Handgrip strength Is associated with specific aspects of vascular function in individuals with metabolic syndrome

datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
dc.contributor.authorSánchez-Delgado, Juan Carlos
dc.contributor.authorCohen, Daniel D.
dc.contributor.authorCamacho-López, Paul A.
dc.contributor.authorCarreño-Robayo, Javier
dc.contributor.authorCastañeda-Hernández, Álvaro
dc.contributor.authorGarcía-González, Daniel
dc.contributor.authorMartínez-Bello, Daniel
dc.contributor.authorAroca-Martínez, Gustavo
dc.contributor.authorParati, Gianfranco
dc.contributor.authorLópez-Jaramillo, Patricio
dc.date.accessioned2023-10-27T19:30:29Z
dc.date.available2023-10-27T19:30:29Z
dc.date.issued2023
dc.description.abstractBackground: Metabolic syndrome (MetS) is a disorder associated with an increased risk for the development of diabetes mellitus and its complications. Lower isometric handgrip strength (HGS) is associated with an increased risk of cardiometabolic diseases. However, the association between HGS and arterial stiffness parameters, which are considered the predictors of morbidity and mortality in individuals with MetS, is not well defined. Objective: To determine the association between HGS and HGS asymmetry on components of vascular function in adults with MetS. Methods: We measured handgrip strength normalized to bodyweight (HGS/kg), HGS asymmetry, body composition, blood glucose, lipid profile, blood pressure, pulse wave velocity (PWV), reflection coefficient (RC), augmentation index @75 bpm (AIx@75) and peripheral vascular resistance (PVR) in 55 adults with a diagnosis of MetS between 25 and 54 years old. Results: Mean age was 43.1 7.0 years, 56.3% were females. HGS/kg was negatively correlated with AIx@75 (r = -0.440), p < 0.05, but these associations were not significant after adjusting for age and sex. However, when interaction effects between sex, HGS/kg and age were examined, we observed an inverse relationship between HGS/kg and AIx@75 in the older adults in the sample, whereas in the younger adults, a weak direct association was found. We also found a significant association between HGS asymmetry and PVR (beta = 30, 95% CI = 7.02; 54.2; p <0.012). Conclusions: Our findings suggest that in people with MetS, maintaining muscle strength may have an increasingly important role in older age in the attenuation of age-related increases in AIx@75—a marker of vascular stiffness—and that a higher HGS asymmetry could be associated with a greater vascular resistance.eng
dc.format.mimetypepdfspa
dc.identifier.doihttps://doi.org/10.3390/biomedicines11092435
dc.identifier.issn22279059
dc.identifier.urihttps://hdl.handle.net/20.500.12442/13394
dc.identifier.urlhttps://pubmed.ncbi.nlm.nih.gov/37760876/
dc.language.isoengeng
dc.publisherMDPIeng
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacionaleng
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourceBiomedicineseng
dc.sourceVol. 11 No. 9 (2023)
dc.subjectHandgripeng
dc.subjectMetabolic syndromeeng
dc.subjectBlood pressureeng
dc.subjectIsometric strengtheng
dc.subjectVascular stiffnesseng
dc.subjectMuscle strength dynamometereng
dc.titleHandgrip strength Is associated with specific aspects of vascular function in individuals with metabolic syndromeeng
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.spaArtículo científicospa
dcterms.referencesWilson, P.W.; D’Agostino, R.B.; Parise, H.; Sullivan, L.; Meigs, J.B. Metabolic syndrome as a precursor of cardiovascular disease and type 2 diabetes mellitus. Circulation 2005, 112, 3066–3072.eng
dcterms.referencesLawman, H.G.; Troiano, R.P.; Perna, F.M.;Wang, C.Y.; Fryar, C.D.; Ogden, C.L. Associations of Relative Handgrip Strength and Cardiovascular Disease Biomarkers in U.S. Adults, 2011–2012. Am. J. Prev. Med. 2016, 50, 677–683.eng
dcterms.referencesRamírez-Vélez, R.; Correa-Bautista, J.E.; Lobelo, F.; Izquierdo, M.; Alonso-Martínez, A.; Rodríguez-Rodríguez, F.; Cristi-Montero, C. High muscular fitness has a powerful protective cardiometabolic effect in adults: Influence of weight status. BMC Public Health 2016, 16, 1012.eng
dcterms.referencesLeong, D.P.; Teo, K.K.; Rangarajan, S.; Lopez-Jaramillo, P.; Avezum, A.; Orlandini, A.; Seron, P.; Ahmed, S.H.; Rosengren, A.; Kelishadi, R.; et al. Prognostic value of grip strength: Findings from the Prospective Urban Rural Epidemiology (PURE) study. Lancet 2015, 386, 266–273.eng
dcterms.referencesCohen, D.D.; Gómez-Arbeláez, D.; Camacho, P.A.; Pinzon, S.; Hormiga, C.; Trejos-Suarez, J.; Duperly, J.; Lopez-Jaramillo, P. Low muscle strength is associated with metabolic risk factors in Colombian children: The ACFIES study. PLoS ONE 2014, 9, e93150.eng
dcterms.referencesRubio-Ruiz, M.E.; Guarner-Lans, V.; Pérez-Torres, I.; Soto, M.E. Mechanisms Underlying Metabolic Syndrome-Related Sarcopenia and Possible Therapeutic Measures. Int. J. Mol. Sci. 2019, 20, 647.eng
dcterms.referencesGluvic, Z.; Zaric, B.; Resanovic, I.; Obradovic, M.; Mitrovic, A.; Radak, D.; RIsenovic, E. Link between Metabolic Syndrome and Insulin Resistance. Curr. Vasc. Pharmacol. 2017, 15, 30–39.eng
dcterms.referencesNishikawa, H.; Asai, A.; Fukunishi, S.; Nishiguchi, S.; Higuchi, K. Metabolic Syndrome and Sarcopenia. Nutrients 2021, 13, 3519.eng
dcterms.referencesBaczek, J.; Silkiewicz, M.; Wojszel, Z.B. Myostatin as a Biomarker of Muscle Wasting and other Pathologies-State of the Art and Knowledge Gaps. Nutrients 2020, 12, 2401.eng
dcterms.referencesMcEniery, C.M.; Yasmin, N.; Maki-Petaja, K.M.; McDonnell, B.J.; Munnery, M.; Hickson, S.S.; Franklin, S.S.; Cockcroft, J.R.; Wilkinson, I.B. The impact of cardiovascular risk factors on aortic stiffness and wave reflections depends on age: The Anglo-Cardiff Collaborative Trial (ACCT III). Hypertension 2010, 56, 591–597.eng
dcterms.referencesZieman, S.J.; Melenovsky, V.; Kass, D.A. Mechanisms, pathophysiology, and therapy of arterial stiffness. Arterioscler. Thromb. Vasc. Biol. 2005, 25, 932–943.eng
dcterms.referencesMiyoshi, T.; Ito, H. Arterial stiffness in health and disease: The role of cardio-ankle vascular index. J. Cardiol. 2021, 78, 493–501.eng
dcterms.referencesCecelja, M.; Chowienczyk, P. Role of arterial stiffness in cardiovascular disease. JRSM Cardiovasc. Dis. 2012, 1, 1–10.eng
dcterms.referencesFahs, C.A.; Thiebaud, R.S.; Rossow, L.M.; Loenneke, J.P.; Bemben, D.A.; Bemben, M.G. Relationships between central arterial stiffness, lean body mass, and absolute and relative strength in young and older men and women. Clin. Physiol. Funct. Imaging 2018, 38, 676–680.eng
dcterms.referencesYang, M.; Zhang, X.; Ding, Z.; Wang, F.; Wang, Y.; Jiao, C.; Chen, J.H. Low skeletal muscle mass is associated with arterial stiffness in community-dwelling Chinese aged 45 years and older. BMC Public Health 2020, 20, 226.eng
dcterms.referencesBen-Shlomo, Y.; Spears, M.; Boustred, C.; May, M.; Anderson, S.G.; Benjamin, E.J.; Boutouyrie, P.; Cameron, J.; Chen, C.H.; Cruickshank, J.K.; et al. Aortic pulse wave velocity improves cardiovascular event prediction: An individual participant meta-analysis of prospective observational data from 17,635 subjects. J. Am. Coll. Cardiol. 2014, 63, 636–646.eng
dcterms.referencesHeusinkveld, M.H.; Delhaas, T.; Lumens, J.; Huberts,W.; Spronck, B.; Hughes, A.D.; Reesink, K.D. Augmentation index is not a proxy for wave reflection magnitude: Mechanistic analysis using a computational model. J. Appl. Physiol. 2019, 127, 491–500.eng
dcterms.referencesKönig, M.; Buchmann, N.; Seeland, U.; Spira, D.; Steinhagen, E.; Demuth, I. Low muscle strength and increased arterial stiffness go hand in hand. Sci. Rep. 2021, 11, 2906.eng
dcterms.referencesFahs, C.A.; Heffernan, K.S.; Ranadive, S.; Jae, S.Y.; Fernhall, B. Muscular strength is inversely associated with aortic stiffness in young men. Med. Sci. Sports Exerc. 2010, 42, 1619–1624.eng
dcterms.referencesLima-Junior, D.D.; Farah, B.Q.; Germano-Soares, A.H.; Andrade-Lima, A.; Silva, G.O.; Rodrigues, S.L.C.; Ritti-Dias, R. Association between handgrip strength and vascular function in patients with hypertension. Clin. Exp. Hypertens. 2019, 41, 692–695.eng
dcterms.referencesDvoretskiy, S.; Lieblein-Boff, J.C.; Jonnalagadda, S.; Atherton, P.J.; Phillips, B.E.; Pereira, S.L. Exploring the Association between Vascular Dysfunction and Skeletal Muscle Mass, Strength and Function in Healthy Adults: A Systematic Review. Nutrients 2020, 12, 715.eng
dcterms.referencesBohannon, R.W. Considerations and Practical Options for Measuring Muscle Strength: A Narrative Review. Biomed. Res. Int. 2019, 2019, 8194537.eng
dcterms.referencesShen, C.; Lu, J.; Xu, Z.; Xu, Y.; Yang, Y. Association between handgrip strength and the risk of new-onset metabolic syndrome: A population-based cohort study. BMJ Open 2020, 10, e041384.eng
dcterms.referencesLopez-Lopez, J.P.; Cohen, D.D.; Ney-Salazar, D.; Martinez, D.; Otero, J.; Gomez-Arbelaez, D.; Camacho, P.A.; Sanchez-Vallejo, G.; Arcos, E.; Narvaez, C.; et al. The prediction of Metabolic Syndrome alterations is improved by combining waist circumference and handgrip strength measurements compared to either alone. Cardiovasc. Diabetol. 2021, 20, 68.eng
dcterms.referencesAraújo, C.; Amaral, T.L.M.; Monteiro, G.T.R.; de Vasconcellos, M.T.L.; Portela, M.C. Factors associated with low handgrip strength in older people: Data of the Study of Chronic Diseases (Edoc-I). BMC Public Health 2020, 20, 395.eng
dcterms.referencesJi, C.; Zheng, L.; Zhang, R.; Wu, Q.; Zhao, Y. Handgrip strength is positively related to blood pressure and hypertension risk: Results from the National Health and nutrition examination survey. Lipids Health Dis. 2018, 17, 86.eng
dcterms.referencesHao, G.; Chen, H.; Ying, Y.; Wu, M.; Yang, G.; Jing, C. The Relative Handgrip Strength and Risk of Cardiometabolic Disorders: A Prospective Study. Front. Physiol. 2020, 11, 719.eng
dcterms.referencesKlawitter, L.; Vincent, B.M.; Choi, B.J.; Smith, J.; Hammer, K.D.; Jurivich, D.A.; Dahl, L.J.; McGrath, R. Handgrip Strength Asymmetry andWeakness Are Associated with Future Morbidity Accumulation in Americans. J. Strength Cond. Res. 2022, 36, 106–112.eng
dcterms.referencesMcGrath, R.; Clark, B.C.; Cesari, M.; Johnson, C.; Jurivich, D.A. Handgrip strength asymmetry is associated with future falls in older Americans. Aging Clin. Exp. Res. 2021, 33, 2461–2469.eng
dcterms.referencesMcGrath, R.; Cawthon, P.M.; Cesari, M.; Al Snih, S.; Clark, B.C. Handgrip Strength Asymmetry andWeakness Are Associated with Lower Cognitive Function: A Panel Study. J. Am. Geriatr. Soc. 2020, 68, 2051–2058.eng
dcterms.referencesCollins, K.; Johnson, N.; Klawitter, L.;Waldera, R.; Stastny, S.; Kraemer,W.J.; Christensen, B.; McGrath, R. Handgrip Strength Asymmetry and Weakness are Differentially Associated with Functional Limitations in Older Americans. Int. J. Environ. Res. Public Health 2020, 17, 3231.eng
dcterms.referencesMcGrath, R.; Tomkinson, G.R.; LaRoche, D.P.; Vincent, B.M.; Bond, C.W.; Hackney, K.J. Handgrip Strength Asymmetry and Weakness May Accelerate Time to Mortality in Aging Americans. J. Am. Med. Dir. Assoc. 2020, 21, 2003–2007.e1.eng
dcterms.referencesHamasaki, H.; Yanai, H. Handgrip strength is inversely associated with augmentation index in patients with type 2 diabetes. Sci. Rep. 2023, 13, 1125.eng
dcterms.referencesVan Dijk, S.C.; Swart, K.M.A.; Ham, A.C.; Enneman, A.W.; VanWijngaarden, J.P.; Feskens, E.J.; Geleijnse, J.M.; De Jongh, R.T.; Blom, H.J.; Dhonukshe-Rutten, R.A.M. Physical fitness, activity and hand-grip strength are not associated with arterial stiffness in older individuals. J. Nutr. Health Aging 2015, 19, 779–784.eng
dcterms.referencesAlberti, K.G.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.C.; James,W.P.T.; Loria, C.M.; Smith, S.C., Jr. Harmonizing the Metabolic Syndrome: A joint Interim Statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 2009, 120, 1640–1645.eng
dcterms.referencesBerukstis, A.; Jarasunas, J.; Daskeviciute, A.; Ryliskyte, L.; Baranauskas, A.; Steponeniene, R.; Laucevicius, A. How to interpret 24-h arterial stiffness markers: Comparison of 24-h ambulatory Mobil-O-Graph with SphygmoCor office values. Blood Press. Monit. 2019, 24, 93–98.eng
dcterms.referencesBahannon, R.W.; Peolsson, A.; Massy-Westropp, N.; Desrosiers, J.; Bear-Lehman, J. Reference values for adult grip strength measured with a Jamar dynamometer: A descriptive meta-analysis. Physiotherapy 2006, 92, 11–15.eng
dcterms.referencesColineaux, H.; Neufcourt, L.; Delpierre, C.; Kelly-Irving, M.; Lepage, B. Explaining biological differences between men and women by gendered mechanisms. Emerg. Themes Epidemiol. 2023, 20, 2.eng
dcterms.referencesOgola, B.O.; Zimmerman, M.A.; Clark, G.L.; Abshire, C.M.; Gentry, K.M.; Miller, K.S.; Lindsey, S.H. New insights into arterial stiffening: Does sex matter? Am. J. Physiol. Heart Circ. Physiol. 2018, 315, H1073–H1087.eng
dcterms.referencesEl Khoudary, S.R.; Aggarwal, B.; Beckie, T.M.; Hodis, H.N.; Johnson, A.E.; Langer, R.D.; Limacher, M.C.; Manson, J.E.; Stefanick, M.L.; Allison, M.A.; et al. Menopause Transition and Cardiovascular Disease Risk: Implications for Timing of Early Prevention: A Scientific Statement from the American Heart Association. Circulation 2020, 142, e506–e532.eng
dcterms.referencesHeffernan, K.S.; Chalé, A.; Hau, C.; Cloutier, G.J.; Phillips, E.M.; Warner, P.; Nickerson, H.; Reid, K.F.; Kuvin, J.T.; Fielding, R.A. Systemic vascular function is associated with muscular power in older adults. J. Aging Res. 2012, 2012, 386387.eng
dcterms.referencesMendes-Pinto, D.; Rodrigues-Machado, M. Aplicabilidade dos marcadores de rigidez arterial na doença arterial periférica. J. Vasc. Bras. 2019, 18, e20180093.spa
dcterms.referencesRodriguez, A.J.; Karim, M.N.; Srikanth, V.; Ebeling, P.R.; Scott, D. Lower muscle tissue is associated with higher pulse wave velocity: A systematic review and meta-analysis of observational study data. Clin. Exp. Pharmacol. Physiol. 2017, 44, 980–992.eng
dcterms.referencesLopez-Jaramillo, P.; Gonzalez, M.C.; Palmer, R.M.; Moncada, S. The crucial role of physiological Ca2+ concentrations in the production of endothelial nitric oxide and the control of vascular tone. Br. J. Pharmacol. 1990, 101, 489–493.eng
dcterms.referencesMaréchal, G.; Gailly, P. Effects of nitric oxide on the contraction of skeletal muscle. Cell Mol. Life Sci. 1999, 55, 1088–1102.eng
dcterms.referencesIbrahim, M.Y.; Ashour, O.M. Changes in nitric oxide and free radical levels in rat gastrocnemius muscle during contraction and fatigue. Clin. Exp. Pharmacol. Physiol. 2011, 38, 791–795.eng
dcterms.referencesTownsend, R.R.;Wilkinson, I.B.; Schiffrin, E.L.; Avolio, A.P.; Chirinos, J.A.; Cockcroft, J.R.; Heffernan, K.S.; Lakatta, E.G.; McEniery, C.M.; Mitchell, G.F.; et al. Recommendations for improving and standardizing vascular research on arterial stiffness: A scientific statement from the American Heart Association. Hypertension 2015, 66, 698–722.eng
dcterms.referencesSeals, D.R.; Jablonski, K.L.; Donato, A.J. Aging and vascular endothelial function in humans. Clin. Sci. 2011, 120, 357–375.eng
dcterms.referencesHasegawa, N.; Fujie, S.; Horii, N.; Miyamoto-Mikami, E.R.I.; Tsuji, K.; Uchida, M.; Hamaoka, T.; Tabata, I.; Iemitsu, M. Effects of Different Exercise Modes on Arterial Stiffness and Nitric Oxide Synthesis. Med. Sci. Sports Exerc. 2018, 50, 1177–1185.eng
dcterms.referencesSeverinsen, M.C.K.; Pedersen, B.K. Muscle-Organ Crosstalk: The Emerging Roles of Myokines. Endocr. Rev. 2021, 42, 97–99.eng
dcterms.referencesYu, Z.; Li, P.; Zhang, M.; Hannink, M.; Stamler, J.S.; Yan, Z. Fiber type-specific nitric oxide protects oxidative myofibers against cachectic stimuli. PLoS ONE. 2008, 3, e2086.eng
dcterms.referencesMendonca, G.V.; Pezarat-Correia, P.; Vaz, J.R.; Silva, L.; Heffernan, K.S. Impact of Aging on Endurance and Neuromuscular Physical Performance: The Role of Vascular Senescence. Sports Med. 2017, 47, 583–598.eng
dcterms.referencesVan Der Loo, B.; Labugger, R.; Skepper, J.N.; Bachschmid, M.; Kilo, J.; Powell, J.M.; Palacios-Callender, M.; Erusalimsky, J.D.; Quaschning, T.; Malinski, T.; et al. Enhanced peroxynitrite formation is associated with vascular aging. J. Exp. Med. 2000, 192, 1731–1744.eng
dcterms.referencesLamb, G.D.; Westerblad, H. Acute effects of reactive oxygen and nitrogen species on the contractile function of skeletal muscle. J. Physiol. 2011, 589 Pt 9, 2119–2127.eng
dcterms.referencesHare, J.M. Nitric oxide and excitation-contraction coupling. J. Mol. Cell Cardiol. 2003, 35, 719–729.eng
dcterms.referencesLiu, M.; Liu, S.; Sun, S.; Tian, H.; Li, S.;Wu, Y. Sex Differences in the Associations of Handgrip Strength and Asymmetry with Multimorbidity: Evidence from the English Longitudinal Study of Ageing. J. Am. Med. Dir Assoc. 2022, 23, 493–498.e1.eng
dcterms.referencesMcGrath, R.; Lang, J.J.; Ortega, F.B.; Chaput, J.P.; Zhang, K.; Smith, J.; Vincent, B.; Piñero, J.C.; Garcia, M.C.; Tomkinson, G.R. Handgrip strength asymmetry is associated with slow gait speed and poorer standing balance in older Americans. Arch. Gerontol. Geriatr. 2022, 102, 104716.eng
dcterms.referencesDelong, C.; Sharma, S. Physiology, Peripheral Vascular Resistance. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023.eng
dcterms.referencesHendrickse, P.; Degens, H. The role of the microcirculation in muscle function and plasticity. J. Muscle Res. Cell Motil. 2019, 40, 127–140.eng
dcterms.referencesCheng, C.; Daskalakis, C.; Falkner, B. Association of capillary density and function measures with blood pressure, fasting plasma glucose, and insulin sensitivity. J. Clin. Hypertens. 2010, 12, 125–135.eng
dcterms.referencesLin, S.;Wang, F.; Huang, Y.; Yuan, Y.; Huang, F.; Zhu, P. Handgrip strength weakness and asymmetry together are associated with cardiovascular outcomes in older outpatients: A prospective cohort study. Geriatr. Gerontol. Int. 2022, 22, 759–765.eng
dcterms.referencesStarzak, M.; Stanek, A.; Jakubiak, G.K.; Cholewka, A.; Cie´slar, G. Arterial Stiffness Assessment by Pulse Wave Velocity in Patients with Metabolic Syndrome and Its Components: Is It a Useful Tol in Clinical Practice? Int. J. Environ. Res. Public Health 2022, 19, 10368eng
dcterms.referencesAmarasekera, A.T.; Chang, D.; Schwarz, P.; Tan, T.C. Does vascular endothelial dysfunction play a role in physical frailty and sarcopenia? A systematic review. Age Ageing 2021, 50, 725–732.eng
dcterms.referencesTuttle, C.S.L.; Thang, L.A.N.; Maier, A.B. Markers of inflammation and their association with muscle strength and mass: A systematic review and meta-analysis. Ageing Res. Rev. 2020, 64, 101185.eng
dcterms.referencesLoenneke, J.P.; Fahs, C.A.; Heffernan, K.S.; Rossow, L.M.; Thiebaud, R.S.; Bemben, M.G. Relationship between thigh muscle mass and augmented pressure from wave reflections in healthy adults. Eur. J. Appl. Physiol. 2013, 113, 395–401eng
dcterms.referencesLee, D.; Byun, K.; Hwang, M.-H.; Lee, S. Augmentation Index Is Inversely Associated with Skeletal Muscle Mass, Muscle Strength, and Anaerobic Power in Young Male Adults: A Preliminary Study. Appl. Sci. 2021, 11, 3146.eng
dcterms.referencesAminuddin, A.; Noor Hashim, M.F.; Mohd Zaberi, N.A.S.; Zheng Wei, L.; Ching Chu, B.; Jamaludin, N.A.; Salamt, N.; Che Roos, N.A.; Ugusman, A. The Association Between Arterial Stiffness and Muscle Indices Among Healthy Subjects and Subjects with Cardiovascular Risk Factors: An Evidence-Based Review. Front. Physiol. 2021, 12, 742338.eng
dcterms.referencesZhang, L.; Guo, Q.; Feng, B.L.; Wang, C.Y.; Han, P.P.; Hu, J.; Sun, X.D.; Zeng, W.F.; Zheng, Z.X.; Li, H.S.; et al. Cross-Sectional Study of the Association between Arterial Stiffness and Sarcopenia in Chinese Community-Dwelling Elderly Using the Asian Working Group for Sarcopenia Criteria. J. Nutr. Health Aging 2019, 23, 195–201.eng
dcterms.referencesChung, J.; Kim, M.; Jin, Y.; Kim, Y.; Hong, J. Fitness as a determinant of arterial stiffness in healthy adult men: A cross-sectional study. J. Sports Med. Phys. Fit. 2018, 58, 150–156.eng
dcterms.referencesWong, A.; Figueroa, A.; Son, W.M.; Chernykh, O.; Park, S.Y. The effects of stair climbing on arterial stiffness, blood pressure, and leg strength in postmenopausal women with stage 2 hypertension. Menopause 2018, 25, 731–737.eng
dcterms.referencesWatanabe, Y.; Masaki, H.; Yunoki, Y.; Tabuchi, A.; Morita, I.; Mohri, S.; Tanemoto, K. Ankle-brachial index, toe-brachial index, and pulse volume recording in healthy young adults. Ann. Vasc. Dis. 2015, 8, 227–235.eng
dcterms.referencesKuh, D.; Bassey, E.J.; Butterworth, S.; Hardy, R.; Wadsworth, M.E. Musculoskeletal Study Team: Grip strength, postural control, and functional leg power in a representative cohort of British men and women: Associations with physical activity, health status, and socioeconomic conditions. J. Gerontol. A Biol. Sci. Med. Sci. 2005, 60, 224–231.eng
dcterms.referencesWeiss, W.; Gohlisch, C.; Harsch-Gladisch, C.; Tölle, M.; Zidek, W.; Van Der Giet, M. Oscillometric estimation of central blood pressure: Validation of the Mobil-O-Graph in comparison with the SphygmoCor device. Blood Press Monit. 2012, 17, 128–131.eng
dcterms.referencesPapaioannou, T.G.; Argyris, A.; Protogerou, A.D.; Vrachatis, D.; Nasothimiou, E.G.; Sfikakis, P.P.; Stergiou, G.S.; Stefanadis, C.I. Non-invasive 24 hour ambulatory monitoring of aortic wave reflection and arterial stiffness by a novel oscillometric device: The first feasibility and reproducibility study. Int. J. Cardiol. 2013, 169, 57–61.eng
dcterms.referencesHamasaki, H. What can hand grip strength tell us about type 2 diabetes?: Mortality, morbidities and risk of diabetes. Expert Rev. Endocrinol. Metab. 2021, 16, 237–250.eng
dcterms.referencesCruz-Jentoft, A.J.; Sayer, A.A. Sarcopenia. Lancet 2019, 393, 2636–2646.eng
dcterms.referencesGonzález, D.E.G.; Robayo, J.H.C.; Pérez, P.A.M.; López, P.A.C.; Cohen, D.D.; Ardila, E.S.M.; Delgado, J.C.S. Efectos del entrenamiento de fuerza prensil y su asociación sobre la función vascular en sujetos con criterios diagnósticos de síndrome metabólico: Una revisión de tema. Rev. Cuba. Investig. Bioméd. 2022, 41, e1411.spa
dcterms.referencesTaylor, K.A.;Wiles, J.D.; Coleman, D.A.; Leeson, P.; Sharma, R.; O’Driscoll, J.M. Neurohumoral and ambulatory haemodynamic adaptations following isometric exercise training in unmedicated hypertensive patients. J. Hypertens. 2019, 37, 827–836.eng
dcterms.referencesCohen, D.D.; Aroca-Martinez, G.; Carreño-Robayo, J.; Castañeda-Hernández, A.; Herazo-Beltran, Y.; Camacho, P.A.; Otero, J.; Martinez-Bello, D.; Lopez-Lopez, J.P.; Lopez-Jaramillo, P. Reductions in systolic blood pressure achieved by hypertensives with three isometric training sessions per week are maintained with a single session per week. J. Clin. Hypertens. 2023, 25, 380–387.eng
dcterms.referencesEdwards, J.J.; Wiles, J.; O’Driscoll, J. Mechanisms for blood pressure reduction following isometric exercise training: A systematic review and meta-analysis. J. Hypertens. 2022, 40, 2299–2306.eng
oaire.versioninfo:eu-repo/semantics/publishedVersionspa

Archivos

Bloque original
Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
PDF.pdf
Tamaño:
502.13 KB
Formato:
Adobe Portable Document Format
Descripción:
PDF
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
381 B
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones