Handgrip strength Is associated with specific aspects of vascular function in individuals with metabolic syndrome
datacite.rights | http://purl.org/coar/access_right/c_abf2 | spa |
dc.contributor.author | Sánchez-Delgado, Juan Carlos | |
dc.contributor.author | Cohen, Daniel D. | |
dc.contributor.author | Camacho-López, Paul A. | |
dc.contributor.author | Carreño-Robayo, Javier | |
dc.contributor.author | Castañeda-Hernández, Álvaro | |
dc.contributor.author | García-González, Daniel | |
dc.contributor.author | Martínez-Bello, Daniel | |
dc.contributor.author | Aroca-Martínez, Gustavo | |
dc.contributor.author | Parati, Gianfranco | |
dc.contributor.author | López-Jaramillo, Patricio | |
dc.date.accessioned | 2023-10-27T19:30:29Z | |
dc.date.available | 2023-10-27T19:30:29Z | |
dc.date.issued | 2023 | |
dc.description.abstract | Background: Metabolic syndrome (MetS) is a disorder associated with an increased risk for the development of diabetes mellitus and its complications. Lower isometric handgrip strength (HGS) is associated with an increased risk of cardiometabolic diseases. However, the association between HGS and arterial stiffness parameters, which are considered the predictors of morbidity and mortality in individuals with MetS, is not well defined. Objective: To determine the association between HGS and HGS asymmetry on components of vascular function in adults with MetS. Methods: We measured handgrip strength normalized to bodyweight (HGS/kg), HGS asymmetry, body composition, blood glucose, lipid profile, blood pressure, pulse wave velocity (PWV), reflection coefficient (RC), augmentation index @75 bpm (AIx@75) and peripheral vascular resistance (PVR) in 55 adults with a diagnosis of MetS between 25 and 54 years old. Results: Mean age was 43.1 7.0 years, 56.3% were females. HGS/kg was negatively correlated with AIx@75 (r = -0.440), p < 0.05, but these associations were not significant after adjusting for age and sex. However, when interaction effects between sex, HGS/kg and age were examined, we observed an inverse relationship between HGS/kg and AIx@75 in the older adults in the sample, whereas in the younger adults, a weak direct association was found. We also found a significant association between HGS asymmetry and PVR (beta = 30, 95% CI = 7.02; 54.2; p <0.012). Conclusions: Our findings suggest that in people with MetS, maintaining muscle strength may have an increasingly important role in older age in the attenuation of age-related increases in AIx@75—a marker of vascular stiffness—and that a higher HGS asymmetry could be associated with a greater vascular resistance. | eng |
dc.format.mimetype | spa | |
dc.identifier.doi | https://doi.org/10.3390/biomedicines11092435 | |
dc.identifier.issn | 22279059 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12442/13394 | |
dc.identifier.url | https://pubmed.ncbi.nlm.nih.gov/37760876/ | |
dc.language.iso | eng | eng |
dc.publisher | MDPI | eng |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | eng |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.source | Biomedicines | eng |
dc.source | Vol. 11 No. 9 (2023) | |
dc.subject | Handgrip | eng |
dc.subject | Metabolic syndrome | eng |
dc.subject | Blood pressure | eng |
dc.subject | Isometric strength | eng |
dc.subject | Vascular stiffness | eng |
dc.subject | Muscle strength dynamometer | eng |
dc.title | Handgrip strength Is associated with specific aspects of vascular function in individuals with metabolic syndrome | eng |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.spa | Artículo científico | spa |
dcterms.references | Wilson, P.W.; D’Agostino, R.B.; Parise, H.; Sullivan, L.; Meigs, J.B. Metabolic syndrome as a precursor of cardiovascular disease and type 2 diabetes mellitus. Circulation 2005, 112, 3066–3072. | eng |
dcterms.references | Lawman, H.G.; Troiano, R.P.; Perna, F.M.;Wang, C.Y.; Fryar, C.D.; Ogden, C.L. Associations of Relative Handgrip Strength and Cardiovascular Disease Biomarkers in U.S. Adults, 2011–2012. Am. J. Prev. Med. 2016, 50, 677–683. | eng |
dcterms.references | Ramírez-Vélez, R.; Correa-Bautista, J.E.; Lobelo, F.; Izquierdo, M.; Alonso-Martínez, A.; Rodríguez-Rodríguez, F.; Cristi-Montero, C. High muscular fitness has a powerful protective cardiometabolic effect in adults: Influence of weight status. BMC Public Health 2016, 16, 1012. | eng |
dcterms.references | Leong, D.P.; Teo, K.K.; Rangarajan, S.; Lopez-Jaramillo, P.; Avezum, A.; Orlandini, A.; Seron, P.; Ahmed, S.H.; Rosengren, A.; Kelishadi, R.; et al. Prognostic value of grip strength: Findings from the Prospective Urban Rural Epidemiology (PURE) study. Lancet 2015, 386, 266–273. | eng |
dcterms.references | Cohen, D.D.; Gómez-Arbeláez, D.; Camacho, P.A.; Pinzon, S.; Hormiga, C.; Trejos-Suarez, J.; Duperly, J.; Lopez-Jaramillo, P. Low muscle strength is associated with metabolic risk factors in Colombian children: The ACFIES study. PLoS ONE 2014, 9, e93150. | eng |
dcterms.references | Rubio-Ruiz, M.E.; Guarner-Lans, V.; Pérez-Torres, I.; Soto, M.E. Mechanisms Underlying Metabolic Syndrome-Related Sarcopenia and Possible Therapeutic Measures. Int. J. Mol. Sci. 2019, 20, 647. | eng |
dcterms.references | Gluvic, Z.; Zaric, B.; Resanovic, I.; Obradovic, M.; Mitrovic, A.; Radak, D.; RIsenovic, E. Link between Metabolic Syndrome and Insulin Resistance. Curr. Vasc. Pharmacol. 2017, 15, 30–39. | eng |
dcterms.references | Nishikawa, H.; Asai, A.; Fukunishi, S.; Nishiguchi, S.; Higuchi, K. Metabolic Syndrome and Sarcopenia. Nutrients 2021, 13, 3519. | eng |
dcterms.references | Baczek, J.; Silkiewicz, M.; Wojszel, Z.B. Myostatin as a Biomarker of Muscle Wasting and other Pathologies-State of the Art and Knowledge Gaps. Nutrients 2020, 12, 2401. | eng |
dcterms.references | McEniery, C.M.; Yasmin, N.; Maki-Petaja, K.M.; McDonnell, B.J.; Munnery, M.; Hickson, S.S.; Franklin, S.S.; Cockcroft, J.R.; Wilkinson, I.B. The impact of cardiovascular risk factors on aortic stiffness and wave reflections depends on age: The Anglo-Cardiff Collaborative Trial (ACCT III). Hypertension 2010, 56, 591–597. | eng |
dcterms.references | Zieman, S.J.; Melenovsky, V.; Kass, D.A. Mechanisms, pathophysiology, and therapy of arterial stiffness. Arterioscler. Thromb. Vasc. Biol. 2005, 25, 932–943. | eng |
dcterms.references | Miyoshi, T.; Ito, H. Arterial stiffness in health and disease: The role of cardio-ankle vascular index. J. Cardiol. 2021, 78, 493–501. | eng |
dcterms.references | Cecelja, M.; Chowienczyk, P. Role of arterial stiffness in cardiovascular disease. JRSM Cardiovasc. Dis. 2012, 1, 1–10. | eng |
dcterms.references | Fahs, C.A.; Thiebaud, R.S.; Rossow, L.M.; Loenneke, J.P.; Bemben, D.A.; Bemben, M.G. Relationships between central arterial stiffness, lean body mass, and absolute and relative strength in young and older men and women. Clin. Physiol. Funct. Imaging 2018, 38, 676–680. | eng |
dcterms.references | Yang, M.; Zhang, X.; Ding, Z.; Wang, F.; Wang, Y.; Jiao, C.; Chen, J.H. Low skeletal muscle mass is associated with arterial stiffness in community-dwelling Chinese aged 45 years and older. BMC Public Health 2020, 20, 226. | eng |
dcterms.references | Ben-Shlomo, Y.; Spears, M.; Boustred, C.; May, M.; Anderson, S.G.; Benjamin, E.J.; Boutouyrie, P.; Cameron, J.; Chen, C.H.; Cruickshank, J.K.; et al. Aortic pulse wave velocity improves cardiovascular event prediction: An individual participant meta-analysis of prospective observational data from 17,635 subjects. J. Am. Coll. Cardiol. 2014, 63, 636–646. | eng |
dcterms.references | Heusinkveld, M.H.; Delhaas, T.; Lumens, J.; Huberts,W.; Spronck, B.; Hughes, A.D.; Reesink, K.D. Augmentation index is not a proxy for wave reflection magnitude: Mechanistic analysis using a computational model. J. Appl. Physiol. 2019, 127, 491–500. | eng |
dcterms.references | König, M.; Buchmann, N.; Seeland, U.; Spira, D.; Steinhagen, E.; Demuth, I. Low muscle strength and increased arterial stiffness go hand in hand. Sci. Rep. 2021, 11, 2906. | eng |
dcterms.references | Fahs, C.A.; Heffernan, K.S.; Ranadive, S.; Jae, S.Y.; Fernhall, B. Muscular strength is inversely associated with aortic stiffness in young men. Med. Sci. Sports Exerc. 2010, 42, 1619–1624. | eng |
dcterms.references | Lima-Junior, D.D.; Farah, B.Q.; Germano-Soares, A.H.; Andrade-Lima, A.; Silva, G.O.; Rodrigues, S.L.C.; Ritti-Dias, R. Association between handgrip strength and vascular function in patients with hypertension. Clin. Exp. Hypertens. 2019, 41, 692–695. | eng |
dcterms.references | Dvoretskiy, S.; Lieblein-Boff, J.C.; Jonnalagadda, S.; Atherton, P.J.; Phillips, B.E.; Pereira, S.L. Exploring the Association between Vascular Dysfunction and Skeletal Muscle Mass, Strength and Function in Healthy Adults: A Systematic Review. Nutrients 2020, 12, 715. | eng |
dcterms.references | Bohannon, R.W. Considerations and Practical Options for Measuring Muscle Strength: A Narrative Review. Biomed. Res. Int. 2019, 2019, 8194537. | eng |
dcterms.references | Shen, C.; Lu, J.; Xu, Z.; Xu, Y.; Yang, Y. Association between handgrip strength and the risk of new-onset metabolic syndrome: A population-based cohort study. BMJ Open 2020, 10, e041384. | eng |
dcterms.references | Lopez-Lopez, J.P.; Cohen, D.D.; Ney-Salazar, D.; Martinez, D.; Otero, J.; Gomez-Arbelaez, D.; Camacho, P.A.; Sanchez-Vallejo, G.; Arcos, E.; Narvaez, C.; et al. The prediction of Metabolic Syndrome alterations is improved by combining waist circumference and handgrip strength measurements compared to either alone. Cardiovasc. Diabetol. 2021, 20, 68. | eng |
dcterms.references | Araújo, C.; Amaral, T.L.M.; Monteiro, G.T.R.; de Vasconcellos, M.T.L.; Portela, M.C. Factors associated with low handgrip strength in older people: Data of the Study of Chronic Diseases (Edoc-I). BMC Public Health 2020, 20, 395. | eng |
dcterms.references | Ji, C.; Zheng, L.; Zhang, R.; Wu, Q.; Zhao, Y. Handgrip strength is positively related to blood pressure and hypertension risk: Results from the National Health and nutrition examination survey. Lipids Health Dis. 2018, 17, 86. | eng |
dcterms.references | Hao, G.; Chen, H.; Ying, Y.; Wu, M.; Yang, G.; Jing, C. The Relative Handgrip Strength and Risk of Cardiometabolic Disorders: A Prospective Study. Front. Physiol. 2020, 11, 719. | eng |
dcterms.references | Klawitter, L.; Vincent, B.M.; Choi, B.J.; Smith, J.; Hammer, K.D.; Jurivich, D.A.; Dahl, L.J.; McGrath, R. Handgrip Strength Asymmetry andWeakness Are Associated with Future Morbidity Accumulation in Americans. J. Strength Cond. Res. 2022, 36, 106–112. | eng |
dcterms.references | McGrath, R.; Clark, B.C.; Cesari, M.; Johnson, C.; Jurivich, D.A. Handgrip strength asymmetry is associated with future falls in older Americans. Aging Clin. Exp. Res. 2021, 33, 2461–2469. | eng |
dcterms.references | McGrath, R.; Cawthon, P.M.; Cesari, M.; Al Snih, S.; Clark, B.C. Handgrip Strength Asymmetry andWeakness Are Associated with Lower Cognitive Function: A Panel Study. J. Am. Geriatr. Soc. 2020, 68, 2051–2058. | eng |
dcterms.references | Collins, K.; Johnson, N.; Klawitter, L.;Waldera, R.; Stastny, S.; Kraemer,W.J.; Christensen, B.; McGrath, R. Handgrip Strength Asymmetry and Weakness are Differentially Associated with Functional Limitations in Older Americans. Int. J. Environ. Res. Public Health 2020, 17, 3231. | eng |
dcterms.references | McGrath, R.; Tomkinson, G.R.; LaRoche, D.P.; Vincent, B.M.; Bond, C.W.; Hackney, K.J. Handgrip Strength Asymmetry and Weakness May Accelerate Time to Mortality in Aging Americans. J. Am. Med. Dir. Assoc. 2020, 21, 2003–2007.e1. | eng |
dcterms.references | Hamasaki, H.; Yanai, H. Handgrip strength is inversely associated with augmentation index in patients with type 2 diabetes. Sci. Rep. 2023, 13, 1125. | eng |
dcterms.references | Van Dijk, S.C.; Swart, K.M.A.; Ham, A.C.; Enneman, A.W.; VanWijngaarden, J.P.; Feskens, E.J.; Geleijnse, J.M.; De Jongh, R.T.; Blom, H.J.; Dhonukshe-Rutten, R.A.M. Physical fitness, activity and hand-grip strength are not associated with arterial stiffness in older individuals. J. Nutr. Health Aging 2015, 19, 779–784. | eng |
dcterms.references | Alberti, K.G.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.C.; James,W.P.T.; Loria, C.M.; Smith, S.C., Jr. Harmonizing the Metabolic Syndrome: A joint Interim Statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 2009, 120, 1640–1645. | eng |
dcterms.references | Berukstis, A.; Jarasunas, J.; Daskeviciute, A.; Ryliskyte, L.; Baranauskas, A.; Steponeniene, R.; Laucevicius, A. How to interpret 24-h arterial stiffness markers: Comparison of 24-h ambulatory Mobil-O-Graph with SphygmoCor office values. Blood Press. Monit. 2019, 24, 93–98. | eng |
dcterms.references | Bahannon, R.W.; Peolsson, A.; Massy-Westropp, N.; Desrosiers, J.; Bear-Lehman, J. Reference values for adult grip strength measured with a Jamar dynamometer: A descriptive meta-analysis. Physiotherapy 2006, 92, 11–15. | eng |
dcterms.references | Colineaux, H.; Neufcourt, L.; Delpierre, C.; Kelly-Irving, M.; Lepage, B. Explaining biological differences between men and women by gendered mechanisms. Emerg. Themes Epidemiol. 2023, 20, 2. | eng |
dcterms.references | Ogola, B.O.; Zimmerman, M.A.; Clark, G.L.; Abshire, C.M.; Gentry, K.M.; Miller, K.S.; Lindsey, S.H. New insights into arterial stiffening: Does sex matter? Am. J. Physiol. Heart Circ. Physiol. 2018, 315, H1073–H1087. | eng |
dcterms.references | El Khoudary, S.R.; Aggarwal, B.; Beckie, T.M.; Hodis, H.N.; Johnson, A.E.; Langer, R.D.; Limacher, M.C.; Manson, J.E.; Stefanick, M.L.; Allison, M.A.; et al. Menopause Transition and Cardiovascular Disease Risk: Implications for Timing of Early Prevention: A Scientific Statement from the American Heart Association. Circulation 2020, 142, e506–e532. | eng |
dcterms.references | Heffernan, K.S.; Chalé, A.; Hau, C.; Cloutier, G.J.; Phillips, E.M.; Warner, P.; Nickerson, H.; Reid, K.F.; Kuvin, J.T.; Fielding, R.A. Systemic vascular function is associated with muscular power in older adults. J. Aging Res. 2012, 2012, 386387. | eng |
dcterms.references | Mendes-Pinto, D.; Rodrigues-Machado, M. Aplicabilidade dos marcadores de rigidez arterial na doença arterial periférica. J. Vasc. Bras. 2019, 18, e20180093. | spa |
dcterms.references | Rodriguez, A.J.; Karim, M.N.; Srikanth, V.; Ebeling, P.R.; Scott, D. Lower muscle tissue is associated with higher pulse wave velocity: A systematic review and meta-analysis of observational study data. Clin. Exp. Pharmacol. Physiol. 2017, 44, 980–992. | eng |
dcterms.references | Lopez-Jaramillo, P.; Gonzalez, M.C.; Palmer, R.M.; Moncada, S. The crucial role of physiological Ca2+ concentrations in the production of endothelial nitric oxide and the control of vascular tone. Br. J. Pharmacol. 1990, 101, 489–493. | eng |
dcterms.references | Maréchal, G.; Gailly, P. Effects of nitric oxide on the contraction of skeletal muscle. Cell Mol. Life Sci. 1999, 55, 1088–1102. | eng |
dcterms.references | Ibrahim, M.Y.; Ashour, O.M. Changes in nitric oxide and free radical levels in rat gastrocnemius muscle during contraction and fatigue. Clin. Exp. Pharmacol. Physiol. 2011, 38, 791–795. | eng |
dcterms.references | Townsend, R.R.;Wilkinson, I.B.; Schiffrin, E.L.; Avolio, A.P.; Chirinos, J.A.; Cockcroft, J.R.; Heffernan, K.S.; Lakatta, E.G.; McEniery, C.M.; Mitchell, G.F.; et al. Recommendations for improving and standardizing vascular research on arterial stiffness: A scientific statement from the American Heart Association. Hypertension 2015, 66, 698–722. | eng |
dcterms.references | Seals, D.R.; Jablonski, K.L.; Donato, A.J. Aging and vascular endothelial function in humans. Clin. Sci. 2011, 120, 357–375. | eng |
dcterms.references | Hasegawa, N.; Fujie, S.; Horii, N.; Miyamoto-Mikami, E.R.I.; Tsuji, K.; Uchida, M.; Hamaoka, T.; Tabata, I.; Iemitsu, M. Effects of Different Exercise Modes on Arterial Stiffness and Nitric Oxide Synthesis. Med. Sci. Sports Exerc. 2018, 50, 1177–1185. | eng |
dcterms.references | Severinsen, M.C.K.; Pedersen, B.K. Muscle-Organ Crosstalk: The Emerging Roles of Myokines. Endocr. Rev. 2021, 42, 97–99. | eng |
dcterms.references | Yu, Z.; Li, P.; Zhang, M.; Hannink, M.; Stamler, J.S.; Yan, Z. Fiber type-specific nitric oxide protects oxidative myofibers against cachectic stimuli. PLoS ONE. 2008, 3, e2086. | eng |
dcterms.references | Mendonca, G.V.; Pezarat-Correia, P.; Vaz, J.R.; Silva, L.; Heffernan, K.S. Impact of Aging on Endurance and Neuromuscular Physical Performance: The Role of Vascular Senescence. Sports Med. 2017, 47, 583–598. | eng |
dcterms.references | Van Der Loo, B.; Labugger, R.; Skepper, J.N.; Bachschmid, M.; Kilo, J.; Powell, J.M.; Palacios-Callender, M.; Erusalimsky, J.D.; Quaschning, T.; Malinski, T.; et al. Enhanced peroxynitrite formation is associated with vascular aging. J. Exp. Med. 2000, 192, 1731–1744. | eng |
dcterms.references | Lamb, G.D.; Westerblad, H. Acute effects of reactive oxygen and nitrogen species on the contractile function of skeletal muscle. J. Physiol. 2011, 589 Pt 9, 2119–2127. | eng |
dcterms.references | Hare, J.M. Nitric oxide and excitation-contraction coupling. J. Mol. Cell Cardiol. 2003, 35, 719–729. | eng |
dcterms.references | Liu, M.; Liu, S.; Sun, S.; Tian, H.; Li, S.;Wu, Y. Sex Differences in the Associations of Handgrip Strength and Asymmetry with Multimorbidity: Evidence from the English Longitudinal Study of Ageing. J. Am. Med. Dir Assoc. 2022, 23, 493–498.e1. | eng |
dcterms.references | McGrath, R.; Lang, J.J.; Ortega, F.B.; Chaput, J.P.; Zhang, K.; Smith, J.; Vincent, B.; Piñero, J.C.; Garcia, M.C.; Tomkinson, G.R. Handgrip strength asymmetry is associated with slow gait speed and poorer standing balance in older Americans. Arch. Gerontol. Geriatr. 2022, 102, 104716. | eng |
dcterms.references | Delong, C.; Sharma, S. Physiology, Peripheral Vascular Resistance. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. | eng |
dcterms.references | Hendrickse, P.; Degens, H. The role of the microcirculation in muscle function and plasticity. J. Muscle Res. Cell Motil. 2019, 40, 127–140. | eng |
dcterms.references | Cheng, C.; Daskalakis, C.; Falkner, B. Association of capillary density and function measures with blood pressure, fasting plasma glucose, and insulin sensitivity. J. Clin. Hypertens. 2010, 12, 125–135. | eng |
dcterms.references | Lin, S.;Wang, F.; Huang, Y.; Yuan, Y.; Huang, F.; Zhu, P. Handgrip strength weakness and asymmetry together are associated with cardiovascular outcomes in older outpatients: A prospective cohort study. Geriatr. Gerontol. Int. 2022, 22, 759–765. | eng |
dcterms.references | Starzak, M.; Stanek, A.; Jakubiak, G.K.; Cholewka, A.; Cie´slar, G. Arterial Stiffness Assessment by Pulse Wave Velocity in Patients with Metabolic Syndrome and Its Components: Is It a Useful Tol in Clinical Practice? Int. J. Environ. Res. Public Health 2022, 19, 10368 | eng |
dcterms.references | Amarasekera, A.T.; Chang, D.; Schwarz, P.; Tan, T.C. Does vascular endothelial dysfunction play a role in physical frailty and sarcopenia? A systematic review. Age Ageing 2021, 50, 725–732. | eng |
dcterms.references | Tuttle, C.S.L.; Thang, L.A.N.; Maier, A.B. Markers of inflammation and their association with muscle strength and mass: A systematic review and meta-analysis. Ageing Res. Rev. 2020, 64, 101185. | eng |
dcterms.references | Loenneke, J.P.; Fahs, C.A.; Heffernan, K.S.; Rossow, L.M.; Thiebaud, R.S.; Bemben, M.G. Relationship between thigh muscle mass and augmented pressure from wave reflections in healthy adults. Eur. J. Appl. Physiol. 2013, 113, 395–401 | eng |
dcterms.references | Lee, D.; Byun, K.; Hwang, M.-H.; Lee, S. Augmentation Index Is Inversely Associated with Skeletal Muscle Mass, Muscle Strength, and Anaerobic Power in Young Male Adults: A Preliminary Study. Appl. Sci. 2021, 11, 3146. | eng |
dcterms.references | Aminuddin, A.; Noor Hashim, M.F.; Mohd Zaberi, N.A.S.; Zheng Wei, L.; Ching Chu, B.; Jamaludin, N.A.; Salamt, N.; Che Roos, N.A.; Ugusman, A. The Association Between Arterial Stiffness and Muscle Indices Among Healthy Subjects and Subjects with Cardiovascular Risk Factors: An Evidence-Based Review. Front. Physiol. 2021, 12, 742338. | eng |
dcterms.references | Zhang, L.; Guo, Q.; Feng, B.L.; Wang, C.Y.; Han, P.P.; Hu, J.; Sun, X.D.; Zeng, W.F.; Zheng, Z.X.; Li, H.S.; et al. Cross-Sectional Study of the Association between Arterial Stiffness and Sarcopenia in Chinese Community-Dwelling Elderly Using the Asian Working Group for Sarcopenia Criteria. J. Nutr. Health Aging 2019, 23, 195–201. | eng |
dcterms.references | Chung, J.; Kim, M.; Jin, Y.; Kim, Y.; Hong, J. Fitness as a determinant of arterial stiffness in healthy adult men: A cross-sectional study. J. Sports Med. Phys. Fit. 2018, 58, 150–156. | eng |
dcterms.references | Wong, A.; Figueroa, A.; Son, W.M.; Chernykh, O.; Park, S.Y. The effects of stair climbing on arterial stiffness, blood pressure, and leg strength in postmenopausal women with stage 2 hypertension. Menopause 2018, 25, 731–737. | eng |
dcterms.references | Watanabe, Y.; Masaki, H.; Yunoki, Y.; Tabuchi, A.; Morita, I.; Mohri, S.; Tanemoto, K. Ankle-brachial index, toe-brachial index, and pulse volume recording in healthy young adults. Ann. Vasc. Dis. 2015, 8, 227–235. | eng |
dcterms.references | Kuh, D.; Bassey, E.J.; Butterworth, S.; Hardy, R.; Wadsworth, M.E. Musculoskeletal Study Team: Grip strength, postural control, and functional leg power in a representative cohort of British men and women: Associations with physical activity, health status, and socioeconomic conditions. J. Gerontol. A Biol. Sci. Med. Sci. 2005, 60, 224–231. | eng |
dcterms.references | Weiss, W.; Gohlisch, C.; Harsch-Gladisch, C.; Tölle, M.; Zidek, W.; Van Der Giet, M. Oscillometric estimation of central blood pressure: Validation of the Mobil-O-Graph in comparison with the SphygmoCor device. Blood Press Monit. 2012, 17, 128–131. | eng |
dcterms.references | Papaioannou, T.G.; Argyris, A.; Protogerou, A.D.; Vrachatis, D.; Nasothimiou, E.G.; Sfikakis, P.P.; Stergiou, G.S.; Stefanadis, C.I. Non-invasive 24 hour ambulatory monitoring of aortic wave reflection and arterial stiffness by a novel oscillometric device: The first feasibility and reproducibility study. Int. J. Cardiol. 2013, 169, 57–61. | eng |
dcterms.references | Hamasaki, H. What can hand grip strength tell us about type 2 diabetes?: Mortality, morbidities and risk of diabetes. Expert Rev. Endocrinol. Metab. 2021, 16, 237–250. | eng |
dcterms.references | Cruz-Jentoft, A.J.; Sayer, A.A. Sarcopenia. Lancet 2019, 393, 2636–2646. | eng |
dcterms.references | González, D.E.G.; Robayo, J.H.C.; Pérez, P.A.M.; López, P.A.C.; Cohen, D.D.; Ardila, E.S.M.; Delgado, J.C.S. Efectos del entrenamiento de fuerza prensil y su asociación sobre la función vascular en sujetos con criterios diagnósticos de síndrome metabólico: Una revisión de tema. Rev. Cuba. Investig. Bioméd. 2022, 41, e1411. | spa |
dcterms.references | Taylor, K.A.;Wiles, J.D.; Coleman, D.A.; Leeson, P.; Sharma, R.; O’Driscoll, J.M. Neurohumoral and ambulatory haemodynamic adaptations following isometric exercise training in unmedicated hypertensive patients. J. Hypertens. 2019, 37, 827–836. | eng |
dcterms.references | Cohen, D.D.; Aroca-Martinez, G.; Carreño-Robayo, J.; Castañeda-Hernández, A.; Herazo-Beltran, Y.; Camacho, P.A.; Otero, J.; Martinez-Bello, D.; Lopez-Lopez, J.P.; Lopez-Jaramillo, P. Reductions in systolic blood pressure achieved by hypertensives with three isometric training sessions per week are maintained with a single session per week. J. Clin. Hypertens. 2023, 25, 380–387. | eng |
dcterms.references | Edwards, J.J.; Wiles, J.; O’Driscoll, J. Mechanisms for blood pressure reduction following isometric exercise training: A systematic review and meta-analysis. J. Hypertens. 2022, 40, 2299–2306. | eng |
oaire.version | info:eu-repo/semantics/publishedVersion | spa |