Mostrar el registro sencillo del ítem

dc.contributor.authorMoreno, Silvia
dc.contributor.authorBonfante, Mario
dc.contributor.authorZurek, Eduardo
dc.contributor.authorSan Juan, Homero
dc.description.abstractLung cancer is the leading cause of death from cancer worldwide. Medical images are essential in the diagnosis and prognosis of lung cancer. Medical image processing techniques such as Radiomics allow extracting information from these images that it is not accessible without computational means, and may be useful in the detection and treatment of cancer. This article presents the state of the art of image processing techniques applied in the study of lung cancer, emphasizing in two main tasks: segmentation of nodules or tumors, and extraction of useful features for classification and prognosis of tumor evolution using Radiomics.eng
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.sourceIEEE Xplore Digital Libraryeng
dc.source2019 14th Iberian Conference on Information Systems and Technologies (CISTI)eng
dc.subjectLung Cancereng
dc.subjectMedical Image Processingeng
dc.titleStudy of Medical Image Processing techniques applied to Lung Cancereng
dcterms.referencesCancer Research UK, “Worldwide cancer statistics.” [Online]. Available: worldwide-cancer. [Accessed: 17-Nov-2017].eng
dcterms.referencesP. Lambin, E. Rios-Velazquez, R. Leijenaar, S. Carvalho, R. G. P. M. Van Stiphout, P. Granton, C. M. L. Zegers, R. Gillies, R. Boellard, A. Dekker, and H. J. W. L. Aerts, “Radiomics: Extracting more information from medical images using advanced feature analysis,” Eur. J. Cancer, vol. 48, no. 4, pp. 441–446, 2012.eng
dcterms.referencesG. Niranjana, “A Review on Image Processing Methods in Detecting Lung Cancer Using CT Images - IEEE Conference Publication,” 2017.eng
dcterms.referencesG. Lee, H. Y. Lee, H. Park, M. L. Schiebler, E. J. R. van Beek, Y. Ohno, J. B. Seo, and A. Leung, “Radiomics and its emerging role in lung cancer research, imaging biomarkers and clinical management: State of the art,” Eur. J. Radiol., vol. 86, pp. 297–307, 2017.eng
dcterms.referencesA. Kulkarni and A. Panditrao, “Classification of lung cancer stages on CT scan images using image processing,” 2014 IEEE Int. Conf. Adv. Commun. Control Comput. Technol., no. 978, pp. 1384–1388, 2014.eng
dcterms.referencesY. Gu, V. Kumar, L. O. Hall, D. B. Goldgof, C. Y. Li, R. Korn, C. Bendtsen, E. R. Velazquez, A. Dekker, H. Aerts, P. Lambin, X. Li, J. Tian, R. A. Gatenby, and R. J. Gillies, “Automated delineation of lung tumors from CT images using a single click ensemble segmentation approach,” Pattern Recognit., vol. 46, no. 3, pp. 692–702, 2013.eng
dcterms.referencesB. C. Lassen, C. Jacobs, J. M. Kuhnigk, B. Van Ginneken, and E. M. Van Rikxoort, “Robust semi-automatic segmentation of pulmonary subsolid nodules in chest computed tomography scans,” Phys. Med. Biol., vol. 60, no. 3, pp. 1307–1323, 2015.eng
dcterms.referencesY. Zheng, K. Steiner, T. Bauer, J. Yu, D. Shen, and C. Kambhamettu, “Lung nodule growth analysis from 3D CT data with a coupled segmentation and registration framework,” Proc. IEEE Int. Conf. Comput. Vis., pp. 0–7, 2007.eng
dcterms.referencesY. Gao, Z. Shen, Y. Zhang, and W. Chen, “Tumor Segmentation for Lung 4D-CT Data Using Graph Cuts with Inter-Phase Shape Prior,” vol. 6, no. 3, pp. 634–639, 2016.eng
dcterms.referencesW. Ju, D. Xiang, B. Zhang, L. Wang, I. Kopriva, and X. Chen, “Random Walk and Graph Cut for Co-Segmentation of Lung Tumor on PET-CT Images,” IEEE Trans. Image Process., vol. 24, no. 12, pp. 5854–5867, 2015.eng
dcterms.referencesS. Mukherjee, X. Huang, and R. R. Bhagalia, “Lung nodule segmentation using deep learned prior based graph cut,” in 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017), 2017, pp. 1205–1208.eng
dcterms.referencesW. Sun, X. Huang, T.-L. B. Tseng, and W. Qian, “Automatic lung nodule graph cuts segmentation with deep learning false positive reduction,” SPIE Med. Imaging, vol. 10134, p. 101343M, 2017.eng
dcterms.referencesM. Kass, A. Witkin, and D. Terzopoulos, “Snakes: Active contour models,” International Journal of Computer Vision, vol. 1, no. 4. pp. 321–331, 1988.eng
dcterms.referencesM. Keshani, Z. Azimifar, F. Tajeripour, and R. Boostani, “Lung nodule segmentation and recognition using SVM classifier and active contour modeling: A complete intelligent system,” Comput. Biol. Med., vol. 43, no. 4, pp. 287–300, 2013.eng
dcterms.referencesI. C. Plajer and D. Richter, “A new approach to model based active contours in lung tumor segmentation in 3D CT image data,” Proc. 10th IEEE Int. Conf. Inf. Technol. Appl. Biomed., pp. 1–4, 2010.eng
dcterms.referencesZ. Nadealian, B. Nazari, S. Sadri, and M. Momeni, “Detection of pulmonary nodules in low-dose computed tomography using localized active contours and shape features,” J. Med. Signals Sens., vol. 7, no. 4, pp. 203–212, 2017.eng
dcterms.referencesS. J. Osher, “Fronts Propagating with Curvature Dependent Speed,” Comput. Phys., vol. 79, no. 1, pp. 1–5, 1988.eng
dcterms.referencesK. Krishnan, L. Ibanez, W. D. Turner, J. Jomier, and R. S. Avila, “An open-source toolkit for the volumetric measurement of CT lung lesions.,” Opt. Express, vol. 18, no. 14, pp. 15256–15266, 2010.eng
dcterms.referencesH. Zhu, C. H. Pak, C. Song, S. Dou, H. Zhao, P. Cao, and X. Ye, “A novel lung cancer detection algorithm for CADs based on SSP and Level Set,” Technol. Heal. Care, vol. 25, no. S1, pp. S345–S355, 2017.eng
dcterms.referencesW. Zhang, X. Zhang, J. Zhao, Y. Qiang, Q. Tian, and X. Tang, “A segmentation method for lung nodule image sequences based on superpixels and density-based spatial clustering of applications with noise,” pp. 1–25, 2017.eng
dcterms.referencesS. Hamidian, B. Sahiner, N. Petrick, and A. Pezeshk, “3D convolutional neural network for automatic detection of lung nodules in chest CT,” vol. 10134, p. 1013409, 2017.eng
dcterms.referencesS. Wang, M. Zhou, Z. Liu, Z. Liu, D. Gu, Y. Zang, D. Dong, O. Gevaert, and J. Tian, “Central focused convolutional neural networks: Developing a data-driven model for lung nodule segmentation,” Med. Image Anal., vol. 40, pp. 172–183, 2017.eng
dcterms.referencesH. Jiang, H. Ma, W. Qian, M. Gao, and Y. Li, “An Automatic Detection System of Lung Nodule Based on Multi-Group Patch-Based Deep Learning Network,” IEEE J. Biomed. Heal. Informatics, vol. 2194, no. c, 2017.eng
dcterms.referencesM. Scrivener, E. E. C. de Jong, J. E. van Timmeren, T. Pieters, B. Ghaye, and X. Geets, “Radiomics applied to lung cancer: a review,” Transl. Cancer Res., vol. 5, no. 4, pp. 398–409, 2016.eng
dcterms.referencesF. C. Detterbeck and C. J. Gibson, “Turning Gray: The Natural History of Lung Cancer Over Time,” J. Thorac. Oncol., vol. 3, no. 7, pp. 781– 792, 2008.eng
dcterms.referencesB. de Hoop, H. Gietema, S. van de Vorst, K. Murphy, R. J. van Klaveren, and M. Prokop, “Pulmonary Ground-Glass Nodules: Increase in Mass as an Early Indicator of Growth,” Radiology, vol. 255, no. 1, pp. 199–206, Mar. 2010.eng
dcterms.referencesA. Kamiya, S. Murayama, H. Kamiya, T. Yamashiro, Y. Oshiro, and N. Tanaka, “Kurtosis and skewness assessments of solid lung nodule density histograms: Differentiating malignant from benign nodules on CT,” Jpn. J. Radiol., vol. 32, no. 1, pp. 14–21, 2014.eng
dcterms.referencesY. Chong, J. H. Kim, H. Y. Lee, Y. C. Ahn, K. S. Lee, M. J. Ahn, J. Kim, Y. M. Shim, J. Han, and Y. La Choi, “Quantitative CT variables enabling response prediction in neoadjuvant therapy with EGFR-TKIs: Are they different from those in neoadjuvant concurrent chemoradiotherapy?,” PLoS One, vol. 9, no. 2, pp. 1–8, 2014.eng
dcterms.referencesT. Pyka, R. A. Bundschuh, N. Andratschke, B. Mayer, H. M. Specht, L. Papp, N. Zsótér, and M. Essler, “Textural features in pre-treatment [F18]-FDG-PET/CT are correlated with risk of local recurrence and disease-specific survival in early stage NSCLC patients receiving primary stereotactic radiation therapy,” Radiat. Oncol., vol. 10, no. 1, p. 100, 2015.eng
dcterms.referencesT. Win, K. A. Miles, S. M. Janes, B. Ganeshan, M. Shastry, R. Endozo, M. Meagher, R. I. Shortman, S. Wan, I. Kayani, P. J. Ell, and A. M. Groves, “Tumor heterogeneity and permeability as measured on the CT component of PET/CT predict survival in patients with non-small cell lung cancer,” Clin. Cancer Res., vol. 19, no. 13, pp. 3591–3599, 2013.eng
dcterms.referencesM. Saad and T.-S. Choi, “Deciphering unclassified tumors of non-smallcell lung cancer through radiomics,” Comput. Biol. Med., vol. 91, pp. 222–230, 2017.eng
dcterms.referencesJ. Ma, Q. Wang, Y. Ren, H. Hu, and J. Zhao, “Automatic lung nodule classification with radiomics approach,” vol. 9789, p. 978906, 2016.eng
dcterms.referencesY. Huang, Z. Liu, L. He, X. Chen, D. Pan, Z. Ma, C. Liang, J. Tian, and C. Liang, “Radiomics Signature: A Potential Biomarker for the Prediction of Disease-Free Survival in Early-Stage (I or II) Non—Small Cell Lung Cancer,” Radiology, vol. 281, no. 3, pp. 947–957, Jun. 2016.eng
dcterms.referencesW. Wu, C. Parmar, P. Grossmann, J. Quackenbush, P. Lambin, J. Bussink, R. Mak, and H. J. W. L. Aerts, “Exploratory Study to Identify Radiomics Classifiers for Lung Cancer Histology,” Front. Oncol., vol. 6, no. March, pp. 1–11, 2016.eng
dcterms.referencesN. Emaminejad, S. Yan, Y. Wang, W. Qian, Y. Guan, and B. Zheng, “Applying a radiomics approach to predict prognosis of lung cancer patients,” Prog. Biomed. Opt. Imaging - Proc. SPIE, vol. 9785, pp. 1–7, 2016.eng

Ficheros en el ítem


No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Artículos
    Artículos científicos evaluados por pares

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional