Ben-Israel and T. N. E. Greville, Generalized Inverses: Theory and Applications, New York, NY, USA:Springer, 2003.eng
dcterms.referencesG. Wang, Y. Wei, S. Qiao, P. Lin and Y. Chen, Generalized Inverses: Theory and Computations, vol. 53, 2018.eng
dcterms.referencesR. Penrose, "A generalized inverse for matrices", Math. Proc. Cambridge Philos. Soc., vol. 51, no. 3, pp. 406-413, Jul. 1955.eng
dcterms.referencesV. Strassen, "Gaussian elimination is not optimal", Numerische Math., vol. 13, no. 4, pp. 354-356, Aug. 1969.eng
dcterms.referencesH. D. Macedo, "Gaussian elimination is not optimal revisited", J. Log. Algebr. Methods Program., vol. 85, no. 5, pp. 999-1010, Aug. 2016.eng
dcterms.referencesR. A. Horn and F. Zhang, "Basic properties of the Schur complement" in The Schur Complement and Its Applications, New York, NY, USA:Springer, pp. 17-46, 2005.eng
dcterms.referencesD. H. Bailey, K. Lee and H. D. Simon, "Using Strassen’s algorithm to accelerate the solution of linear systems", J. Supercomput., vol. 4, no. 4, pp. 357-371, Jan. 1991.eng
dcterms.referencesS. Lu, X. Wang, G. Zhang and X. Zhou, "Effective algorithms of the Moore–Penrose inverse matrices for extreme learning machine", Intell. Data Anal., vol. 19, no. 4, pp. 743-760, Jul. 2015.eng
oaire.versioninfo:eu-repo/semantics/publishedVersion

Archivos

Bloque original
Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
PDF.pdf
Tamaño:
6.03 MB
Formato:
Adobe Portable Document Format
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
381 B
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones