Mostrar el registro sencillo del ítem

dc.rights.licenseLicencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacionalspa
dc.contributor.authorBernal, M C
dc.contributor.authorSotelo, M E
dc.contributor.authorNimo, D C
dc.contributor.authorMolina, M M
dc.contributor.authorPérez, O G
dc.contributor.authorSánchez, A A
dc.contributor.authorToro, J G
dc.date.accessioned2019-01-25T20:23:06Z
dc.date.available2019-01-25T20:23:06Z
dc.date.issued2018
dc.identifier.issn17426588
dc.identifier.urihttp://hdl.handle.net/20.500.12442/2532
dc.description.abstractApplied technologies to health systems have been noticed as a required tool to reduce the reappearance rate of certain illnesses, to identify groups of risk or to involve the patient in the care of his own health. Taking in consideration the fact that in the North Santander Department the occurrence of the outbreak of illnesses transmitted by the vector Aedes aegypti shows intense increase since its re-emergency in 2014, with the presence of several manifestations, one of the most likely solutions to prevent the illness, is the epidemiologic surveillance alongside the strategic prevention/ control of the vector. In this context, this project was developed with the purpose of characterize patients by the building of a knowledge database for digital health that allows to create an architecture to integrate, analyze and structure the historical data according to the detected cases, in order to collect the information from the direct field, store it and process it, to present reports and knowledge models with the right indicators that allow to look out often the symptoms and to control the increase of such epidemies.eng
dc.language.isoengeng
dc.publisherIOP Publishingeng
dc.sourceJournal of Physics: Conference Serieseng
dc.sourceVol. 1126, No. 012073 (2018)spa
dc.source.uriDOI: 10.1088/1742-6596/1126/1/012073eng
dc.titleModel for the characterization of epidemies generated by the vector Aedes aegyypti. Case study: Norte de Santander Department, Colombiaeng
dc.typearticleeng
dcterms.referencesOrtiz F, Mendez J F, Ritchie J and Rosado F J 1995 Las organizaciones inteligentes en la toma de decisiones en salud: el caso dengue Salud Pública de México 37 78spa
dcterms.referencesOrganización Mundial de la Salud 2018 Organización mundial de la salud Consulted on: http://www.who.int/topics/tropical_diseases/es/spa
dcterms.referencesNelson M J 1986 Aedes aegypti: Biology and ecology (Washington: Panamerican Health Organization)eng
dcterms.referencesCastrillón J C, Castaño J C and Urcuqui S 2015 Dengue in Colombia: Ten years of database records Revista Chilena de Infectologia 32 22eng
dcterms.referencesRodríguez A 2015 Chikungunya virus infection: Ecoepidemiological considerations of a new threat for Latin America One Health Newsletter 8 7eng
dcterms.referencesHernández J, Ramírez M and Ferri R 2004 Introduction to data mining (España: Pearson)eng
dcterms.referencesHair J, Anderson R, Tatham R and Black W 2007 Multivariate analysis (España: Prentice Hall)eng
dcterms.referencesPiatetsky-Shapiro G, Frawley W and Matheus C 1991 Knowledge discovery in databases: An overview AI Magazine 13 58eng
dcterms.referencesWitten I, Frank E, Hall M and Pal C 2017 Data mining: Practical machine learning tools and techniques (United States of America: Morgan kaufmann series in data management systems)eng
dcterms.referencesCabena P, Hadjinian P, Stadler R, Verhees J, Zanasi A 1998 Discovering data mining: From concept to implementation (Nueva Jersey: Prentice Hall)eng
dcterms.referencesAlpaydin E 2014 Introduction to machine learning (United States of America: The MIT Press)eng
dcterms.referencesSeewald A and Scuse D 2009 WEKA manual (Nueva Zelanda: University of WAIKATO)eng
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Artículos
    Artículos científicos evaluados por pares

Mostrar el registro sencillo del ítem