Mostrar el registro sencillo del ítem

dc.contributor.authorCastellanos, Luis Marcos
dc.contributor.authorHernandez-Herrera, Hernan
dc.contributor.authorSilva-Ortega, Jorge I.
dc.contributor.authorMartínez Diaz, Vicente Leonel
dc.contributor.authorGarcía Sanchez, Zaid
dc.date.accessioned2019-10-04T19:26:07Z
dc.date.available2019-10-04T19:26:07Z
dc.date.issued2019
dc.identifier.issn21464553
dc.identifier.urihttps://hdl.handle.net/20.500.12442/4076
dc.description.abstractCompressed air (CA) is one of the most common systems used in industry. In countries such as Australia, Italia, France, China and USA, energy consumption of CA systems (CASs) contributes about to 10% of the total electricity consumption in industry. In Colombia, this value reaches 8%, highlighting the textile industry, with a 24% of consumption. Despite of all its advantages, CA is expensive, between 10 and 30% of consumed energy reaches the end-use point. Improvements to CASs can achieve between 20 and 60% of energy savings, with pay-back periods lower than two years. These are the reasons that they can be considered as one of the main targetsystems while planning energy efficiency actions in industry. Colombia through different strategies has proposed to implement a group of measures to improve energy efficiency and reduce electricity consumption to 2021 around 7%. Implementation of good practices in CASs is one of them. This paper is showed the share cost, electricity consumption and the savings potential of the CASs in the different divisions of the Colombian manufacturing sector, the main sectors to be involved as well as the potential savings and reduction of dioxide carbon emissions.eng
dc.language.isoengeng
dc.publisherEconJournalseng
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceInternational Journal of Energy Economics and Policyeng
dc.sourceVol. 9, No. 6 (2019)spa
dc.source.urihttp://www.econjournals.com/index.php/ijeep/article/view/8084/4634eng
dc.subjectCompressed Air Systemseng
dc.subjectElectricity Consumptioneng
dc.subjectEnergy Efficiencyeng
dc.titlePotential energy savings and CO2 emissions reduction in Colombia compressed air systemseng
dc.typearticleeng
dcterms.referencesAbdelaziz, E.A., Saidur, R., Mekhilef, S. (2011), A review on energy saving strategies in industrial sector. Renewable and Sustainable Energy Reviews, 15, 150-168.eng
dcterms.referencesAnnegret, C., Radgen, P. (2003), Efficient Compressed Air a Successful Campaign for Energy Efficient Compressed Air Systems in Germany, ECEEE 2003 Summer study Proceedings; 2-7, Saint-Raphaël, France: ECEEE.eng
dcterms.referencesÁrea Metropolitana del Valle de Aburra (AMVA). (2016). Protocolo como mecanismo de implementación del plan operacional para enfrentar episodios críticos de contaminación atmosférica- POECA. Available from: http://ieu.unal.edu.co/images/Acuerdo_N15POECA.pdf. [Last accessed on 2019 Feb 12].spa
dcterms.referencesÁrea Metropolitana del Valle de Aburra (AMVA). (2018). Protocolo como mecanismo de implementación del plan operacional para enfrentar episodios críticos de contaminación atmosférica- POECA. Available from: http://ieu.unal.edu.co/images/Acuerdo_N15POECA.pdf. [Last accessed on 2019 Mar 4].spa
dcterms.referencesBenedetti, M., Bertini, I., Bonfà, F., Ferrari, S., Introna, V., Santino, D., Ubertini, S. (2017), Assessing and improving compressed air systems’ energy efficiency in production and use: Findings from an explorative study in large and energy-intensive industrial firms. Energy Procedia, 105, 3112-3117.eng
dcterms.referencesBenedetti, M., Bonfà, F., Bertini, I., Introna, V., Ubertini, S. (2017a), Explorative study on compressed air systems’ energy efficiency in production and use: First steps towards the creation of a benchmarking system for large and energy-intensive industrial firms. Applied Energy, 227, 436-448.eng
dcterms.referencesBerruezo, J.A., Jiménez, J.D. (2017), Situación del Convenio Marco de Naciones Unidas sobre el Cambio Climático. Resumen de las Cumbres de París, COP21 y de Marrakech, COP22. Revista de Salud Ambiental, 17(1), 34-39.spa
dcterms.referencesBonfà, F., Salvatori, S., Benedetti, M., Introna, V., Ubertini, S. (2017), Monitoring compressed air systems energy performance in industrial production: lesson learned from an explorative study in large and energy-intensive industrial firms. Energy Procedia, 143, 396-403.eng
dcterms.referencesBP Energy Economics. (2018), BP Energy Outlook. Available from: https://www.bp.com/content/dam/bp/en/corporate/pdf/ energyeconomics/energy-outlook/bp-energy-outlook-2018.pdf. [Last accessed on 2019 Jan 28].eng
dcterms.referencesChikunov, S.O., Gutsunuk, O.N., Ivleva, M.I., Elyakova, I.D., Nikolaeva, I.V., Maramygin, M.S. (2018), Improving the economic performance of Russia’s energy system based on the development of alternative energy sources. International Journal of Energy Economics and Policy, 8(6), 382-391.eng
dcterms.referencesCorsini, A., De Propris, L., Feudo, S., Stefanato, M. (2015), Assessment of a diagnostic procedure for the monitoring and control of industrial processes. Energy Procedia, 75, 1772-1778.eng
dcterms.referencesDANE, (2018), Clasificación Industrial Internacional Uniforme de Todas Las Actividades Económicas, Revisión 4 adaptada para Colombia CIIU Rev. 4 A.C. Colombia: DANE.spa
dcterms.referencesDesfiandi, A., Singagerda, F.S., Sanusi, A. (2019), Building an energy consumption model and sustainable economic growth in emerging countries. International Journal of Energy Economics and Policy, 9(2), 51-66.eng
dcterms.referencesDindorf, R. (2012), Estimating potential energy savings in compressed air systems”. Procedia Engineering, 39, 204-211.eng
dcterms.referencesDoE, U.S. (1998), Improving Compressed Air System Performance, a Sourcebook for Industry. Prepared for the US Department of Energy, Motor Challenge Program by Lawrence Berkeley National Laboratory (LBNL) and Resource Dynamics Corporation (RDC). Vienna, VA: RDC.eng
dcterms.referencesEcheverri, J., Hincapié, J.A. (2012), Evolución de la concentración y especialización industrial en Colombia, 1975-2005. Ensayos de Economía, 22(40), 81-102.spa
dcterms.referencesEuropean Commission. (2009), Reference Document on Best Available Techniques for Energy Efficiency. Available from: http://www. eippcb.jrc.ec.europa.eu. [Last accessed on 2019 Feb 22].eng
dcterms.referencesFaizah, S.I., Husaeni, U.A. (2018), Development of consumption and supplying energy in Indonesia’s economy. International Journal of Energy Economics and Policy, 8(6), 313-321.eng
dcterms.referencesFleiter, T., Hirzel, S., Worrell, E. (2012), The characteristics of energyefficiency measures a neglected dimension. Energy Policy, 51, 502-513.eng
dcterms.referencesIEA. (2017), International Energy Outlook. Available from: https:// www.eia.gov/outlooks/ieo/pdf/0484(2017).pdf. [Last accessed on 2019 Mar 14].eng
dcterms.referencesIEA. (2018), Energy Efficiency, Analysis and outlooks to 2040. Available from: https://www.webstore.iea.org/market-report-series-energyefficiency- 2018-chinese-abridged. [Last accessed on 2019 Jan 29].eng
dcterms.referencesJaramillo, A.C. (2019), Estimación Fracción Inhalada de Contaminantes Primarios del aire en la Ciudad de Medellín (Master’s Thesis, Escuela de Ingenierías), Medellin, Colombia.spa
dcterms.referencesKaya, D., Phelan, P., Chau, D., Ibrahim, H. (2002), Energy conservation in compressed-air systems. International Journal of Energy Research, 26(9), 837-849.eng
dcterms.referencesLotero, J., Posada, H.M., Valderrama, D. (2009), La competitividad de los departamentos colombianos desde la perspectiva de la geografía económica. Lecturas de Economía, (71), 107-139.spa
dcterms.referencesMousavi, S., Kara, S., Kornfeld, B. (2014), Energy Efficiency of Compressed Air Systems, 21st CIRP Conference on Life Cycle Engineering. Vol. 15. Sydney: Procedia CIRP. p313-318.eng
dcterms.referencesNehler, T. (2018a), Linking energy efficiency measures in industrial compressed air systems with non-energy benefits a review.” Renewable and Sustainable Energy Reviews, 89, 72-87.eng
dcterms.referencesNehler, T., Parra, R., Thollander, P. (2018a), Implementation of energy efficiency measures in compressed air systems: Barriers, drivers and non-energy benefits. Energy Efficiency, 11(5), 1281-1302.eng
dcterms.referencesOcampo, N., Garcia, J., Ghazoul, J., Etter, A. (2018), Quantifying impacts of oil palm expansion on Colombia’s threatened biodiversity. Biological Conservation, 224, 117-121.eng
dcterms.referencesRadgen, P. (2005), Greenhous gas emissions reduction by motor systems the case of compressed air systems in power generation and industry. Greenhouse Gas Control Technologies, 7, 1421-1426.eng
dcterms.referencesRadgen, P., Blaustein, E. (2001), Compressed air Systems in the European Union: Energy, Emissions, Savings Potential and Policy Actions. Stuttgart, Germany: LOG_X Verlag GmbH.eng
dcterms.referencesRoa, S., Castellanos, A. (2018), Propuesta de un Sistema Solar Fotovoltaico en el Centro Experimental de la Universidad Distrital “El Tíbar”. Bogotá. Colombia: Trabajo de Grado. Universidad Distrital Francisco José de Caldas.spa
dcterms.referencesSaidur, R., Rahim, N.A., Hasanuzzaman, M. (2010), A review on compressed-air energy use and energy saving. Renewable and Sustainable Energy Reviews, 14, 1135-1153.eng
dcterms.referencesŠešlija, D., Ignjatović, I., Dudić, S., Lagod, B. (2011), Potential energy savings in compressed air systems in Serbia. African Journal of Business Management, 5(14), 5637-5645.eng
dcterms.referencesSlobodan, D., Ignjatovic, I., Šešlija, D., Blagojevic, V., Miodrag, S. (2012), Leakage quantification of compressed air using ultrasound and infrared thermography. Measurement, 45, 1689-1694.eng
dcterms.referencesTrianni, A., Cagno, E., Farné, S. (2016), Barriers, drivers and decisionmaking process for industrial energy efficiency: A broad study among manufacturing small and medium-sized enterprises. Applied Energy, 162, 1537-1551.eng
dcterms.referencesUnited Nations. (2018), International Standard Industrial Classification off all Economics Activities (ISIC) Revision 4, ISBN: 978-92-1- 161518-0, United Nations, New York: ISIC.eng
dcterms.referencesUPME CORPOEMA. (2014a), Determinación y Priorización de Alternativas de Eficiencia Energética Para los Subsectores Manufactureros Informe Final Códigos CIIU 19 a 31. Vol. 1. Colombia: UPME CORPOEMA. Available from: http://www. upme.gov.co/Estudios/2014/Informe_Final_Volumen_1.pdf. [Last accessed on 2019 Mar 08].spa
dcterms.referencesUPME CORPOEMA. (2014b), Determinación y Priorización de Alternativas de Eficiencia Energética para los Subsectores Manufactureros Informe Final Códigos CIIU 19 a 31. Vol. 2. Colombia: UPME CORPOEMA. Available from: http://www1. upme.gov.co/DemandaEnergetica/DeterminacionEficiencia/ Informe_Final_Volumen_2.pdf. [Last accessed on 2019 Mar 08]spa
dcterms.referencesUPME INCOMBUSTION. (2013). Determinación del Potencial de Reducción del Consumo Energético en los Subsectores Manufactureros Códigos CIIU 10 a 18 en Colombia. Available from: http://www1. upme.gov.co/DemandaEnergetica/INFORME_III_Caracterizacion_ energetica_VerPub.pdf. [Last accessed on 2019 Mar 06].spa
dcterms.referencesUPME. (2016), Plan de Acción Indicativo de Eficiencia Energética 2017-2022, una Realidad y Oportunidad Para Colombia (PAI Proure 2017-2022). Available from: http://www1. upme.gov.co/DemandaEnergetica/MarcoNormatividad/PAI_ PROURE_2017-2022.pdf. [Last accessed on 2018 Jan 29].spa
dcterms.referencesUPME. (2018), Balance Energético Colombiano. BECO. Available from: http://www1.upme.gov.co/InformacionCifras/Paginas/ BalanceEnergetico.aspx. [Last accessed on 2019 Feb 14].spa
dcterms.referencesVittorini, D., Roberto, C. (2016), Energy saving potential in existing industrial compressors. Energy, 102, 502-515.eng
dcterms.referencesYang, M. (2009), Air compressor efficiency in a Vietnamese enterprise. Energy Policy, 37(6), 2327-2337.eng
dcterms.referencesYépez, A., Hallack, M., Ji, Yi., López, D. (2018), The Energy Path of Latin America and Caribbean. Caribbean: IDB Monograph. p683.eng
dcterms.referencesZahlan, J., Asfour, S. (2015), A multi-objective approach for determining optimal air compressor location in a manufacturing facility. Journal of Manufacturing Systems, 35, 176-190.eng
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Artículos
    Artículos científicos evaluados por pares

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional