Mostrar el registro sencillo del ítem

dc.contributor.authorHuérfano, Y
dc.contributor.authorVera, M
dc.contributor.authorGelvez-Almeida, E
dc.contributor.authorVera, M I
dc.contributor.authorValbuena, O
dc.contributor.authorSalazar-Torres, J
dc.date.accessioned2020-03-26T23:26:17Z
dc.date.available2020-03-26T23:26:17Z
dc.date.issued2019
dc.identifier.issn17426596
dc.identifier.urihttps://hdl.handle.net/20.500.12442/5073
dc.description.abstractLung cancer is the leading oncological cause of death in the world. As for carcinomas, they represent between 90% and 95% of lung cancers; among them, non-small cell lung cancer is the most common type and the large cell carcinoma, the pathology on which this research focuses, is usually detected with the computed tomography images of the thorax. These images have three big problems: noise, artifacts and low contrast. The volume of the large cell carcinoma is obtained from the segmentations of the cancerous tumor generated, in a semi-automatic way, by a computational strategy based on a combination of algorithms that, in order to address the aforementioned problems, considers median and gradient magnitude filters and an unsupervised grouping technique for generating the large cell carcinoma morphology. The results of high correlation between the semi-automatic segmentations and the manual ones, drawn up by a pulmonologist, allow us to infer the excellent performance of the proposed technique. This technique can be useful in the detection and monitoring of large cell carcinoma and if it is considering this kind of computational strategy, medical specialists can establish the clinic or surgical actions oriented to address this pulmonary pathology.eng
dc.format.mimetypepdfeng
dc.language.isoengeng
dc.publisherIOP Publishingeng
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceJournal of Physics: Conference Serieseng
dc.sourceVol. 1414 (2019)eng
dc.source.urihttps://iopscience.iop.org/article/10.1088/1742-6596/1414/1/012018eng
dc.subjectLung cancereng
dc.subjectLarge Cell Lung Carcinomaeng
dc.subjectLCLCeng
dc.titleLarge cells cancer volumetry in chest computed tomography pulmonary imageseng
dc.typearticleeng
dcterms.referencesLatarjet M and Ruiz A 2004 Anatomía humana (Barcelona: Médica Panamericana)spa
dcterms.referencesWebb W and Higgins C 2005 Thoracic imaging: pulmonary and cardiovascular radiology (Philadelphia: Lippincott Williams and Wilkins)eng
dcterms.referencesBarrett J and Keat N 2004 Artifacts in CT: Recognition and avoidance Radiographics 24 1679eng
dcterms.referencesWang G and Vannier M 1994 Stair–step artifacts in three-dimensional helical ct: An experimental study Radiology 191 79eng
dcterms.referencesKubota T, Jerebko A, Dewan M, Salganicoff M and Krishnan A 2011 Multi Modality State of the Art Medical Image Segmentation and Registration Methodologies ed A El-Baz, U R Acharya, M Mirmehdi and J Suri (Boston: Springer) Density and attachment diagnostic CT pulmonary nodule segmentation with competition-diffusion and new morphological operators 143 Chapter 6eng
dcterms.referencesYang B, Xiang D, Yu F and Chen X 2018 Society of Photo-Optical Instrumentation Engineers (SPIE) Medical Imaging (Houston: SPIE) Lung tumor segmentation based on the multi-scale template matching and region growing 10578 Houstoneng
dcterms.referencesAit B, El Hassani A and Majda A 2018 Lung ct image segmentation using deep neural networks Procedia Computer Science 127 109eng
dcterms.referencesPetrou M and Bosdogianni P 2003 Image processing the fundamentals (New York: John Wiley & Sons Inc)eng
dcterms.referencesPratt W 2007 Digital image processing (New York: John Wiley & Sons Inc)eng
dcterms.referencesBurden R and Faires D 2010 Numerical analysis (Mexico: Cengage Learning)eng
dcterms.referencesHuérfano Y, Vera M, Mar A and Bravo A 2019 Integrating a gradient–based difference operator with machine learning techniques in right heart segmentation Journal of Physics: Conference Series 1160 012003eng
dcterms.referencesDice L 1945 Measures of the amount of ecologic association between species Ecology 26 29eng
dc.rights.accessrightsinfo:eu-repo/semantics/openAccesseng
oaire.versioninfo:eu-repo/semantics/publishedVersionspa
dc.type.driverarticleeng


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Artículos
    Artículos científicos evaluados por pares

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional