Parallel ensemble of a randomization-based online sequential neural network for classification problems using a frequency criterion

datacite.rightshttp://purl.org/coar/access_right/c_abf2
dc.contributor.authorGelvez-Almeida, Elkin
dc.contributor.authorBarrientos, Ricardo
dc.contributor.authorVilches, Karina
dc.contributor.authorMora, Marco
dc.date.accessioned2025-02-05T20:17:06Z
dc.date.available2025-02-05T20:17:06Z
dc.date.issued2024
dc.description.abstractRandomization-based neural networks have gained wide acceptance in the scientific community owing to the simplicity of their algorithm and generalization capabilities. Random vector functional link (RVFL) networks and their variants are a class of randomization-based neural networks. RVFL networks have shown promising results in classification, regression, and clustering problems. For real-world applications, learning algorithms that can train with new samples over previous results are necessary because of to the constant generation of problems related to large-scale datasets. Various online sequential algorithms, commonly involving an initial learning phase followed by a sequential learning phase, have been proposed to address this issue. This paper presents a training algorithm based on multiple online sequential random vector functional link (OS-RVFL) networks for large-scale databases using a shared memory architecture. The training dataset is distributed among p OS-RVFL networks, which are trained in parallel using p threads. Subsequently, the test dataset samples are classified using each trained OS-RVFL network. Finally, a frequency criterion is applied to the results obtained from each OS-RVFL network to determine the final classification. Additionally, an equation was derived to reasonably predict the total training time of the proposed algorithm based on the learning time in the initial phase and the time scaling factor compared to the sequential learning phase. The results demonstrate a drastic reduction in training time because of data distribution and an improvement in accuracy because of the adoption of the frequency criterion.eng
dc.format.mimetypepdf
dc.identifier.citationGelvez-Almeida, E., Barrientos, R.J., Vilches-Ponce, K. et al. Parallel ensemble of a randomization-based online sequential neural network for classification problems using a frequency criterion. Sci Rep 14, 16104 (2024). https://doi.org/10.1038/s41598-024-66676-9eng
dc.identifier.doihttps://doi.org/10.1038/s41598-024-66676-9
dc.identifier.issn20452322
dc.identifier.urihttps://hdl.handle.net/20.500.12442/16220
dc.language.isoeng
dc.publisherNaturespa
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 United Stateseng
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/
dc.sourceScientific reportseng
dc.sourceNo. 14, 16104 (2024)spa
dc.subject.keywordsRandomization-based neuraleng
dc.subject.keywordsRandom vector functional link (RVFL)eng
dc.subject.keywordsNeural Networkseng
dc.subject.keywordsTraining algorithmeng
dc.subject.keywordsSequential Learningeng
dc.titleParallel ensemble of a randomization-based online sequential neural network for classification problems using a frequency criterioneng
dc.type.driverinfo:eu-repo/semantics/article
dc.type.spaArtículo científicospa
dcterms.referencesZhang, L. & Suganthan, P. N. A survey of randomized algorithms for training neural networks. Inf. Sci. 364–365, 146–155. https://doi.org/10.1016/j.ins.2016.01.039 (2016).spa
dcterms.referencesSuganthan, P. N. & Katuwal, R. On the origins of randomization-based feedforward neural networks. Appl. Soft Comput. 105, 107239. https://doi.org/10.1016/j.asoc.2021.107239 (2021).spa
dcterms.referencesPao, Y.-H. & Takefuji, Y. Functional-link net computing: Theory, system architecture, and functionalities. Computer 25, 76–79. https://doi.org/10.1109/2.144401 (1992).spa
dcterms.referencesPao, Y.-H., Park, G.-H. & Sobajic, D. J. Learning and generalization characteristics of the random vector functional-link net. Neurocomputing 6, 163–180. https://doi.org/10.1016/0925-2312(94)90053-1 (1994).spa
dcterms.referencesZhang, L. & Suganthan, P. N. A comprehensive evaluation of random vector functional link networks. Inf. Sci. 367, 1094–1105. https://doi.org/10.1016/j.ins.2015.09.025 (2016).spa
dcterms.referencesGelvez-Almeida, E. et al. Parallel methods for linear systems solution in extreme learning machines: An overview. J. Phys. Conf. Ser. 1702, 012017. https://doi.org/10.1088/1742-6596/1702/1/012017 (2020).spa
dcterms.referencesMalik, A. K., Gao, R., Ganaie, M., Tanveer, M. & Suganthan, P. N. Random vector functional link network: Recent developments, applications, and future directions. Appl. Soft Comput. 143, 110377. https://doi.org/10.1016/j.asoc.2023.110377 (2022).spa
dcterms.referencesLiang, N.-Y., Huang, G.-B., Saratchandran, P. & Sundararajan, N. A fast and accurate online sequential learning algorithm for feedforward networks. IEEE Trans. Neural Netw. 17, 1411–1423. https://doi.org/10.1109/TNN.2006.880583 (2006).spa
dcterms.referencesMatias, T., Souza, F., Araújo, R., Gonçalves, N. & Barreto, J. P. On-line sequential extreme learning machine based on recursive partial least squares. J. Process Control 27, 15–21. https://doi.org/10.1016/j.jprocont.2015.01.004 (2015).spa
dcterms.referencesMirza, B., Lin, Z., Cao, J. & Lai, X. Voting based weighted online sequential extreme learning machine for imbalance multi-class classification. In 2015 IEEE International Symposium on Circuits and Systems (ISCAS) 565–568. https://doi.org/10.1109/ISCAS.2015.7168696 (IEEE, 2015).spa
dcterms.referencesGelvez-Almeida, E., Barrientos, R. J., Vilches-Ponce, K. & Mora, M. Parallel training of a set of online sequential extreme learning machines. In: 41st International Conference of the Chilean Computer Science Society (SCCC), Santiago. Chile 1–4, 2022. https://doi.org/10.1109/SCCC57464.2022.10000361 (21-25 November 2022).spa
dcterms.referencesGelvez-Almeida, E., Barrientos, R. J., Vilches-Ponce, K. & Mora, M. Parallel model of online sequential extreme learning machines for classification problems with large-scale databases. In XI Jornadas de Cloud Computing, Big Data & Emerging Topics, La Plata, Argentina 19–23. http://sedici.unlp.edu.ar/handle/10915/155423 (27–29 June 2023).spa
dcterms.referencesWibawa, I. P. D., Machbub, C., Rohman, A. S. & Hidayat, E. Modified online sequential extreme learning machine algorithm using model predictive control approach. Intell. Syst. Appl. 18, 200191. https://doi.org/10.1016/j.iswa.2023.200191 (2023).spa
dcterms.referencesChen, Y. & Li, M. An effective online sequential stochastic configuration algorithm for neural networks. Sustainability 14, 15601. https://doi.org/10.3390/su142315601 (2022).spa
dcterms.referencesZhang, X., Ma, H., Zuo, W. & Luo, M. Adaptive control of discrete-time nonlinear systems using ITF-ORVFL. IEEE/CAA J. Autom. Sin. 9, 556–563. https://doi.org/10.1109/JAS.2019.1911801 (2022).spa
dcterms.referencesZha, L., Ma, K., Li, G., Yang, J. & Fang, Q. An improved extreme learning machine with self-recurrent hidden layer. Adv. Eng. Inform. 54, 101736. https://doi.org/10.1016/j.aei.2022.101736 (2022).spa
