Mostrar el registro sencillo del ítem

dc.contributor.authorVerdeza-Villalobos, Arnaldo
dc.contributor.authorLenis-Rodas, Yuhan-Arley
dc.contributor.authorBula-Silvera, Antonio-José
dc.contributor.authorMendoza-Fandiño, Jorge-Mario
dc.contributor.authorGómez-Vásquez, Rafael-David
dc.date.accessioned2019-12-04T13:51:57Z
dc.date.available2019-12-04T13:51:57Z
dc.date.issued2019
dc.identifier.issn01225383
dc.identifier.urihttps://hdl.handle.net/20.500.12442/4402
dc.description.abstractThis work analyzes the use of palm kernel shells (PKS) produced by the Colombian palm oil mill industry, for purposes of fueling a commercial downdraft fixed bed gasifier (Ankur Scientific WGB- 20) designed to operate with wood chips. Operational parameters such as hopper shaking time, ash removal time, and airflow were varied in order to get the highest gasifier performance, computed as the ratio between producer gas chemical energy over biomass feeding energy. Experiments were carried out following a half fraction experimental design 24-1. Since these parameters affect the equivalence ratio (ER), behavior indicators were analyzed as a function of ER. It was found that the shaking time and airflow had a significant effect on higher-heating-value (HHV) and process efficiency, while the removal time is not significant. Highest performance for palm shell was reached at ER=0.35, where the resulting gas HHV and process efficiency were 5.04 MJ/Nm3 and 58%, respectively.eng
dc.language.isoengeng
dc.publisherEcopetrolspa
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceCT&F - Ciencia, Tecnología y Futurospa
dc.sourceVol. 9, N° 2 (2019) Decemberspa
dc.source.urihttps://doi.org/10.29047/01225383.181spa
dc.subjectFixed bed downdraft gasificationeng
dc.subjectKernel shellseng
dc.subjectAfrican palmeng
dc.titlePerformance analysis of a commercial fixed bed downdraft gasifier using palm kernel shellseng
dc.typearticleeng
dcterms.referencesGirón, E. A., Valderrama, M. V., Ruíz, J. D., Anuario Estadístico 2017 Principales cifras de la agroindustria de la palma de aceite en Colombia 2012-2016, Fedepalma, Colombia, Tech. Rep. ISSN 2344-8490, Oct. 2017.spa
dcterms.referencesArrieta, F. R., Teixeira, F. N., Yanez, E., Lora, E. and Castillo, E., Cogeneration potential in the Colombian palm oil industry: Three case studies, Biomass and Bioenergy, 2007, 31 (7), 503–511. https://doi.org/10.1016/j. biombioe.2007.01.016eng
dcterms.referencesSalomón, M., Gomez, M. F. and Martin, A., Technical polygeneration potential in palm oil mills in Colombia: A case study, Sustainable Energy Technologies and Assessments, 2013, 3, 40–52. https://doi.org/10.1016/j. seta.2013.05.003eng
dcterms.referencesHambali, E. and Rivai, M., The potential of palm oil waste biomass in Indonesia in 2020 and 2030, International Conference on Biomass: Technology, Application, and Sustainable Development, IOP Conf. Series: Earth and Environmental Science, Makassar, Indonesia, Oct. 25–26, 2017. https://doi.org/10.1088/1755- 1315/65/1/012050eng
dcterms.referencesHeidenreich, S. and Foscolo, P. U., New concepts in biomass gasification, Progress in Energy and Combustion Science, 2015, 46, 72-95. https://doi.org/10.1016/j. pecs.2014.06.002eng
dcterms.referencesPerez, J. F., Lenis, Y., Rojas, S. and Leon, C., Decentralized power generation through biomass gasification: a technical - economic analysis and implications by reduction of CO2 emissions, Revista Facultad de Ingeniería Universidad de Antioquia, 2012, 62, 157–169.eng
dcterms.referencesLee, U., Balu, E. and Chung, J. N., An experimental evaluation of an integrated biomass gasification and power generation system for distributed power applications, Applied Energy, 2013, 101, 699–708. https:// doi.org/10.1016/j.apenergy.2012.07.036eng
dcterms.referencesAsadullah, M., Barriers of commercial power generation using biomass gasification gas: A review, Renewable and Sustainable Energy Reviews, 2014, 29, 201–215. https://doi.org/10.1016/j.rser.2013.08.074eng
dcterms.referencesSamiran, N. A., Jaafar, M. N., Ng, J. H., Lam, S. S. and Chong, C. T., Progress in biomass gasification technique - With focus on Malaysian palm biomass for syngas production, Renewable and Sustainable Energy Reviews, 2016, 62, 1047–1062. https://doi.org/10.1016/j. rser.2016.04.049eng
dcterms.referencesGuo, F., Dong, Y., Dong, L. and Guo, C., Effect of design and operating parameters on the gasification process of biomass in a downdraft fixed bed: An experimental study, International Journal of Hydrogen Energy, 2014, 39 (11), 5625-5633. https://doi.org/10.1016/j. ijhydene.2014.01.130eng
dcterms.referencesMolino, A., Chianese, S. and Musmarra, D., Biomass gasification technology: The state of the art overview, Journal of Energy Chemistry, 2016, 25 (1), 10–25. https:// doi.org/10.1016/j.jechem.2015.11.005eng
dcterms.referencesLenis, Y. A. and Pérez J. F., Gasification of sawdust and wood chips in a fixed bed under autothermal and stable conditions, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2014, 36 (23), 2555–2565. https://doi.org/10.1080/15567036.2013. 875081eng
dcterms.referencesOuadi, M., Brammer, J. G., Kay, M. and Hornung A., Fixed bed downdraft gasification of paper industry wastes, Applied Energy, 2013, 103, 692–699. https://doi. org/10.1016/j.apenergy.2012.10.038eng
dcterms.referencesJeya, V. C. and Sekhar, S. J., Performance studies on a downdraft biomass gasifier with blends of coconut shell and rubber seed shell as feedstock, Applied Thermal Engineering, 2016, 97, 22–27. https://doi.org/10.1016/j. applthermaleng.2015.09.099eng
dcterms.referencesSreejith, C. C., Muraleedharan, C. and Arun, P., Energy and exergy analysis of steam gasification of biomass materials: a comparative study, International Journal of Ambient Energy, 2013, 34 (1), 35–52. https://doi.org/10. 1080/01430750.2012.711085eng
dcterms.referencesMohammad, N. A., Chong, C., Valera-Medina, A. and Ng, J.-H., Downdraft gasification of raw and torrefied palm kernel shell, 3rd International Conference on Power Generation Systems and Renewable Energy Technologies (PGSRET), IEEE Xplore, Johor Bahru, Malaysia, April 4-6, 2017. https://doi.org/10.1109/PGSRET.2017.8251798eng
dcterms.referencesPérez, J. F., Melgar, A. and Benjumea, P. N., Effect of operating and design parameters on the gasification/ combustion process of waste biomass in fixed bed downdraft reactors: An experimental study, Fuel, 2017, 96, 487–496. https://doi.org/10.1016/j.fuel.2012.01.064eng
dcterms.referencesNickerson, T. A., Hathaway, B. J., Smith, T. M. and Davidson, J. H., Economic assessment of solar and conventional biomass gasification technologies : Financial and policy implications under feedstock and product gas price uncertainty, Biomass and Bioenergy, 2015, 74, 47–57. https://doi.org/10.1016/j. biombioe.2015.01.002eng
dcterms.referencesLenis, Y. A., Pérez, J.F. and Melgar, A., Fixed bed gasification of Jacaranda Copaia wood: Effect of packing factor and oxygen enriched air, Industrial Crops and Products, 2016, 84, 166–175. https://doi.org/10.1016/j. indcrop.2016.01.053eng
dcterms.referencesJangsawang, W., Laohalidanond, K. and Kerdsuwan, S., Optimum equivalence ratio of biomass gasification process based on thermodynamic equilibrium model, Energy Procedia, 2015, 79, 520-527. https://doi. org/10.1016/j.egypro.2015.11.528eng
dcterms.referencesPorteiro, J., Patiño, D., Collazo, J., Granada, E., Moran, J. and Miguez, J. L., Experimental analysis of the ignition front propagation of several biomass fuels in a fixed-bed combustor, Fuel, 2010, 89 (1), 26–35. https:// doi.org/10.1016/j.fuel.2009.01.024eng
dcterms.referencesSharma, S. and Sheth, P. N., Air – steam biomass gasification : Experiments, modeling and simulation, Energy Conversion and Management, 2016, 110, 307-318. https://doi.org/10.1016/j.enconman.2015.12.030eng
dcterms.referencesBasu, P., “Biomass Characteristics,” in, Biomass Gasification, Pyrolysis and Torrefaction, Academic Press, Canada: Greenfield Research, Dalhousie University, 2018, pp. 49-91. https://doi.org/10.1016/B978-0-12-812992- 0.00003-0eng
dcterms.referencesNinduangdee P. and Kuprianov, V. I., Study on burning oil palm kernel shell in a conical fluidized-bed combustor using alumina as the bed material, Journal of the Taiwan Institute of Chemical Engineers, 2013, 44 (6), 1045-1053. https://doi.org/10.1016/j.jtice.2013.06.011eng
dcterms.referencesMontgomery, D. C., Design and Analysis of Experiments, 9 th ed. Arizona: Wiley, 2017.eng
dcterms.referencesBridgwater, A. V., The technical and economic feasibility of biomass gasification for power generation, Fuel, 1995, 74 (5), 631–653. https://doi.org/10.1016/0016- 2361(95)00001-Leng
dcterms.referencesMartínez, J. D., Mahkamov, K., Andrade, R. V. and Silva, E. E., Syngas production in downdraft biomass gasifiers and its application using internal combustion engines, Renewable Energy, 2012, 38 (1), 1–9. https:// doi.org/10.1016/j.renene.2011.07.035eng
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Artículos [1351]
    Artículos científicos evaluados por pares

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional