Mostrar el registro sencillo del ítem

dc.contributor.authorValbuena, Oscar
dc.contributor.authorVera, Miguel
dc.contributor.authorBorrero, Maryuri
dc.contributor.authorHuérfano, Yuleidy
dc.contributor.authorCapacho, Yulian
dc.date.accessioned2020-12-07T16:50:31Z
dc.date.available2020-12-07T16:50:31Z
dc.date.issued2020
dc.identifier.issn26107996
dc.identifier.urihttps://hdl.handle.net/20.500.12442/6848
dc.description.abstractEn los últimos años, los avances en imagenología médica estan cambiado la forma de obtener información anatómica y funcional de las estructuras vinculadas con el corazón, particularmente, de las válvulas cardíacas. En este artículo se hace una revisión, que abarca el periodo 2014-2020, sobre las técnicas computacionales usadas en la caracterización, vía segmentación, de las enfermedades que afectan las mencionadas válvulas. La presente revisión proporciona información actualizada acerca de: a) enfermedades que afectan las válvulas, b) principales modalidades de adquisición de imágenes cardíacas, c) últimos avances en prótesis de válvulas aórticas empleadas en el implante valvular aórtico transcatéter (TAVI), d) técnicas usadas para la segmentación y caracterización de las válvulas. Los principales hallazgos indican que se destaca la tomografía computarizada para hacer una caracterización de la geometría y de la capacidad funcional de los principales tejidos de las válvulas; mientras que se ha proliferado el uso de prótesis, de última generación, las cuales tienden a disminuir las complicaciones clínicas posterior al remplazo de válvula y, a su vez, elevan la calidad de vida del paciente, razón por la cual el TAVI es cada vez más frecuente en pacientes de moderado y bajo riesgo quirúrgico.spa
dc.description.abstractIn recent years, advances in medical imaging have changed the way of obtaining anatomical and functional information on structures linked to the heart, particularly, the heart valves. In this article, a review is made, covering the period 2014-2020, on the computational techniques used in the characterization, via segmentation, of the diseases that affect the mentioned valves. This review provides updated information about: a) diseases affecting the valves, b) main cardiac imaging modalities, c) recent advances in aortic valve prostheses used in transcatheter aortic valve implantation (TAVI), d) techniques used for the segmentation and characterization of the valves. The main findings indicate that computed tomography is highlighted to characterize the geometry and functional capacity of the main valve tissues; while the use of state-of-the-art prostheses has proliferated, which tend to decrease clinical complications after valve replacement and, in turn, raise the patient’s quality of life, which is due TAVI is increasingly more frequent in patients of moderate and low surgical risk.eng
dc.format.mimetypepdfspa
dc.language.isospaspa
dc.publisherSociedad Venezolana de Hipertensiónspa
dc.publisherSociedad Latinoamericana de Hipertensiónspa
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceRevista Latinoamericana de Hipertensiónspa
dc.sourceVol. 15, No. 3 (2020)spa
dc.subjectEnfermedades de las válvulas cardiacasspa
dc.subjectTomografía computarizada multicapaspa
dc.subjectSegmentaciónspa
dc.subjectTAVIspa
dc.subjectHeart valve diseaseseng
dc.subjectMultilayer computed tomographyeng
dc.subjectSegmentationeng
dc.titleUna revisión actual de las técnicas computacionales para la caracterización de enfermedades vinculadas con la válvula aórticaspa
dcterms.referencesLindman B, Annick M, Mathieu P, Lung B, Lancellotti P, Otto C, Pibarot P. Calcific aortic stenosis. Nature reviews disease primers. 2016, doi. org/10.1038/nrdp.2016.6.eng
dcterms.referencesGoody P, Rabiul M, Christmann D, Thomas S, Zietzer A, Adam M, Bönner F, Zimmer S, Nickenig G, Jansen F. Aortic valve stenosis. Arteriosclerosis, thrombosis, and vascular biology. 2020;40(4):885–900.eng
dcterms.referencesGénereux P, Pibarot P, Redfors B, Mack M, Makkar R, Jaber W, Svensson L, Kapadia S, Tuzcu M, Thourani V, et al. Staging classification of aortic stenosis based on the extent of cardiac damage. European heart journal. 2017; 38(45): 3351–3358eng
dcterms.referencesAndell P, Li X, Martinsson A, Andersson C, Stagmo M, Zöller B, Sundquist K, Smith G. Epidemiology of valvular heart disease in a swedish nationwide hospital-based register study. Heart. 2017;103(21):1696- 1703.eng
dcterms.referencesPratt W. Digital Image Processing. USA: John Wiley & Sons Inc; 2007eng
dcterms.referencesZamorano J, Alves A, Lancellotti P, Andersen K, Gómez A, Monaghan M, Brochet E, Wunderlich S, Gafoor S, Gillam L, Canna G. The use of imaging in new transcatheter interventions: an EACVI review paper, European heart journal - cardiovascular imaging. 2016; 17(8):835– 835.eng
dcterms.referencesPasala T, Ruiz C. Transcatheter aortic valve replacement for all-comers with severe aortic stenosis: Could It Become a Reality?. Rev esp cardiol. 2018;71(3):141–145.eng
dcterms.referencesJurencak T, Turek J, Kietselaer B, Mihl C, Kok M, Ommen V, Garsse L, Nijssen E, Wildberger J, Das M. MDCT evaluation of aortic root and aortic valve prior to TAVI. What is the optimal imaging time point in the cardiac cycle?. European radiology. 2015; 25(7):1975–1983.eng
dcterms.referencesHansson N, Grove E, Andersen H, Leipsic J, Andersen H, Leipsic J, Mathiassen O, Jensen K, Blanke P, Blanke P, et al. Transcatheter aortic valve thrombosis: Incidence, predisposing factors, and clinical implications. Journal of the American college of cardiology. 2016; 68(19):2059-2069.eng
dcterms.referencesLatsios G, Spyridopoulos T, Toutouzas K, Synetos A, Trantalis G, Stathogiannis K, Penesopoulou V, Oikonomou G, Brountzos E, Tousoulis D. Multi-slice CT (MSCT) imaging in pretrans-catheter aortic valve implantation (TAVI) screening. How to perform and how to interpret. Hellenic journal of cardiology. 2018; 59(1):3-7eng
dcterms.referencesBlanke P, McCall J, Achenbach S, Delgado V, Hausleiter J, Jilaihawi H, Marwan M, Nørgaard B, Piazza N, Schoenhagen P, Leipsic J. Computed tomography imaging in the context of transcatheter aortic valve implantation (TAVI)/ transcatheter aortic valve replacement (TAVR). Cardiovascular imaging. 2019; 12(1):1-24spa
dcterms.referencesLe Couteulx S, Caudron J, Dubourg B, Dacher J. Multidetector computed tomography sizing of aortic annulus prior to transcatheter aortic valve replacement (TAVR): Variability and impact of observer experience. Diagnostic and interventional imaging. 2018; 99(5):279-289.eng
dcterms.referencesTsuneyoshi H, Komiya T, Shimamoto T. Accuracy of aortic annulus diameter measurement: comparison of multi‐detector CT, Two‐ and three‐dimensional echocardiography. J Card Surg 2016;31(1):18–22.eng
dcterms.referencesChourdakis E, Koniari I, Kounis N, Velissaris D, Koutsogiannis N, Tsigkas G, Hauptmann K, Sontag B, Hahalis G. The role of echocardiography and CT angiography in transcatheter aortic valve implantation patients. Journal of geriatric cardiology. 2018;15(1):86-94.eng
dcterms.referencesPibarot P, Dumesnil J. Selection of the optimal prosthesis and longterm management. Circulation. 2009;119(7):1034–1048eng
dcterms.referencesGuillén M, Ros L, Angulo E, Yagüe D, Nuñez M. Multidetector computed tomography evaluation of candidates for transcatheter aortic valve implantation. Radiología. 2018;60(1):24-38.eng
dcterms.referencesMarwan M, Mekkhala N, Goller M, Röthera J, Bittnera D, Schuhbaecka A, Hella M, Muschiola G, Kolweltera J, Feyrerc R, et al. Leaflet thrombosis following transcatheter aortic valve implantation. Journal of Cardiovascular Computed Tomography. 2018; 12(1):8–13.eng
dcterms.referencesFaggioni L, Gabelloni M, Accogli S, Angelillis M, Costa G, Spontoni P, Petronio A, Caramella D. Preprocedural planning of transcatheter mitral valve interventions by multidetector CT: What the radiologist needs to know. European journal of radiology open. 2018; 5:131– 140.eng
dcterms.referencesManoharan G, Walton AS, Brecker SJ, et al. Treatment of symptoConclusiones Referencias 237 matic severe aortic stenosis with a novel resheathable supra-annular self-expanding transcatheter aortic valve system. American college of cardiology. 2015;8(1):1359-1367.eng
dcterms.referencesBoogert T, Vendrik J, Claessen B, Baan J, Beijk M, Limpens J, Boekholdt S, Hoek R, Planken R, Henriques J. CTCA for detection of significant coronary artery disease in routine TAVI work-up. Netherlands heart journal. 2018;26(1):591–599.eng
dcterms.referencesPopma J, Adams D, Reardon M, Yakubov S, Kleiman N, Heimansohn D, Hermiller J, Hughes G, Harrison J, Coselli J, et al. Transcatheter aortic valve replacement using a self-expanding bioprosthesis in patients with severe aortic stenosis at extreme risk for surgery. Journal of the american college of cardiology. 2014; 63(19):1972-1981.eng
dcterms.referencesDasi L, Hatoum H, Kheradvar A, Zareian R, Alavi S, Sun W, Martin C, Pham T, Wang Q, Midha P, Raghav V, Yoganathan A. On the mechanics of transcatheter aortic valve replacement. Annals of biomedical engineering. 2017; 45(2):310–331.eng
dcterms.referencesMylotte M, Andalib A, Pascal L, Dorfmeister M, Girgis M, Alharbi W, Chetrit M, Galatas C, Mamane S, Sebag I, et al. Transcatheter heart valve failure:a systematic review. European heart journal. 2015; 36(21):1306–1327.eng
dcterms.referencesKataruka A, Otto C. Valve durability after transcatheter aortic valve implantation. Journal of thoracic disease. 2018; 10(30):3629-3636.eng
dcterms.referencesZakerzadeh R, Hsu M, Sacks M. Computational methods for the aortic heart valve and its replacements. Expert review of medical devices. 2017;14(11):849–866.eng
dcterms.referencesSun W, Martin C, Pham T. Computational modeling of cardiac valve function and intervention. Annual review of biomedical engineering. 2014; 16(1):53–76eng
dcterms.referencesVera M, Valbuena O, Huerfano Y, Vera M I, Gelvez E, Salazar J. Usefulness of cutting planes in the hierarchical segmentation of cardiac anatomical structures. Journal of physics: conference series 1408. 2019, doi.org/10.1088/1742 6596/1408/1/012005.eng
dcterms.referencesStrong C, Ferreira A, Teles R, Mendes G, Abecasis J, Cardoso G, Guerreiro S, Freitas P, Santos A, Saraiva C, et al. Diagnostic accuracy of computed tomography angiography for the exclusion of coronary artery disease in candidates for transcatheter aortic valve implantation. Scientific reports. 2019, doi.org/10.1038/s41598-019-56519-3.eng
dcterms.referencesHoeijmakers M, Silva D, Waechter I, Kasztelnik M, Weese J, Hose D, Vosse F. Estimation of valvular resistance of segmented aortic valves using computational fluid dynamics. Journal of biomechanics. 2019; 94(1):49–58.eng
dcterms.referencesPawade T, Clavel MA, Tribouilloy C, Dreyfus J, Mathieu T, Tastet l, Renard C, Gun M, Arthur W, Macron L, et al. Computed tomography aortic valve calcium scoring in patients with aortic stenosis. Circ cardiovasc imaging. 2018;11(3). doi: 10.1161/CIRCIMAGING.117.007146.eng
dcterms.referencesSiriapisith T, Kusakunniran W, Haddawy P. Outer wall segmentation of abdominal aortic aneurysm by variable neighborhood search through intensity and gradient spaces. Journal of digital imaging. 2018; 31(1):490–50.eng
dcterms.referencesAlmolla R, Enaba M, Abdel H. Pre-procedural multi-slice computed tomography (MSCT) in aortic valve replacement. Important measurements. The egyptian journal of radiology and nuclear medicine. 2017; 48(1):365-373eng
dcterms.referencesElattar M, Wiegerinck E, Kesteren F, Dubois L, Planken N, Vanbavel E, Baan J, Marquering H. Automatic aortic root landmark detection in CTA images for preprocedural planning of transcatheter aortic valve implantation. Cardiovasc imaging. 2016;32(1):501–511.eng
dcterms.referencesKurugol S, Come C, Diaz A, Ross J, Kinney G, Black J, Hokanson J, Budoff M, Washko G, Jose R. Automated quantitative 3D analysis of aorta size, morphology, and mural calcification distributions. Medical physics. 2015; 42(9):5467-5478.eng
dcterms.referencesDi Martino L, Vletter W, Ren B, Schultz C, Mieghem N, Soliman O, Biase M, Jaegere P, Geleijnse M. Prediction of paravalvular leakage after transcatheter aortic valve implantation. The international journal of cardiovascular imaging. 2015; 31(7):1461–1468.eng
dcterms.referencesSalgado R, Budde R, Shivalkar B, Herck P, Beeck B, Vrints C, Buijsrogge M, Stella P, Rodrigus I, Bosmans J, Parizel P. Transcatheter aortic valve replacement: postoperative CT findings of sapien and corevalve transcatheter heart valves. Radiographics 2014; 34(1):1517–1536.eng
dcterms.referencesGamechi Z, Bons L, Giordano M, Bos D, Budde R, Kofoed K, Pedersen J, Hesselink J, Bruijne M. Automated 3D segmentation and diameter measurement of the thoracic aorta on non contrast enhanced CT. European radiology. (2019); 29:4613–4623.eng
dcterms.referencesAstudillo P, Mortier P, Bosmans J, Backer O, Jaegere P, Beule M, Dambre J. Enabling automated device size selection for transcatheter aortic valve implantation. Journal of interventional cardiology. 2019, doi. org/10.1155/2019/3591314eng
dcterms.referencesLalys F, Esneault S, Castro M, Royer L, Haigron P, Auffret V, Tomasi J. Automatic aortic root segmentation and anatomical landmarks detection for TAVI procedure planning. Minimally invasive therapy & allied technologies. 2019;28(3):157-164eng
dcterms.referencesValbuena O, Vera M, Huérfano Y, Gelvez E, Salazar J, Molina V, Sáenz F, Vera M I, Salazar W. Computational strategy for the segmentation of the aortic annulus in cardiac computed tomography images. Journal of physics: Conference series1160. 2019, doi:10.1088/1742 6596/1160/1/012005.eng
dcterms.referencesZabir H. Aortic valve segmentation using convolutional neural network with skip mechanism. Communications on applied electronics (CAE). 2019;7(29):2394– 4714.eng
dcterms.referencesHuzior A, Stanuch M, Witowski J, Dudek D. Automatic aorta and left ventricle segmentation for TAVI procedure planning using convolutional neural networks. 41st Annual international conference of the IEEE engineering in medicine and biology society (EMBC), Germany. 2019, doi: 10.1109/EMBC.2019.8857409.eng
dcterms.referencesAbdeldayem E, Ibrahim A, Osman, A. CT aortic annulus parameters for pre-operative TAVI assessment: a comparative study between manual post processing and automated software tool. The egyptian journal of radiology and nuclear medicine. 2018; 49(1):352-357.eng
dcterms.referencesAbdullah W, Jung H, Yun D, Jang Y, Park H, Chang H. Automatic aortic valve landmark localization in coronary CT angiography using colonial walk. Plos one.2018; 13(7), doi:org/10.1371/journal.pone.0200317.eng
dcterms.referencesNoothouta J, Vosa B, Wolterinka J, Isgum I. Automatic segmentation of thoracic aorta segments in low-dose chest CT. Medical Imaging: Image Processing. 2018: 105741S.eng
dcterms.referencesHorehledova B, Mihl C, Schwemmer C, Hendriks B, Eijsvoogel N, Kietselaer B, Wildberger J, Das M. Aortic root evaluation prior to transcatheter aortic valve implantationÐCorrelation of manual and semiautomatic measurements. Plos one. 2018, doi.org/10.1371/journal. pone.0199732.eng
dcterms.referencesGao X, Boccalini S, Kitslaar P, Budde R, Attrach M, Tu S, Graaf M, Ondrus T, Penicka M, Scholte A, et al. Quantification of aortic annulus in computed tomography angiography:Validation of a fully automatic methodology. European journal of radiology. 2017; 93(1):1–8.eng
dcterms.referencesLiang L, Kong F, Martin C, Pham T, Wang Q, Duncan J, Sun W. Machine learning based 3D geometry reconstruction and modeling of aortic valve deformation using 3D CT images. Int J numer method biomed eng. 2017;33(5), doi:10.1002/cnm.2827.eng
dcterms.referencesQueirós S, Dubois C, Morais P, Adriaenssens T, Fonseca J, Vilaça J, D’hooge J. Automatic 3D aortic annulus sizing by computed tomography in the planning of transcatheter aortic valve implantation. Journal of cardiovascular computed tomography. 2017;11(1):25- 32eng
dcterms.referencesChodór P, Wilczek K, Przybylski R, Głowacki J, Kukulski T, Streb W, Niklewski T, Honisz G, Trzeciak P, Podolecki T, et al. Impact of core valve size selection based on multi-slice computed tomography on paravalvular leak after transcatheter aortic valve implantation. Cardiology Journal. 2017; 24(5):467- 476.eng
dcterms.referencesVeulemans V, Zeus T, Kleinebrecht L, Balzer J, Hellhammer K, Polzin A, Horn P, Blehm A, Minol J, Kröpil P, et al. Comparison of manual and automated preprocedural segmentation tools to predict the annulus plane angulation and C-Arm positioning for transcatheter aortic valve replacement. Plos one. 2016;11(4), doi:10.1371/journal. pone.0151918eng
dcterms.referencesAspern K, Foldyna B, Etz C, Hoyer A, Girrbach F, Holzhey D, Lucke C, Grothoff M, Linke A, Mohr F, Gutberlet M, Lehmkuhl L. Effective diameter of the aortic annulus prior to transcatheter aortic valve implantation: influence of area-based versus perimeter-based calculation. Int J cardiovasc imaging. 2015;31(1):163–169.eng
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
datacite.rightshttp://purl.org/coar/access_right/c_abf2eng
oaire.versioninfo:eu-repo/semantics/publishedVersioneng
dc.type.driverinfo:eu-repo/semantics/articleeng
dc.title.translatedA current review of computational techniques for diseases characterizing associated with the aortic valveeng
dc.identifier.urlrevhipertension.com/rlh_3_2020/14_una_revision_actual_tecnicas.pdf
dc.type.spaArtículo científicospa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Artículos [1344]
    Artículos científicos evaluados por pares

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional