A computational strategy for the identification of pulmonary squamous cell carcinoma in computerized tomography images

Ver/
Fecha
2019
2019
Autor
Huerfano, Y.
Vera, M.
Gelvez, E.
Salazar, J.
Del Mar, A.
Valbuena, O.
Molina, V.
Metadatos
Mostrar el registro completo del ítem
Mostrar el registro completo del ítem
Resumen
The objective of the work is to propose a computational strategy to identify lung squamous cell carcinoma in three-dimensional databases (3D) of multislice computerized tomography. This strategy consists of the pre-processing, segmentation, and post-processing stages. During pre-processing, an anisotropic, gradient-based diffusion algorithm and a filter bank are used to address artifact and image noise issues. During segmentation, the technique called region growing is applied to pre-processed images. Finally, in the post-processing, a morphological dilation filter is used to process the segmented images. In order to make value judgments about the performance of the proposed strategy, the relative percentage error is used to compare the dilated segmentations of the squamous cell carcinoma with the segmentations of the squamous cell carcinoma generated, manually, by a pulmonologist. The combination of parameters linked to the highest PrE, allows establishing the optimal parameters of each of the algorithms that make up the proposed strategy.
Enlace para referencia:
http://hdl.handle.net/20.500.12442/2737
http://hdl.handle.net/20.500.12442/2737
Enlace al recurso externo:
doi:10.1088/1742-6596/1160/1/012004
doi:10.1088/1742-6596/1160/1/012004