dcterms.referencesKale, A. P., Sonawane, S., Wahul, R. M. & Dudhedia, M. A. Improved genetic optimized feature selection for online sequential extreme learning machine. Ingénierie des Systèmes d’Informationhttps://doi.org/10.18280/isi.270519 (2022).spa
dcterms.referencesPolat, Ö. & Kayhan, S. K. GPU-accelerated and mixed norm regularized online extreme learning machine. Concurr. Comput. Pract. Exp. 34, e6967. https://doi.org/10.1002/cpe.6967 (2022).spa
dcterms.referencesRen, Y., Zhang, L. & Suganthan, P. N. Ensemble classification and regression-recent developments, applications and future directions. IEEE Comput. Intell. Mag. 11, 41–53. https://doi.org/10.1109/MCI.2015.2471235 (2016).spa
dcterms.referencesLan, Y., Soh, Y. C. & Huang, G.-B. Ensemble of online sequential extreme learning machine. Neurocomputing 72, 3391–3395. https://doi.org/10.1016/j.neucom.2009.02.013 (2009).spa
dcterms.referencesLiu, N. & Wang, H. Ensemble based extreme learning machine. IEEE Signal Process. Lett. 17, 754–757. https://doi.org/10.1109/LSP.2010.2053356 (2010).spa
dcterms.referencesLiu, Y. et al. Particle swarm optimization based selective ensemble of online sequential extreme learning machine. Math. Problems Eng.https://doi.org/10.1155/2015/504120 (2015).spa
dcterms.referencesWei, L., Wang, L., Li, Y. & Duan, S. Ensemble of online sequential extreme learning machine based on cross-validation. J. Phys. Conf. Ser. 1550, 032156. https://doi.org/10.1088/1742-6596/1550/3/032156 (2020).spa
dcterms.referencesZhai, J., Wang, J. & Wang, X. Ensemble online sequential extreme learning machine for large data set classification. In 2014 IEEE International Conference on Systems, Man, and Cybernetics (SMC) 2250–2255. https://doi.org/10.1109/SMC.2014.6974260 (IEEE, 2014).spa
dcterms.referencesAlhamdoosh, M. & Wang, D. Fast decorrelated neural network ensembles with random weights. Inf. Sci. 264, 104–117. https://doi.org/10.1016/j.ins.2013.12.016 (2014).spa
dcterms.referencesMirza, B., Lin, Z. & Liu, N. Ensemble of subset online sequential extreme learning machine for class imbalance and concept drift. Neurocomputing 149, 316–329. https://doi.org/10.1016/j.neucom.2014.03.075 (2015).spa
dcterms.referencesLing, Q.-H., Song, Y.-Q., Han, F., Yang, D. & Huang, D.-S. An improved ensemble of random vector functional link networks based on particle swarm optimization with double optimization strategy. Plos ONE 11, e0165803. https://doi.org/10.1371/journal.pone.0165803 (2016).spa
dcterms.referencesHuang, S. et al. Parallel ensemble of online sequential extreme learning machine based on MapReduce. Neurocomputing 174, 352–367. https://doi.org/10.1016/j.neucom.2015.04.105 (2016).spa
dcterms.referencesRakesh, K. & Suganthan, P. N. An ensemble of kernel ridge regression for multi-class classification. Procedia Comput. Sci. 108, 375–383. https://doi.org/10.1016/j.procs.2017.05.109 (2017).spa
dcterms.referencesZhang, L. & Suganthan, P. N. Benchmarking ensemble classifiers with novel co-trained kernel ridge regression and random vector functional link ensembles [research frontier]. IEEE Comput. Intell. Mag. 12, 61–72 (2017).spa
dcterms.referencesLi, Y., Zhang, S., Yin, Y., Xiao, W. & Zhang, J. Parallel one-class extreme learning machine for imbalance learning based on Bayesian approach. J. Ambient Intell. Humaniz. Comput.https://doi.org/10.1007/s12652-018-0994-x (2018).spa
dcterms.referencesKatuwal, R. & Suganthan, P. N. Dropout and dropconnect based ensemble of random vector functional link neural network. In 2018 IEEE Symposium Series on Computational Intelligence (SSCI) 1772–1778. https://doi.org/10.1109/SSCI.2018.8628640 (2018).spa
dcterms.referencesLiu, Y. et al. Ensemble neural networks with random weights for classification problems. In 2020 3rd International Conference on Algorithms, Computing and Artificial Intelligence 1–5. https://doi.org/10.1145/3446132.3446147 (2020).spa
dcterms.referencesHu, M., Shi, Q., Suganthan, P. N. & Tanveer, M. Adaptive ensemble variants of random vector functional link networks. In Neural Information Processing: 27th International Conference, ICONIP 2020, Bangkok, Thailand, November 18–22, 2020, Proceedings, Part V 27 30–37. https://doi.org/10.1007/978-3-030-63823-8_4 (2020).spa
dcterms.referencesMalik, A. K., Ganaie, M., Tanveer, M. & Suganthan, P. N. A novel ensemble method of RVFL for classification problem. In 2021 International Joint Conference on Neural Networks (IJCNN) 1–8. https://doi.org/10.1109/IJCNN52387.2021.9533836 (2021).spa
dcterms.referencesTanveer, M., Ganaie, M. & Suganthan, P. N. Ensemble of classification models with weighted functional link network. Appl. Soft Comput. 107, 107322. https://doi.org/10.1016/j.asoc.2021.107322 (2021).spa
dcterms.referencesShi, Q., Katuwal, R., Suganthan, P. N. & Tanveer, M. Random vector functional link neural network based ensemble deep learning. Pattern Recognit. 117, 107978. https://doi.org/10.1016/j.patcog.2021.107978 (2021).spa
dcterms.referencesDong, Q., Zhou, Y., Lian, J. & Li, L. Online adaptive humidity monitoring method for proton exchange membrane fuel cell based on fuzzy c-means clustering and online sequence extreme learning machine. Electrochim. Acta 429, 141059. https://doi.org/10.1016/j.electacta.2022.141059 (2022).spa
dcterms.referencesYao, Y., Ding, J., Zhao, C., Wang, Y. & Chai, T. Data-driven constrained reinforcement learning for optimal control of a multistage evaporation process. Control Eng. Pract. 129, 105345. https://doi.org/10.1016/j.conengprac.2022.105345 (2022).spa
dcterms.referencesLi, R., Gao, R., Cui, J., Suganthan, P. & Sourina, O. Advanced ensemble deep random vector functional link for eye-tracking-based situation awareness recognition. In 2022 IEEE Symposium Series on Computational Intelligence (SSCI) 300–307. https://doi.org/10.1109/SSCI51031.2022.10022019 (2022).spa
dcterms.referencesGanaie, M. & Tanveer, M. Ensemble deep random vector functional link network using privileged information for Alzheimer’s disease diagnosis. IEEE/ACM Trans. Comput. Biol. Bioinform.https://doi.org/10.1109/TCBB.2022.3170351 (2022).spa
dcterms.referencesGao, R., Du, L., Suganthan, P. N., Zhou, Q. & Yuen, K. F. Random vector functional link neural network based ensemble deep learning for short-term load forecasting. Expert Syst. Appl. 206, 117784. https://doi.org/10.1016/j.eswa.2022.117784 (2022).spa
dcterms.referencesYu, X. et al. Selective ensemble deep bidirectional RVFLN for landslide displacement prediction. Nat. Hazards 112, 725–745. https://doi.org/10.1007/s11069-021-05202-w (2022).spa
dcterms.referencesJamei, M. et al. Development of wavelet-based kalman online sequential extreme learning machine optimized with boruta-random forest for drought index forecasting. Eng. Appl. Artif. Intell. 117, 105545. https://doi.org/10.1016/j.engappai.2022.105545 (2023).spa
dcterms.referencesZhou, X., Huang, J., Lu, F., Zhou, W. & Liu, P. A novel compound fault-tolerant method based on online sequential extreme learning machine with cycle reservoir for turbofan engine direct thrust control. Aerosp. Sci. Technol. 132, 108059. https://doi.org/10.1016/j.ast.2022.108059 (2023).spa
dcterms.referencesRajpal, A., Sehra, K., Mishra, A. & Chetty, G. A low-resolution real-time face recognition using extreme learning machine and its variants. Imaging Sci. J.https://doi.org/10.1080/13682199.2023.2183544 (2023).spa
dcterms.referencesXu, Q., Wei, X., Bai, R., Li, S. & Meng, Z. Integration of deep adaptation transfer learning and online sequential extreme learning machine for cross-person and cross-position activity recognition. Expert Syst. Appl. 212, 118807. https://doi.org/10.1016/j.eswa.2022.118807 (2023).spa
dcterms.referencesWang, F., Song, Y., Liu, C., He, A. & Qiang, Y. Multi-objective optimal scheduling of laminar cooling water supply system for hot rolling mills driven by digital twin for energy-saving. J. Process Control 122, 134–146. https://doi.org/10.1016/j.jprocont.2023.01.004 (2023).spa
dcterms.referencesYu, L., Bai, Y. & Li, K. Lane-changing control of vehicle platoon based on OS-ELM environmental parameter identifier. IEEE Trans. Veh. Technol.https://doi.org/10.1109/TVT.2022.3214935 (2023).spa
dcterms.referencesKouzehkalani Sales, A., Gul, E. & Safari, M. J. S. Online sequential, outlier robust, and parallel layer perceptron extreme learning machine models for sediment transport in sewer pipes. Environ. Sci. Pollut. Res. 30, 39637–39652. https://doi.org/10.1007/s11356-022-24989-0 (2023).spa
dcterms.referencesSamal, S. & Dash, R. Developing a novel stock index trend predictor model by integrating multiple criteria decision-making with an optimized online sequential extreme learning machine. Granul. Comput. 8, 411–440. https://doi.org/10.1007/s41066-022-00338-x (2023).spa
dcterms.referencesDuan, W. et al. Battery SOH estimation and RUL prediction framework based on variable forgetting factor online sequential extreme learning machine and particle filter. J. Energy Storage 65, 107322. https://doi.org/10.1016/j.est.2023.107322 (2023).spa
dcterms.referencesShi, Q., Hu, M., Suganthan, P. N. & Katuwal, R. Weighting and pruning based ensemble deep random vector functional link network for tabular data classification. Pattern Recognit. 132, 108879. https://doi.org/10.1016/j.patcog.2022.108879 (2022).spa
dcterms.referencesLi, R. et al. A spectral-ensemble deep random vector functional link network for passive brain-computer interface. Expert Syst. Appl. 227, 120279. https://doi.org/10.1016/j.eswa.2023.120279 (2023).spa
dcterms.referencesLi, R. et al. An enhanced ensemble deep random vector functional link network for driver fatigue recognition. Eng. Appl. Artif. Intell. 123, 106237. https://doi.org/10.1016/j.engappai.2023.106237 (2023).spa
dcterms.referencesXiao, S., Zhang, F. & Huang, X. Online thickness prediction of hot-rolled strip based on ISSA-OSELM. Int. J. Interact. Design Manuf. (IJIDeM) 16, 1089–1098. https://doi.org/10.1007/s12008-021-00833-6 (2022).spa
dcterms.referencesLi, Y., Zhang, J., Zhang, S. & Xiao, W. Dual ensemble online modeling for dynamic estimation of hot metal silicon content in blast furnace system. ISA Trans. 128, 686–697. https://doi.org/10.1016/j.isatra.2021.09.018 (2022).spa
dcterms.referencesRen, Q., Li, M., Kong, T. & Ma, J. Multi-sensor real-time monitoring of dam behavior using self-adaptive online sequential learning. Autom. Constr. 140, 104365. https://doi.org/10.1016/j.autcon.2022.104365 (2022).spa
dcterms.referencesZhou, Z., Ji, H. & Zhu, Z. Online sequential fuzzy dropout extreme learning machine compensate for sliding-mode control system errors of uncertain robot manipulator. Int. J. Mach. Learn. Cybern. 13, 2171–2187. https://doi.org/10.1007/s13042-022-01513-x (2022).spa
dcterms.referencesAli, M. et al. Coupled online sequential extreme learning machine model with ant colony optimization algorithm for wheat yield prediction. Sci. Rep. 12, 5488. https://doi.org/10.1038/s41598-022-09482-5 (2022).spa
dcterms.referencesHe, J. et al. Ensemble deep random vector functional link for self-supervised direction-of-arrival estimation. Eng. Appl. Artif. Intell. 120, 105831. https://doi.org/10.1016/j.engappai.2023.105831 (2023).spa
dcterms.referencesGao, R., Li, R., Hu, M., Suganthan, P. N. & Yuen, K. F. Significant wave height forecasting using hybrid ensemble deep randomized networks with neurons pruning. Eng. Appl. Artif. Intell. 117, 105535. https://doi.org/10.1016/j.engappai.2022.105535 (2023).spa
dcterms.referencesHuang, G.-B., Zhu, Q.-Y. & Siew, C.-K. Extreme learning machine: A new learning scheme of feedforward neural networks. In 2004 IEEE International Joint Conference on Neural Networks (IEEE Cat. No. 04CH37541), Budapest, Hungary, vol 2, 985–990. https://doi.org/10.1109/IJCNN.2004.1380068 (25–29 July 2004).spa
dcterms.referencesSafaei, A., Wu, Q. M. J., Akilan, T. & Yang, Y. System-on-a-chip (SoC)-based hardware acceleration for an online sequential extreme learning machine (OS-ELM). IEEE Trans. Comput.-Aided Design Integr. Circuits Syst. 38, 2127–2138. https://doi.org/10.1109/TCAD.2018.2878162 (2018).spa
dcterms.referencesRosato, A., Altilio, R. & Panella, M. On-line learning of RVFL neural networks on finite precision hardware. In 2018 IEEE International Symposium on Circuits and Systems (ISCAS) 1–5. https://doi.org/10.1109/ISCAS.2018.8351399 (IEEE, 2018).spa
dcterms.referencesDecherchi, S., Gastaldo, P., Leoncini, A. & Zunino, R. Efficient digital implementation of extreme learning machines for classification. IEEE Trans. Circuits Syst. II: Express Briefs 59, 496–500. https://doi.org/10.1109/TCSII.2012.2204112 (2012).spa
dcterms.referencesXia, M., Wang, J., Liu, J., Weng, L. & Xu, Y. Density-based semi-supervised online sequential extreme learning machine. Neural Comput. Appl. 32, 7747–7758. https://doi.org/10.1007/s00521-019-04066-3 (2020).spa
dcterms.referencesHong, J.-H., Min, J.-K., Cho, U.-K. & Cho, S.-B. Fingerprint classification using one-vs-all support vector machines dynamically ordered with naï ve bayes classifiers. Pattern Recognition 41, 662–671. https://doi.org/10.1016/j.patcog.2007.07.004 (2008).spa
dcterms.referencesHenry, E. R. Classification and uses of finger prints (His Magjesty’s Stationery Office, London, 1922).spa
dcterms.referencesZabala-Blanco, D., Mora, M., Barrientos, R. J., Hernández-García, R. & Naranjo-Torres, J. Fingerprint classification through standard and weighted extreme learning machines. Appl. Sci. 10, 4125. https://doi.org/10.3390/app10124125 (2020).spa
dcterms.referencesZabala-Blanco, D., Mora, M., Hernández-García, R. & Barrientos, R. J. The extreme learning machine algorithm for classifying fingerprints. In 2020 39th International Conference of the Chilean Computer Science Society (SCCC) 1–8. https://doi.org/10.1109/SCCC51225.2020.9281232 (IEEE, 2020).spa
dcterms.referencesDeng, L. The MNIST database of handwritten digit images for machine learning research [best of the web]. IEEE Signal Process. Mag. 29, 141–142. https://doi.org/10.1109/MSP.2012.2211477 (2012).spa
dcterms.referencesDua, D. & Graff, C. UCI machine learning repository. University of California, Irvine, School of Information and Computer Sciences. http://archive.ics.uci.edu/ml (2017).spa

Archivos

Bloque original
Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
PDF.pdf
Tamaño:
1.92 MB
Formato:
Adobe Portable Document Format
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
381 B
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones