Mostrar el registro sencillo del ítem

dc.contributor.authorFlórez, M
dc.contributor.authorVera, M
dc.contributor.authorSalazar-Torres, J
dc.contributor.authorHuérfano, Y
dc.contributor.authorGelvez-Almeida, E
dc.contributor.authorValbuena, O
dc.contributor.authorVera, M I
dc.contributor.authorAranguen, M
dc.description.abstractCertain annuities are annuities whose payments occur on fixed dates; while a certain ordinary annuity is one in which payments are made at the end of each established period. The calculation of the interest rate, which governs the certain ordinary annuity, involves the use of a non-analytical equation that requires the application of numerical techniques to obtain the value of the aforementioned rate. The literature indicates that any of these techniques requires one or several numerical values for initialization, which generally are estimated using trial techniques, graphical methods or values present in pre-established tables. Through this article, a new robust methodology is proposed that calculates the useful numerical values to initialize the linear interpolation technique, which is used to calculate the interest rate linked to the certain ordinary annuity. The proposed methodology generates initialization values, one by default and the other by excess, which allow us to limit the value of the certain ordinary annuity interest rate considered. Finally, we generated a new strategy that constitutes a novel mathematical model for interest rates calculation in the context of certain ordinary annuity. The percentage relative error obtained indicates the excellent performance of the aforementioned mathematical model.eng
dc.publisherIOP Publishingeng
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.sourceJournal of Physics: Conference Serieseng
dc.sourceVol. 1414 (2019)eng
dc.subjectMathematical modeleng
dc.subjectInterest rateeng
dc.subjectLinear interpolation techniqueeng
dc.titleInterest rates calculation in certain ordinary annuitieseng
dcterms.referencesPortus G 1997 Matemáticas financieras (Bogotá: McGraw Hill)spa
dcterms.referencesBurden R and Faires D 2010 Numerical analysis (Mexico: Cengage Learning)eng
dcterms.referencesMeza J 2017 Matemáticas financieras aplicadas (Bogotá: Ecoe Ediciones)spa
dcterms.referencesBaca G 2010 Fundamentos de ingeniería económica (México: Mc Graw-Hill)spa
dcterms.referencesMena R 2017 Introducción al estudio de las matemáticas financieras (Barranquilla: Ediciones Universidad Simón Bolívar)spa
dcterms.referencesGonzález G 1998 Matemática financiera: Intereses y anualidades ciertas (México: McGrawHill)spa
dcterms.referencesCánovas R 2004 Matemáticas financieras, fundamentos y aplicaciones (México: Ediciones Trillas)spa
dcterms.referencesSmola A 1998 Learning with kernels (Germany: Technische Universität Berlin)eng
dcterms.referencesGunn S 1998 Support vector machines for classification and regression (Southampton: Southampton University)eng
dcterms.referencesSuykens J, Gestel T and Brabanter J 2002 Least squares support vector machines Neural Processing Letters 9(3) 293eng
dcterms.referencesHamming R 1973 Numerical methods for scientist and engineers (New York: Dover Publications)eng
dcterms.referencesMeijering E 2002 A chronology of interpolation: From ancient astronomy to modern signal and image processing Proceedings of the IEEE 90(3) 319eng

Ficheros en el ítem


Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Artículos
    Artículos científicos evaluados por pares

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional