Mostrar el registro sencillo del ítem

dc.contributor.authorBabalola, O. E.
dc.contributor.authorAwoyera, P. O.
dc.contributor.authorTran, M. T.
dc.contributor.authorLe, D-H
dc.contributor.authorOlalusi, O. B.
dc.contributor.authorViloria, A.
dc.contributor.authorOvallos-Gazabon, D.
dc.date.accessioned2020-06-25T19:32:33Z
dc.date.available2020-06-25T19:32:33Z
dc.date.issued2020
dc.identifier.urihttps://hdl.handle.net/20.500.12442/5994
dc.description.abstractThis study aimed to investigate the mechanical and durability properties of recycled aggregate concrete with a ternary binder system and optimized mix proportion. Two concrete batches were developed using a densified mix design approach (DMDA) to evaluate the required mix proportions. Batch I have GGBS content varied at 0%, 10%, 20%, 30%, 40% and 50% at constant w/b ratio of 0.45, while batch II concrete mix have varied water/binder ratios: 0.3, 0.35, 0.4, 0.45 and 0.5 at constant GGBS replacement level of 30%. The fine aggregate (river sand) of the two batches was blended with fly ash at optimum loose packing density (FA + Sand) and superplasticizer (SP) was incorporated in the mix at a constant level of 1.4%. A control mix, comprising of natural aggregate was also developed. The results obtained showcased the feasibility of producing structural concrete with recycled aggregates using GGBS and fly ash. The mechanical and durability properties were best at 30% GGBS content and 0.35 water/binder ratio. The DMDA for mix proportion adopted for RAC contributed significantly to improving its properties when compared to NAC, especially at the optimum observed RAC mix with compressive strength of 52 MPa. Also, the mix demonstrated good permeability resistance in terms of chloride-ion ingress and capillary water absorption.eng
dc.format.mimetypepdfspa
dc.language.isoengeng
dc.publisherElseviereng
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceJournal of Materials Research and Technologyeng
dc.sourceVol. 9, Issue 3, (2020)
dc.subjectRecycled aggregate concreteeng
dc.subjectDensified mix designeng
dc.subjectTernary bindereng
dc.subjectDurabilityeng
dc.subjectMechanical propertieseng
dc.titleMechanical and durability properties of recycled aggregate concrete with ternary binder system and optimized mix proportioneng
dcterms.referencesM.S. Imbabi, C. Carrigan, S. McKenna, Trends and developments in green cement and concrete technology, Int. J. Sustain. Built Environ. 1 (2012) 194–216. doi:https://doi.org/10.1016/j.ijsbe.2013.05.001.eng
dcterms.referencesM. Behera, S.K. Bhattacharyya, A.K. Minocha, R. Deoliya, S. Maiti, Recycled aggregate from C&D waste & its use in concrete–A breakthrough towards sustainability in construction sector: A review, Constr. Build. Mater. 68 (2014) 501–516.eng
dcterms.referencesO.E. Babalola, P.O. Awoyera, Suitability of <i>Cordia millenii</i> Ash Blended Cement in Concrete Production, Int. J. Eng. Res. Africa. 22 (2016) 59–67. doi:10.4028/www.scientific.net/JERA.22.59.eng
dcterms.referencesM. Moini, The optimization of concrete mixtures for use in highway applications, (2015).eng
dcterms.referencesC.-C. Fan, R. Huang, H. Hwang, S.-J. Chao, Properties of concrete incorporating fine recycled aggregates from crushed concrete wastes, Constr. Build. Mater. 112 (2016) 708– 715. doi:10.1016/j.conbuildmat.2016.02.154.eng
dcterms.referencesS. Karthik, P.R.M. Rao, P.O. Awoyera, Strength properties of bamboo and steel reinforced concrete containing manufactured sand and mineral admixtures, J. King Saud Univ. - Eng. Sci. (2017). doi:10.1016/j.jksues.2016.12.003.eng
dcterms.referencesP. Awoyera, R. Gobinath, S. Haripriya, P. Kulandaisami, New Light Weight Mortar for Structural Application: Assessment of Porosity, Strength and Morphology Properties, in: S.C. Satapathy, K.S. Raju, K. Molugaram, A. Krishnaiah, G.A. Tsihrintzis (Eds.), Int. Conf. Emerg. Trends Eng., Springer International Publishing, Cham, 2020: pp. 59–65.eng
dcterms.referencesP.O. Awoyera, J.M. Ndambuki, J.O. Akinmusuru, D.O. Omole, Characterization of ceramic waste aggregate concrete, HBRC J. (2016). doi:https://doi.org/10.1016/j.hbrcj.2016.11.003.eng
dcterms.referencesP. Murthi, P. Awoyera, P. Selvaraj, D. Dharsana, R. Gobinath, Using silica mineral waste as aggregate in a green high strength concrete: workability, strength, failure mode, and morphology assessment, Aust. J. Civ. Eng. (2018). doi:10.1080/14488353.2018.1472539.eng
dcterms.referencesC. Shi, Y. Li, J. Zhang, W. Li, L. Chong, Z. Xie, Performance enhancement of recycled concrete aggregate – A review, J. Clean. Prod. 112 (2016) 466–472. doi:https://doi.org/10.1016/j.jclepro.2015.08.057.eng
dcterms.referencesG. Dimitriou, P. Savva, M.F. Petrou, Enhancing mechanical and durability properties of recycled aggregate concrete, Constr. Build. Mater. 158 (2018) 228–235. doi:https://doi.org/10.1016/j.conbuildmat.2017.09.137.eng
dcterms.referencesB.S. British Standard, 8500, Concrete–Part 1: Complementary British Standard to BS EN 206-Part 1: Method of Specifying and Guidance for the Specifier, Br. Stand. Institution, London. (2006).eng
dcterms.referencesR. Corral-Higuera, S.P. Arredondo-Rea, M.A. Neri-Flores, J.M. Gomez-Soberon, J.L. Almaral-Sanchez, A. Castorena-Gonzalez, J H Martinez-Villafane, F. Almeraya-Calderon, Chloride ion penetrability and corrosion behavior of steel in concrete with sustainability characteristics., Int. J. Electrochem. Sci. 6 (2011) 958–970.eng
dcterms.referencesR.V. Silva, J. de Brito, R. Neves, R. Dhir, Prediction of Chloride Ion Penetration of Recycled Aggregate Concrete, Mater. Res. 18 (2015) 427–440. http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1516- 14392015000200427&nrm=iso.eng
dcterms.referencesN. Singh, S.P. Singh, Carbonation resistance and microstructural analysis of Low and High Volume Fly Ash Self Compacting Concrete containing Recycled Concrete Aggregates, Constr. Build. Mater. 127 (2016) 828–842. doi:https://doi.org/10.1016/j.conbuildmat.2016.10.067.eng
dcterms.referencesK. Obla, C. Lobo, R. Hong, H. Kim, Optimizing Concrete Mixtures for Performance and Sustainability, in: Int. Concr. Sustain. Conf. Seattle, 2012.eng
dcterms.referencesK. Shicong, C.S. Poon, Compressive strength, pore size distribution and chloride-ion penetration of recycled aggregate concrete incorporating class-F fly ash, J. Wuhan Univ. Technol. Sci. Ed. 21 (2006) 130–136. doi:10.1007/BF02841223.eng
dcterms.referencesB. Mas, A. Cladera, T. del Olmo, F. Pitarch, Influence of the amount of mixed recycled aggregates on the properties of concrete for non-structural use, Constr. Build. Mater. 27 (2012) 612–622. doi:https://doi.org/10.1016/j.conbuildmat.2011.06.073.eng
dcterms.referencesW. Dodds, C. Goodier, C. Christodoulou, S. Austin, D. Dunne, Durability performance of sustainable structural concrete: Effect of coarse crushed concrete aggregate on microstructure and water ingress, Constr. Build. Mater. 145 (2017) 183–195.eng
dcterms.referencesC. Medina, W. Zhu, T. Howind, M.I.S. de Rojas, M. Frías, Influence of mixed recycled aggregate on the physical – mechanical properties of recycled concrete, J. Clean. Prod. 68 (2014) 216–225. doi:https://doi.org/10.1016/j.jclepro.2014.01.002.eng
dcterms.referencesP.-K. Chang, W.-M. Hou, A study on the hydration properties of high performance slag concrete analyzed by SRA, Cem. Concr. Res. 33 (2003) 183–189.eng
dcterms.referencesP.K. Chang, An approach to optimizing mix design for properties of high-performance concrete, Cem. Concr. Res. 34 (2004) 623–629. doi:10.1016/j.cemconres.2003.10.010.eng
dcterms.referencesB. Kerkhoff, E. Siebel, Properties of concrete with recycled aggregates, Beton. 2 (2001) 105–108.eng
dcterms.referencesG.-F. Peng, Y.-Z. Huang, H.-S. Wang, J.-F. Zhang, Q.-B. Liu, Mechanical properties of recycled aggregate concrete at low and high water/binder ratios, Adv. Mater. Sci. Eng. 2013 (2013).eng
dcterms.referencesC. Hwang, Durability design and performance of self-consolidating lightweight concrete, 19 (2005) 619–626. doi:10.1016/j.conbuildmat.2005.01.003.eng
dcterms.referencesBS 12:1989, Specification for ordinary and rapid-hardening Portland cement, Br. Stand. London, UK. (n.d.).eng
dcterms.referencesASTM C618, Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete, Am. Soc. Test. Mater. (2008).eng
dcterms.referencesASTM C1202, Standard Test Method for Electrical Indication of Concrete’s Ability to Resist Chloride Ion Penetration, (2017).eng
dcterms.referencesASTM C1585, Standard Test Method for Measurement of Rate of Absorption of Water by Hydraulic-Cement Concretes, (2013).eng
dcterms.referencesASTM C143 / C143M - 15a, Standard Test Method for Slump of Hydraulic-Cement Concrete, (2015). www.astm.org.eng
dcterms.referencesASTM C138 / C138M-17a, Standard Test Method for Density (Unit Weight), Yield, and Air Content (Gravimetric) of Concrete, (2017). www.astm.org.eng
dcterms.referencesASTM C191-19, Standard Test Methods for Time of Setting of Hydraulic Cement by Vicat Needle, (2019).eng
dcterms.referencesASTM C39 / C39M-20, Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens, (2020). www.astm.org.eng
dcterms.referencesASTM C496 / C496M-17, Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens, (2017). www.astm.org.eng
dcterms.referencesJ. Wang, M. Mu, Y. Liu, Recycled cement, Constr. Build. Mater. 190 (2018) 1124–1132.eng
dcterms.referencesJ. Xie, J. Wang, R. Rao, C. Wang, C. Fang, Effects of combined usage of GGBS and fly ash on workability and mechanical properties of alkali activated geopolymer concrete with recycled aggregate, Compos. Part B Eng. 164 (2019) 179–190.eng
dcterms.referencesS.C. Kou, C.S. Poon, F. Agrela, Comparisons of natural and recycled aggregate concretes prepared with the addition of different mineral admixtures, Cem. Concr. Compos. 33 (2011) 788–795. doi:10.1016/j.cemconcomp.2011.05.009.eng
dcterms.referencesS. Elshafie, M. Boulbibane, G. Whittleston, Influence of mineral admixtures on the mechanical properties of fresh and hardened concrete, Constr. Sci. 19 (2016) 4–12.eng
dcterms.referencesS.C. Kou, C.S. Poon, Properties of self-compacting concrete prepared with coarse and fine recycled concrete aggregates, Cem. Concr. Compos. 31 (2009) 622–627. doi:https://doi.org/10.1016/j.cemconcomp.2009.06.005.eng
dcterms.referencesS.J. Barnett, M.N. Soutsos, S.G. Millard, J.H. Bungey, Strength development of mortars containing ground granulated blast-furnace slag: Effect of curing temperature and determination of apparent activation energies, Cem. Concr. Res. 36 (2006) 434–440.eng
dcterms.referencesE. Güneyisi, M. Gesoğlu, A study on durability properties of high-performance concretes incorporating high replacement levels of slag, Mater. Struct. 41 (2008) 479–493.eng
dcterms.referencesV.B.R. Suda, P.S. Rao, Experimental investigation on optimum usage of Micro silica and GGBS for the strength characteristics of concrete, Mater. Today Proc. (2020).eng
dcterms.referencesR.K.D. OBE, J. de Brito, R. V Silva, C.Q. Lye, Sustainable Construction Materials: Recycled Aggregates, Woodhead Publishing, 2019.eng
dcterms.referencesD.S. Seo, H.B. Choi, Effects of the old cement mortar attached to the recycled aggregate surface on the bond characteristics between aggregate and cement mortar, Constr. Build. Mater. 59 (2014) 72–77.eng
dcterms.referencesC. Li, M. Zhao, F. Ren, N. Liang, J. Li, M. Zhao, Bond Behaviors Between Full- Recycled-Aggregate Concrete and Deformed Steel-Bar, Open Civ. Eng. J. 11 (2017).eng
dcterms.referencesM. Etxeberria, E. Vázquez, A. Marí, M. Barra, Influence of amount of recycled coarse aggregates and production process on properties of recycled aggregate concrete, Cem. Concr. Res. 37 (2007) 735–742. doi:10.1016/j.cemconres.2007.02.002.eng
dcterms.referencesP.O. Awoyera, A. Adesina, R. Gobinath, Role of recycling fine materials as filler for improving performance of concrete - a review, Aust. J. Civ. Eng. (2019). doi:10.1080/14488353.2019.1626692.eng
dcterms.referencesS. Pradhan, S. Kumar, S. V Barai, Recycled aggregate concrete: Particle Packing Method (PPM) of mix design approach, Constr. Build. Mater. 152 (2017) 269–284.eng
dcterms.referencesM.L. Berndt, Properties of sustainable concrete containing fly ash, slag and recycled concrete aggregate, Constr. Build. Mater. 23 (2009) 2606–2613. doi:https://doi.org/10.1016/j.conbuildmat.2009.02.011.eng
dcterms.referencesJ. Kropp, H.K. Hilsdorf, H. Grube, C. Andrade, L. Nilsson, Chapter 2: Transport mechanisms and definitions, RILEM Rep. (1995).eng
dcterms.referencesH. Guo, C. Shi, X. Guan, J. Zhu, Y. Ding, T.-C. Ling, H. Zhang, Y. Wang, Durability of recycled aggregate concrete – A review, Cem. Concr. Compos. 89 (2018) 251–259. doi:https://doi.org/10.1016/j.cemconcomp.2018.03.008.eng
dcterms.referencesH. Sun, P.M. Wang, J.Y. Sun, Study on the gas anti permeability and carbonation resistance of recycled concrete, J. Build. Mater. 9 (2006) 91–96.eng
dcterms.referencesX. Zhang, K. Wu, Mechanism and Key Technique of Mineral Admixture, JOURNALTONGJI Univ. 32 (2004) 494–498.eng
dcterms.referencesP. Awoyera, A. Adesina, A critical review on application of alkali activated slag as a sustainable composite binder, Case Stud. Constr. Mater. (2019) e00268. doi:https://doi.org/10.1016/j.cscm.2019.e00268.eng
dcterms.referencesE. Anastasiou, K.G. Filikas, M. Stefanidou, Utilization of fine recycled aggregates in concrete with fly ash and steel slag, Constr. Build. Mater. 50 (2014) 154–161.eng
dcterms.referencesP. Dinakar, K.G. Babu, M. Santhanam, Durability properties of high volume fly ash self compacting concretes, Cem. Concr. Compos. 30 (2008) 880–886.eng
dcterms.referencesH. Yiğiter, H. Yazıcı, S. Aydın, Effects of cement type, water/cement ratio and cement content on sea water resistance of concrete, Build. Environ. 42 (2007) 1770–1776.eng
dcterms.referencesW. Dodds, C. Goodier, C. Christodoulou, S.A. Austin, D. Dunne, M. Fitt, P. Snowden, Durability performance of structural concrete made with coarse recycled concrete aggregates, in: Proc. Fib Symp. 2016, Performance-Based Approaches Concr. Struct. Cape Town, South Africa, 2016.eng
dcterms.referencesW. Hu, S. Li, C. Song, Z. Chen, L. Chen, Y. Yang, W. Luo, A Laboratory Analysis of Chloride Ions Penetration in Recycled Aggregates Concrete Admixed with Ground Granulated Blast Furnace Slag, in: IOP Conf. Ser. Mater. Sci. Eng., IOP Publishing, 2019: p. 12051.eng
dcterms.referencesC. Faella, C. Lima, E. Martinelli, M. Pepe, R. Realfonzo, Mechanical and durability performance of sustainable structural concretes: An experimental study, Cem. Concr. Compos. 71 (2016) 85–96. doi:10.1016/j.cemconcomp.2016.05.009.eng
dcterms.referencesS.-C. Kou, C. Poon, Long-term mechanical and durability properties of recycled aggregate concrete prepared with the incorporation of fly ash, Cem. Concr. Compos. 37 (2013) 12– 19.eng
dcterms.referencesK. Kapoor, S.P. Singh, B. Singh, Durability of self-compacting concrete made with Recycled Concrete Aggregates and mineral admixtures, Constr. Build. Mater. 128 (2016) 67–76. doi:https://doi.org/10.1016/j.conbuildmat.2016.10.026.eng
dcterms.referencesW. Chalee, C. Jaturapitakkul, Effects of W/B ratios and fly ash finenesses on chloride diffusion coefficient of concrete in marine environment, Mater. Struct. 42 (2009) 505– 514.eng
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versioninfo:eu-repo/semantics/acceptedVersionspa
dc.type.driverinfo:eu-repo/semantics/preprintspa
dc.identifier.doihttps://doi.org/10.1016/j.jmrt.2020.04.038
dc.identifier.urlhttps://www.sciencedirect.com/science/article/pii/S2238785420312035
dc.type.spaPre-Publicaciónspa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Artículos [1351]
    Artículos científicos evaluados por pares

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional