Mostrar el registro sencillo del ítem

dc.rights.licenseLicencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacionalspa
dc.contributor.authorArcos-Burgos, Mauricio
dc.contributor.authorVélez, Jorge I.
dc.contributor.authorMartinez, Ariel F.
dc.contributor.authorRibasés, Marta
dc.contributor.authorRamos-Quiroga, Josep A.
dc.contributor.authorSánchez-Mora, Cristina
dc.contributor.authorRicharte, Vanesa
dc.contributor.authorRoncero, Carlos
dc.contributor.authorCormand, Bru
dc.contributor.authorFernández-Castillo, Noelia
dc.contributor.authorCasas, Miguel
dc.contributor.authorLopera, Francisco
dc.contributor.authorPineda, David A.
dc.contributor.authorPalacio, Juan D.
dc.contributor.authorAcosta-López, Johan E.
dc.contributor.authorCervantes-Henriquez, Martha L.
dc.contributor.authorSánchez-Rojas, Manuel G.
dc.contributor.authorPuentes-Rozo, Pedro J.
dc.contributor.authorMolina, Brooke S. G.
dc.contributor.authorMTA Cooperative Group
dc.contributor.authorBoden, Margaret T.
dc.contributor.authorWallis, Deeann
dc.contributor.authorLidbury, Brett
dc.contributor.authorNewman, Saul
dc.contributor.authorEasteal, Simon
dc.contributor.authorSwanson, James
dc.contributor.authorPatel, Hardip
dc.contributor.authorVolkow, Nora
dc.contributor.authorAcosta, Maria T.
dc.contributor.authorCastellanos, Francisco X.
dc.contributor.authorde Leon, Jose
dc.contributor.authorMastronardi, Claudio A.
dc.contributor.authorMuenke, Maximilian
dc.date.accessioned2019-02-04T21:20:25Z
dc.date.available2019-02-04T21:20:25Z
dc.date.issued2019-01
dc.identifier.issn21583188
dc.identifier.urihttp://hdl.handle.net/20.500.12442/2555
dc.description.abstractGenetic factors are strongly implicated in the susceptibility to develop externalizing syndromes such as attentiondeficit/ hyperactivity disorder (ADHD), oppositional defiant disorder, conduct disorder, and substance use disorder (SUD). Variants in the ADGRL3 (LPHN3) gene predispose to ADHD and predict ADHD severity, disruptive behaviors comorbidity, long-term outcome, and response to treatment. In this study, we investigated whether variants within ADGRL3 are associated with SUD, a disorder that is frequently co-morbid with ADHD. Using family-based, case-control, and longitudinal samples from disparate regions of the world (n = 2698), recruited either for clinical, genetic epidemiological or pharmacogenomic studies of ADHD, we assembled recursive-partitioning frameworks (classification tree analyses) with clinical, demographic, and ADGRL3 genetic information to predict SUD susceptibility. Our results indicate that SUD can be efficiently and robustly predicted in ADHD participants. The genetic models used remained highly efficient in predicting SUD in a large sample of individuals with severe SUD from a psychiatric institution that were not ascertained on the basis of ADHD diagnosis, thus identifying ADGRL3 as a risk gene for SUD. Recursive-partitioning analyses revealed that rs4860437 was the predominant predictive variant. This new methodological approach offers novel insights into higher order predictive interactions and offers a unique opportunity for translational application in the clinical assessment of patients at high risk for SUD.eng
dc.language.isoengeng
dc.publisherNature Researcheng
dc.sourceTranslational Psychiatryeng
dc.source.urihttps://www.nature.com/articles/s41398-019-0396-7eng
dc.subjectAttention-deficit hyperactivity disorder (ADHD)eng
dc.subjectConduct disordereng
dc.subjectBrain damageeng
dc.titleADGRL3 (LPHN3) variants predict substance use disordereng
dc.typearticleeng
dcterms.referencesWhiteford, H. A., Ferrari, A. J., Degenhardt, L., Feigin, V. & Vos, T. The global burden of mental, neurological and substance use disorders: an analysis from the Global Burden of Disease Study 2010. PLoS ONE 10, e0116820 (2015).eng
dcterms.referencesHeslin K. C., Elixhauser A., Steiner C. A. Hospitalizations Involving Mental and Substance Use Disorders Among Adults, 2012: Statistical Brief #191 Healthcare Cost and Utilization Project (HCUP) Statistical Briefs. (Agency for Healthcare Research and Quality, Rockville, MD, 2010).eng
dcterms.referencesProm-Wormley, E. C., Ebejer, J., Dick, D. M. & Bowers, M. S. The genetic epidemiology of substance use disorder: a review. Drug Alcohol. Depend. 180, 241–259 (2017).eng
dcterms.referencesCenters for Disease C, Prevention. Increasing prevalence of parent-reported attention-deficit/hyperactivity disorder among children—United States, 2003 and 2007. Mmwr. Morb. Mortal. Wkly. Rep. 59, 1439–1443 (2010).eng
dcterms.referencesVisser, S. N. et al. Trends in the parent-report of health care provider-diagnosed and medicated attention-deficit/hyperactivity disorder: United States, 2003–2011. J. Am. Acad. Child Adolesc. Psychiatry 53, 34–46 e2 (2014).eng
dcterms.referencesPalacio, J. D. et al. Attention-deficit/hyperactivity disorder and comorbidities in 18 Paisa Colombian multigenerational families. J. Am. Acad. Child Adolesc. Psychiatry 43, 1506–1515 (2004).eng
dcterms.referencesSibley, M. H. et al. The delinquency outcomes of boys with ADHD with and without comorbidity. J. Abnorm. Child Psychol. 39, 21–32 (2011).eng
dcterms.referencesJain, M. et al. Attention-deficit/hyperactivity disorder and comorbid disruptive behavior disorders: evidence of pleiotropy and new susceptibility loci. Biol. Psychiatry 61, 1329–1339 (2007).eng
dcterms.referencesKuperman, S. et al. Developmental sequence from disruptive behavior diagnosis to adolescent alcohol dependence. Am. J. Psychiatry 158, 2022–2026 (2001).eng
dcterms.referencesMolina, B. S. et al. Adolescent substance use in the multimodal treatment study of attention-deficit/hyperactivity disorder (ADHD) (MTA) as a function of childhood ADHD, random assignment to childhood treatments, and subsequent medication. J. Am. Acad. Child Adolesc. Psychiatry 52, 250–263 (2013).eng
dcterms.referencesMolina, B. S. G. & Pelham, W. E. Childhood predictors of adolescent substance use in a longitudinal study of children with ADHD. J. Abnorm. Psychol. 112, 497–507 (2003).eng
dcterms.referencesBiederman, J. et al. Psychoactive substance use disorders in adults with attention-deficit hyperactivity Disorder (ADHD)—effects of ADHD and psychiatric comorbidity. Am. J. Psychiatry 152, 1652–1658 (1995).eng
dcterms.referencesNogueira, M. et al. Early-age clinical and developmental features associated to substance use disorders in attention-deficit/hyperactivity disorder in adults. Compr. Psychiatry 55, 639–649 (2014).eng
dcterms.referencesDeMilio, L. Psychiatric syndromes in adolescent substance abusers. Am. J. Psychiatry 146, 1212–1214 (1989).eng
dcterms.referencesHorner, B. R. & Scheibe, K. E. Prevalence and implications of attention-deficit hyperactivity disorder among adolescents in treatment for substance abuse. J. Am. Acad. Child Adolesc. Psychiatry 36, 30–36 (1997).eng
dcterms.referencesErcan, E. S., Coskunol, H., Varan, A. & Toksoz, K. Childhood attention deficit/ hyperactivity disorder and alcohol dependence: a 1-year follow-up. Alcohol. Alcohol. 38, 352–356 (2003).eng
dcterms.referencesWhite, A. M. et al. Predictors of relapse during treatment and treatment completion among marijuana-dependent adolescents in an intensive outpatient substance abuse program. Subst. Abus. 25, 53–59 (2004).eng
dcterms.referencesArcos-Burgos, M., Velez, J. I., Solomon, B. D. & Muenke, M. A common genetic network underlies substance use disorders and disruptive or externalizing disorders. Hum. Genet. 131, 917–929 (2012).eng
dcterms.referencesGorwood, P. et al. Genetics of dopamine receptors and drug addiction. Hum. Genet. 131, 803–822 (2012).eng
dcterms.referencesHart, A. B. et al. Genome-wide association study of d-amphetamine response in healthy volunteers identifies putative associations, including cadherin 13 (CDH13). PLoS ONE 7, e42646 (2012).eng
dcterms.referencesLi, M. D. & Burmeister, M. New insights into the genetics of addiction. Nat. Rev. Genet. 10, 225–231 (2009).eng
dcterms.referencesAcosta, M. T. et al. Latent class subtyping of attention-deficit/hyperactivity disorder and comorbid conditions. J. Am. Acad. Child Adolesc. Psychiatry 47, 797–807 (2008).eng
dcterms.referencesArcos-Burgos, M. et al. Attention-deficit/hyperactivity disorder (ADHD): feasibility of linkage analysis in a genetic isolate using extended and multigenerational pedigrees. Clin. Genet. 61, 335–343 (2002).eng
dcterms.referencesAcosta, M. T. et al. A two-locus genetic interaction between LPHN3 and 11q predicts ADHD severity and long-term outcome. Transl. Psychiatry 1, e17 (2011).eng
dcterms.referencesArcos-Burgos, M. et al. Attention-deficit/hyperactivity disorder in a population isolate: linkage to loci at 4q13.2, 5q33.3, 11q22, and 17p11. Am. J. Hum. Genet. 75, 998–1014 (2004).eng
dcterms.referencesAcosta, M. T. et al. ADGRL3 (LPHN3) variants are associated with a refined phenotype of ADHD in the MTA study. Mol. Genet. Genom. Med. 4, 540–547 (2016).eng
dcterms.referencesBruxel, E. M. et al. LPHN3 and attention-deficit/hyperactivity disorder: a susceptibility and pharmacogenetic study. Genes. Brain. Behav. 14, 419–427 (2015).eng
dcterms.referencesHwang, I. W., Lim, M. H., Kwon, H. J. & Jin, H. J. Association of LPHN3rs6551665 A/G polymorphism with attention deficit and hyperactivity disorder in Korean children. Gene 566, 68–73 (2015).eng
dcterms.referencesJain, M. et al. A cooperative interaction between LPHN3 and 11q doubles the risk for ADHD. Mol. Psychiatry 17, 741–747 (2012).eng
dcterms.referencesArcos-Burgos, M. et al. A common variant of the latrophilin 3 gene, LPHN3, confers susceptibility to ADHD and predicts effectiveness of stimulant medication. Mol. Psychiatry 15, 1053–1066 (2010).eng
dcterms.referencesLabbe, A. et al. Refining psychiatric phenotypes for response to treatment: contribution of LPHN3 in ADHD. Am. J. Med. Genet. B. Neuropsychiatr. Genet. 159B, 776–785 (2012).eng
dcterms.referencesRibases, M. et al. Contribution of LPHN3 to the genetic susceptibility to ADHD in adulthood: a replication study. Genes. Brain. Behav. 10, 149–157 (2011).eng
dcterms.referencesSong, J. et al. Association of SNAP-25, SLC6A2, and LPHN3 with OROS methylphenidate treatment response in attention-deficit/hyperactivity disorder. Clin. Neuropharmacol. 37, 136–141 (2014).eng
dcterms.referencesGomez-Sanchez, C. I. et al. Attention deficit hyperactivity disorder: genetic association study in a cohort of Spanish children. Behav. Brain. Funct. 12, 2 (2016).eng
dcterms.referencesGomez-Sanchez, C. I. et al. Attention deficit hyperactivity disorder: genetic association study in a cohort of Spanish children. Behav. Brain. Funct. 12, 2 (2016).eng
dcterms.referencesRamos-Quiroga, J. A. et al. Criterion and concurrent validity of Conners Adult ADHD Diagnostic Interview for DSM-IV (CAADID) Spanish version. Rev. Psiquiatr Salud Ment. 5, 229–235 (2012).eng
dcterms.referencesGroup, T. M. C. A 14-month randomized clinical trial of treatment strategies for attention-deficit/hyperactivity disorder. The MTA Cooperative Group. Multimodal treatment study of children with ADHD. Arch. Gen. Psychiatry 56, 1073–1086 (1999).eng
dcterms.referencesJensen, P. S. et al. 3-year follow-up of the NIMH MTA study. J. Am. Acad. Child Adolesc. Psychiatry 46, 989–1002 (2007).eng
dcterms.referencesMolina, B. S. et al. The MTA at 8 years: prospective follow-up of children treated for combined-type ADHD in a multisite study. J. Am. Acad. Child Adolesc. Psychiatry 48, 484–500 (2009).eng
dcterms.referencesHechtman, L. et al. Functional adult outcomes 16 years after childhood diagnosis of attention-deficit/hyperactivity disorder: MTA results. J. Am. Acad. Child Adolesc. Psychiatry 55, 945–52 e2 (2016).eng
dcterms.referencesSwanson, J. M. et al. Young adult outcomes in the follow-up of the multimodal treatment study of attention-deficit/hyperactivity disorder: symptom persistence, source discrepancy, and height suppression. J. Child Psychol. Psychiatry 58, 663–678 (2017).eng
dcterms.referencesRoy, A. et al. Childhood predictors of adult functional outcomes in the multimodal treatment study of attention-deficit/hyperactivity disorder (MTA). J. Am. Acad. Child Adolesc. Psychiatry 56, 687–95 e7 (2017).eng
dcterms.referencesMolina, B. S. et al. Delinquent behavior and emerging substance use in the MTA at 36 months: prevalence, course, and treatment effects. J. Am. Acad. Child Adolesc. Psychiatry 46, 1028–1040 (2007).eng
dcterms.referencesJohnson, C. et al. Pooled association genome scanning for alcohol dependence using 104,268 SNPs: validation and use to identify alcoholism vulnerability loci in unrelated individuals from the collaborative study on the genetics of alcoholism. Am. J. Med. Genet. B. Neuropsychiatr. Genet. 141B, 844–853 (2006).eng
dcterms.referencesUhl GR. Molecular genetics of substance abuse vulnerability: remarkable recent convergence of genome scan results. Ann. N. Y. Acad. Sci. 1025, 1–13 (2004).eng
dcterms.referencesShaffer, D., Fisher, P., Lucas, C. P., Dulcan, M. K. & Schwab-Stone, M. E. NIMH Diagnostic Interview Schedule for Children Version IV (NIMH DISC-IV): description, differences from previous versions, and reliability of some common diagnoses. J. Am. Acad. Child Adolesc. Psychiatry 39, 28–38 (2000).eng
dcterms.referencesRobins L. N., Cottler L., Bucholz K., Compton W. The Diagnostic Interview Schedule for DSM-IV (DIS-IV). (Washington University School of Medicine, St. Louis, MO, 2000).eng
dcterms.referencesde Leon, J., Susce, M. T., Diaz, F. J., Rendon, D. M. & Velasquez, D. M. Variables associated with alcohol, drug, and daily smoking cessation in patients with severe mental illnesses. J. Clin. Psychiatry 66, 1447–1455 (2005).eng
dcterms.referencesDrake, R. E., Mchugo, G. J. & Biesanz, J. C. The test-retest reliability of standardized instruments among homeless persons with substance use disorders. J. Stud. Alcohol. 56, 161–167 (1995).eng
dcterms.referencesDrake, R. E., Rosenberg, S. D. & Mueser, K. T. Assessing substance use disorder in persons with severe mental illness. New Dir. Ment. Health Serv. 1996, 3–17 (1996).eng
dcterms.referencesde Leon, J., Armstrong, S. C. & Cozza, K. L. Clinical guidelines for psychiatrists for the use of pharmacogenetic testing for CYP450 2D6 and CYP450 2C19. Psychosomatics 47, 75–85 (2006).eng
dcterms.referencesArcos-Burgos, M. & Muenke, M. Toward a better understanding of ADHD: LPHN3 gene variants and the susceptibility to develop ADHD. Atten. Defic. Hyperact Disord. 2, 139–147 (2010).eng
dcterms.referencesWong, M. L., Dong, C., Andreev, V., Arcos-Burgos, M. & Licinio, J. Prediction of susceptibility to major depression by a model of interactions of multiple functional genetic variants and environmental factors. Mol. Psychiatry 17, 624–633 (2012).eng
dcterms.referencesRao, D. C. CAT scans, PET scans, and genomic scans. Genet. Epidemiol. 15, 1–18 (1998).eng
dcterms.referencesRyzin, J. V., Breiman, L., Friedman, J. H., Olshen, R. A. & Stone, C. J. Classification and regression trees. J. Am. Stat. Assoc. 81, 253 (1986).eng
dcterms.referencesBreiman L. Random Forests. In Machine Learning, Vol. 45.(ed. Schapire, R. E.) (Kluwer Academic Publishers, The Netherlands, 2001).eng
dcterms.referencesFriedman J. H. Greedy Function Approximation: a Gradient Boosting Machine. (University of Stanford, Stanford, CA, 1999).eng
dcterms.referencesMarjoram, P., Zubair, A. & Nuzhdin, S. V. Post-GWAS: where next? More samples, more SNPs or more biology? Hered. (Edinb.) 112, 79–88 (2014).eng
dcterms.referencesVisscher, P. M., Brown, M. A., McCarthy, M. I. & Yang, J. Five years of GWAS discovery. Am. J. Hum. Genet. 90, 7–24 (2012).eng
dcterms.referencesMelroy-Greif, W. E. et al. Examination of the involvement of cholinergicassociated genes in nicotine behaviors in European and African Americans. Nicotine. Tob. Res. 19, 417–425 (2017).eng
dcterms.referencesPolimanti, R., Yang, C., Zhao, H. & Gelernter, J. Dissecting ancestry genomic background in substance dependence genome-wide association studies. Pharmacogenomics 16, 1487–1498 (2015).eng
dcterms.referencesBi, J., Gelernter, J., Sun, J. & Kranzler, H. R. Comparing the utility of homogeneous subtypes of cocaine use and related behaviors with DSM-IV cocaine dependence as traits for genetic association analysis. Am. J. Med. Genet. B. Neuropsychiatr. Genet. 165B, 148–156 (2014).eng
dcterms.referencesPalmer, R. H. et al. Examining the role of common genetic variants on alcohol, tobacco, cannabis and illicit drug dependence: genetics of vulnerability to drug dependence. Addiction 110, 530–537 (2015).eng
dcterms.referencesNeale, B. M. & Sham, P. C. The future of association studies: gene-based analysis and replication. Am. J. Hum. Genet. 75, 353–362 (2004).eng
dcterms.referencesDemontis, D. et al. Discovery of the first genome-wide significant risk loci for attention deficit/hyperactivity disorder. Nat. Genet. 51, 63–75 (2019).eng
dcterms.referencesStergiakouli, E. et al. Investigating the contribution of common genetic variants to the risk and pathogenesis of ADHD. Am. J. Psychiatry 169, 186–194 (2012).eng
dcterms.referencesPoelmans, G., Pauls, D. L., Buitelaar, J. K. & Franke, B. Integrated genome-wide association study findings: identification of a neurodevelopmental network for attention deficit hyperactivity disorder. Am. J. Psychiatry 168, 365–377 (2011).eng
dcterms.referencesWilliams, N. M. et al. Genome-wide analysis of copy number variants in attention deficit hyperactivity disorder: the role of rare variants and duplications at 15q13.3. Am. J. Psychiatry 169, 195–204 (2012).eng
dcterms.referencesChoudhry, Z. et al. LPHN3 and attention-deficit/hyperactivity disorder: interaction with maternal stress during pregnancy. J. Child Psychol. Psychiatry 53, 892–902 (2012).eng
dcterms.referencesMartinez, A. F., Muenke, M. & Arcos-Burgos, M. From the black widow spider to human behavior: Latrophilins, a relatively unknown class of G protein-coupled receptors, are implicated in psychiatric disorders. Am. J. Med. Genet. B. Neuropsychiatr. Genet. 156B, 1–10 (2011).eng
dcterms.referencesKoob, G. F. & Volkow, N. D. Neurocircuitry of addiction. Neuropsychopharmacology 35, 217–238 (2010).eng
dcterms.referencesLange, M. et al. The ADHD-susceptibility genelphn3.1 modulates dopaminergic neuron formation and locomotor activity during zebrafish development. Mol. Psychiatry 17, 946–954 (2012).eng
dcterms.referencesWallis, D. et al. Initial characterization of mice null for Lphn3, a gene implicated in ADHD and addiction. Brain Res. 1463, 85–92 (2012).eng
dcterms.referencesO'Sullivan, M. L. et al. FLRT proteins are endogenous latrophilin ligands and regulate excitatory synapse development. Neuron 73, 903–910 (2012).eng
dcterms.referencesChassin L., Colder C. R., Hussong A., Sher K. J. Substance Use and Substance Use Disorders. (ed. Cicchetti, D.) Developmental Psychopathology, 2nd edn, Vol. 3. (John Wiley & Sons, Inc., Hoboken, NJ, 2016) pp 833-897.eng
dcterms.referencesBrook, J. S., Balka, E. B., Zhang, C. & Brook, D. W. ADHD, conduct disorder, substance use disorder, and nonprescription stimulant use. J. Atten. Disord. 21, 776–782 (2017).eng
dcterms.referencesMolina, B. S. & Pelham, W. E. Jr. Attention-deficit/hyperactivity disorder and risk of substance use disorder: developmental considerations, potential pathways, and opportunities for research. Annu. Rev. Clin. Psychol. 10, 607–639 (2014).eng
dcterms.referencesZulauf, C. A., Sprich, S. E., Safren, S. A. & Wilens, T. E. The complicated relationship between attention deficit/hyperactivity disorder and substance use disorders. Curr. Psychiatry Rep. 16, 436 (2014).eng
dcterms.referencesWilens, T. E. & Biederman, J. Alcohol, drugs, and attention-deficit/ hyperactivity disorder: a model for the study of addictions in youth. J. Psychopharmacol. 20, 580–588 (2006).eng
dcterms.referencesEstevez-Lamorte, N. et al. Adult attention-deficit/hyperactivity disorder, risky substance use and substance use disorders: a follow-up study among young men. Eur. Arch. Psychiatry Clin. Neurosci. (2018). https://doi.org/10.1007/s00406- 018-0958-3.eng
dcterms.referencesChen, Q. et al. Common psychiatric and metabolic comorbidity of adult attention-deficit/hyperactivity disorder: a population-based cross-sectional study. PLoS ONE 13, e0204516 (2018).eng
dcterms.referencesQuinn, P. D. et al. ADHD medication and substance-related problems. Am. J. Psychiatry 174, 877–885 (2017).eng
dcterms.referencesChang, Z. et al. Stimulant ADHD medication and risk for substance abuse. J. Child Psychol. Psychiatry 55, 878–885 (2014).eng
dcterms.referencesGroenman, A. P. et al. Substance use disorders in adolescents with attention deficit hyperactivity disorder: a 4-year follow-up study. Addiction 108, 1503–1511 (2013).eng
dcterms.referencesFlory, K. & Lynam, D. R. The relation between attention deficit hyperactivity disorder and substance abuse: what role does conduct disorder play? Clin. Child Fam. Psychol. Rev. 6, 1–16 (2003).eng
dcterms.referencesLee, S. S., Humphreys, K. L., Flory, K., Liu, R. & Glass, K. Prospective association of childhood attention-deficit/hyperactivity disorder (ADHD) and substance use and abuse/dependence: a meta-analytic review. Clin. Psychol. Rev. 31, 328–341 (2011).eng
dcterms.referencesValero, S. et al. Personality profile of adult ADHD: the alternative five factor model. Psychiatry Res. 198, 130–134 (2012).eng
dcterms.referencesKhantzian, E. J. The self-medication hypothesis of substance use disorders: a reconsideration and recent applications. Harv. Rev. Psychiatry 4, 231–244 (1997).eng
dcterms.referencesPedersen, S. L., Harty, S. C., Pelham, W. E., Gnagy, E. M. & Molina, B. S. G. Differential associations between alcohol expectancies and adolescent alcohol use as a function of childhood ADHD. J. Stud. Alcohol. Drugs 75, 145–152 (2014).eng
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Artículos [1351]
    Artículos científicos evaluados por pares

Mostrar el registro sencillo del ítem