Automatic segmentation of a cerebral glioblastoma using a smart computational technique

Ver/
Fecha
2018
2018
Autor
Vera, Miguel
Huérfano, Yoleidy
Valbuena, Oscar
Hoyos, Diego
Arias, Yeni
Contreras, Yudith
Salazar, Williams
Vera, María Isabel
Borrero, Maryury
Vivas, Marisela
Hernández, Carlos
Barrera, Doris
Molina, Ángel Valentín
Martínez, Luis Javier
Salazar, Juan
Gelvez, Elkin
Metadatos
Mostrar el registro completo del ítem
Mostrar el registro completo del ítem
Resumen
We propose an intelligent computational technique for the image segmentation of a type IV brain tumor, identified as multiform glioblastoma (MGB), which is present in multi-layer computed tomography images. This technique consists of 3 stages developed in the three-dimensional domain. They are: pre-processing, segmentation and validation. During the validation stage, the Dice coefficient (Dc) is considered in order to compare the segmentations of the MGB, obtained automatically, with the segmentations of the MGB generated manually, by a neuro-oncologist. The combination of parameters linked to the highest Dc, allows to establish the optimal parameters of each of the computational algorithms that make up the proposed nonlinear technique. The obtained results allow to report a Dc higher than 0.88, validating a good correlation between the manual segmentations and those produced by the computational technique developed.
Enlace para referencia:
http://hdl.handle.net/20.500.12442/2524
http://hdl.handle.net/20.500.12442/2524
Enlace al recurso externo:
http://www.revistaavft.com/images/revistas/2018/avft_4_2018/5_automatic_segmentation_of_a_cerebral.pdf
http://www.revistaavft.com/images/revistas/2018/avft_4_2018/5_automatic_segmentation_of_a_cerebral.pdf