Mostrar el registro sencillo del ítem

dc.contributor.authorGarcia-Guiliany, Jesús
dc.contributor.authorDe-la-hoz-Franco, Emiro
dc.contributor.authorRodríguez-Toscano, Andrés-David
dc.contributor.authorDe-la-Hoz-Hernández, Juan-David
dc.contributor.authorHernandez-Palma, Hugo G.
dc.date.accessioned2020-02-20T20:03:39Z
dc.date.available2020-02-20T20:03:39Z
dc.date.issued2020
dc.identifier.issn21464553
dc.identifier.urihttps://hdl.handle.net/20.500.12442/4773
dc.description.abstractThe exigencies as soon as to competitiveness and productivity have influenced in the energetic consumption and the demand of electrical energy in Colombia, reason why at the present time it is of much interest and utility to have access to tools or valid models to reach greater knowledge in which related to the possible future projections. Next, the results of a quantitative study are presented that through the analysis of data collected between 2007 and 2017 that made possible the construction of a multiple linear regression model to estimate the demand of electric energy. These types of instruments currently originate as alternatives to promote management strategies in the energy field in the country. The final results allow to visualize an estimated figure for the next periods which will serve to contrast with the official results and to generate from this information possible lines of intervention in different organisms.eng
dc.format.mimetypepdfspa
dc.language.isoengeng
dc.publisherEconJournalseng
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourceInternational Journal of Energy Economics and Policyeng
dc.sourceVol. 10 N° 1, (2020)
dc.source.urihttp://www.econjournals.com/index.php/ijeep/article/view/7813/4806
dc.subjectEnergy consumptioneng
dc.subjectElectric demandeng
dc.subjectMultiple linear regression modeleng
dc.titleMultiple linear regression model applied to the projection of electricity demand in Colombiaeng
dc.typearticleeng
dcterms.referencesAndrews-Speed, P., Liao, X., Dannreuther, R. (2014), The Strategic Implications of China’s Energy Needs. London: Routledge.eng
dcterms.referencesArdila, L.M.C., Cardona, C.J.F. (2017), Structure and current state of the wholesale electricity markets. IEEE Latin America Transactions, 15(4), 669-674.eng
dcterms.referencesBanco Mundial. (2017), Sección Indicadores. Available from: https:// www.datos.bancomundial.org/indicador.spa
dcterms.referencesFabra, N., Reguant, M. (2014), Pass-through of emissions costs in electricity markets. American Economic Review, 104(9), 2872-2899.eng
dcterms.referencesGovernment Publications Office. editor. (GPO). (2016), International Energy Outlook 2016: With Projections to 2040. Government Printing Office.eng
dcterms.referencesHolmberg, K., Erdemir, A. (2017), Influence of tribology on global energy consumption, costs and emissions. Friction, 5(3), 263-284.eng
dcterms.referencesInforme de Operación del Sistema Interconectado Nacional (SIN). (2017), Demanda de Energía Nacional. Available from: http:// www.informesanuales.xm.com.co/2017/SitePages/operacion/4-1- Demanda-de-energia-nacional.aspx.spa
dcterms.referencesKaytez, F., Taplamacioglu, M.C., Cam, E., Hardalac, F. (2015), Forecasting electricity consumption: A comparison of regression analysis, neural networks and least squares support vector machines. International Journal of Electrical Power and Energy Systems, 67, 431-438.eng
dcterms.referencesMontgomery, D., Peck, E.A., Vining, G. (2012), Introduction to Linear Regression Analysis. Vol. 821. New Jersey: John Wiley and Sons.eng
dcterms.referencesNejat, P., Jomehzadeh, F., Taheri, M.M., Gohari, M., Majid, M.Z.A. (2015), A global review of energy consumption, CO2 emissions and policy in the residential sector (with an overview of the top ten CO2 emitting countries). Renewable and Sustainable Energy Reviews, 43, 843-862.eng
dcterms.referencesÑustes, W., Riviera, S. (2017), Colombia: territorio de inversión en fuentes no convencionales de energía renovable para la generación eléctrica. Revista Ingeniería, Investigación y Desarrollo, 17, 37-48.eng
dcterms.referencesPalma, H.H. (2017), Direccionamiento estratégico para la dinamización del sector salud en el departamento del Atlántico. BIOCIENCIAS, 12(1), 79-84.spa
dcterms.referencesPukšec, T., Mathiesen, B.V., Novosel, T., Duić, N. (2014), Assessing the impact of energy saving measures on the future energy demand and related GHG (greenhouse gas) emission reduction of Croatia. Energy, 76, 198-209.eng
dcterms.referencesSánchez-Villegas, A. (2014), In: Martínez-González, M.A., Faulín, F.J., editors. Bioestadística Amigable. Barcelona: Elsevier.eng
dcterms.referencesStephanidis, C. editor. (2018), HCI International 2018 Posters’ Extended Abstracts: 20th International Conference. Vol. 852. HCI International 2018, Las Vegas, NV, USA, Proceedings. Springer.eng
dcterms.referencesUnidad de Planeación Minera y Energética (UPME). (2015), Plan Energetico Nacional Colombia: Ideario Energético 2050. Available from: http://www1.upme.gov.co/Documents/PEN_ IdearioEnergetico2050.pdf.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccesseng
oaire.versioninfo:eu-repo/semantics/publishedVersioneng
dc.type.driverarticleeng
dc.identifier.urlhttp://www.econjournals.com/index.php/ijeep/article/view/7813/4806


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Artículos
    Artículos científicos evaluados por pares

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional