Mostrar el registro sencillo del ítem

dc.contributor.authorBravo, A
dc.contributor.authorVera, M
dc.contributor.authorHuérfano, Y
dc.contributor.authorManrique, Y
dc.contributor.authorValbuena, O
dc.description.abstractThe X–ray angiography images are routinely used to assess the blood vessels. The acquisition procedure considers a medical imaging system which allows obtaining views of the vessel while the blood flows thought them. The X–ray source is influenced on the region to be viewed and then, the projection of the all anatomical structures in the champ of view is shown through an image intensifier. The information of the blood vessel is impacted for the other structures. Additionally, the blood and the contrast product required in the acquisition are not mixed homogeneously, producing artifacts in the images. Finally, the noise is also an impact factor in the quality of the angiography images. In the coronary vessel case, the branches of the network are superposed. In this paper, an enhancement procedure to diminish the uncertainty associated to X–ray angiography images is reported. The relation between two versions of the angiograms is determined using a fuzzy connector considering that this relation diminishes the images intrinsic uncertainty. These versions correspond with images filtered with low-pass and high-pass image filters, respectively. The technique is tested with images of the coronary and kidney vessels. The qualitative results show a good enhanced of the angiography images.eng
dc.publisherIOP Publishingeng
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.sourceJournal of Physics: Conference Serieseng
dc.sourceVol. 1547 No. 1 (2020)
dc.subjectX–ray angiography imageseng
dc.subjectMedical imaging systemeng
dc.subjectVoronary vesseleng
dc.titleUncertainty as key element in the analysis of X–ray angiography imageseng
dcterms.referencesWaldman S and Campbell R 2011 Imaging of Pain (Philadelphia: W B Saunders)eng
dcterms.referencesNimsky C and Carl B 2017 Neurosurgery Clinics of North America 28(4) 453eng
dcterms.referencesAthanasiou L, Fotiadis D and Michalis L 2017 Atherosclerotic Plaque Characterization Methods Based on Coronary Imaging (Oxford: Academic Press)eng
dcterms.referencesPreim B and Botha C 2014 Visual Computing for Medicine (Boston: Morgan Kaufmann)eng
dcterms.referencesNakabayashi K, Okada H, Sugiura R and Oka T 2016 Journal of Cardiology Cases 13(6) 171eng
dcterms.referencesElliott W 2007 Secondary hypertension: Renovascular hypertension Hypertension ed Black H R and Elliott W J (Philadelphia: W B Saunders) chap 8eng
dcterms.referencesMorris P, Ryan D, Morton A, Lycett R, Lawford P, Hose D and Gunn J 2013 JACC. Cardiovascular Interventions 6(2) 149eng
dcterms.referencesCastro M, Putman C and Cebral J 2006 Academic Radiology 13(7) 811eng
dcterms.referencesBush R, Najibi S, MacDonald M, Lin P, Chaikof E, Martin L and Lumsden A 2001 Journal of Vascular Surgery 33(5) 1041eng
dcterms.referencesGianrossi R, Detrano R, Colombo A and Froelicher V 1990 American Heart Journal 120(5) 1179eng
dcterms.referencesKotre C and Marshall N 2001 Radiation Protection Dosimetry 94(1-2) 73eng
dcterms.referencesCrocker E, Tutton R and Bowen J 1986 Journal of Vascular Surgery 4(2) 157eng
dcterms.referencesZeng Z, Kang R, Wen M and Zio E 2018 Information Sciences 429 26eng
dcterms.referencesZadeh L, Fu K S, Tanaka K and Shimura M 1975 Fuzzy Sets and their Applications to Cognitive and Decision Processes (New York: Academic Press)eng
dcterms.referencesCheng H and Xu H 2000 Pattern Recognition 33(5) 809eng
dcterms.referencesChacón M, Aguilar L and Delgado A 2003 Definition and applications of a fuzzy image processing scheme Proceedings of 2002 IEEE 10th Digital Signal Processing Workshop, 2002 and the 2nd Signal Processing Education Workshop (Pine Mountain: IEEE) p 102eng
dcterms.referencesChacón M, Aguilar L and Delgado A 2003 Definition and applications of a fuzzy image processing scheme Proceedings of 2002 IEEE 10th Digital Signal Processing Workshop, 2002 and the 2nd Signal Processing Education Workshop (Pine Mountain: IEEE) p 102eng
dcterms.referencesBloch I 2015 Fuzzy Sets Systems 281 280eng
dcterms.referencesKlir G, Clair U and Yuan B 1997 Fuzzy Set Theory: Foundations and Applications (New York: Prentice Hall)eng
dcterms.referencesHerrera F, Lozano M and Verdegay J 1998 Artificial Intelligence Review 12(4) 265eng
dcterms.referencesMizumoto M 1989 Fuzzy Sets Systems 31(2) 217eng
dcterms.referencesMizumoto M 1989 Fuzzy Sets Systems 32(1) 45eng
dcterms.referencesRuss J and Neal F 2018 The Image Processing Handbook (Boca Raton: CRC Press)eng
dcterms.referencesLoizou C and Pattichis C 2015 Despeckle Filtering for Ultrasound Imaging and Video: Algorithms and Software vol 1 (Williston: Morgan & Claypool Publishers)eng
dcterms.referencesTyagi V 2018 Understanding Digital Image Processing (Boca Raton: CRC Press)eng
dcterms.referencesPerona P and Malik J 1990 IEEE Transaction on Pattern Analysis and Machine Intelligence 12(7) 629eng
dcterms.referencesDhawan A 2011 Medical Image Analysis (New Jersey: Wiley)eng
dc.type.spaArtículo científicospa

Ficheros en el ítem


Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Artículos
    Artículos científicos evaluados por pares

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional