Mostrar el registro sencillo del ítem

dc.rights.licenseLicencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacionalspa
dc.contributor.authorPacheco-Londoño, Leonardo C.
dc.contributor.authorAparicio-Bolaño, Joaquín A.
dc.contributor.authorGalán-Freyle, Nataly J.
dc.contributor.authorRomán-Ospino, Andrés D.
dc.contributor.authorRuiz-Caballero, Jose L.
dc.contributor.authorHernández-Rivera, Samuel P.
dc.date.accessioned2019-01-17T16:07:03Z
dc.date.available2019-01-17T16:07:03Z
dc.date.issued2019
dc.identifier.issn19433530
dc.identifier.urihttp://hdl.handle.net/20.500.12442/2453eng
dc.description.abstractMid-infrared (MIR) laser spectroscopy was used to detect the presence of residues of high explosives (HEs) on fabrics. The discrimination of the vibrational signals of HEs from a highly MIR-absorbing substrate was achieved by a simple and fast spectral evaluation without preparation of standards using the classical least squares (CLS) algorithm. Classical least squares focuses on minimizing the differences between the spectral features of the actual spectra acquired using MIR spectroscopy and the spectral features of calculated spectra modeled from linear combinations of the spectra of neat components: HEs, fabrics, and bias. Samples in several combinations of cotton fabrics/HEs were used to validate the methodology. Several experiments were performed focusing on binary, ternary, and quaternary mixtures of TNT, RDX, PETN, and fabrics. The parameters obtained from linear combinations of the calculated spectra were used to perform discrimination analyses and to determine the sensitivity and selectivity of HEs with respect to the substrates and to each other. However, discrimination analysis was not necessary to achieve successful detection of HEs on cotton fabric substrates. The RDX signals (mRDX>0.02 mg) on cotton were used to calculate the limit of detection (LOD). The signalto- noise ratios (S/N) calculated from the spectra of cotton dosed with decreasing masses of RDX until S/N&3 resulted in a LOD of 15–33 mg, depending on the vibrational band used. Linear fits generated by comparing the mass dosed RDX with the fraction predicted were also used to calculate the LOD based on the uncertainty of the blank and the slope. This procedure resulted in a LOD of 58 mg. Probably the most representative value of the method LOD was calculated using an interpolation of a threshold determined using the predicted average value for the blank plus 3.28 times the standard deviations (p-value threshold) for low surface dosages of RDX (LOD¼40 mg). The contribution demonstrates that to achieve HE detection on fabrics using the proposed algorithm, i.e., determining the presence/absence of HEs on the substrates, the library must contain the spectra of HEs, substrates, and potential interferents or that these spectra be added to the models in the field. If the model does not contain the spectra of the fabric components, there is a high probability of finding false positives for clean samples (no HEs) and a low probability for failed detection in samples with HEs. More work will be required to demonstrate that these new approaches to HE detection work on real-world samples and when contaminating materials are present in the samples.eng
dc.language.isoengeng
dc.publisherSociety for Applied Spectroscopyeng
dc.sourceApplied Spectroscopyeng
dc.sourceVol. 73, No. 1 (2019)spa
dc.source.urihttps://journals.sagepub.com/doi/10.1177/0003702818780414eng
dc.subjectQuantum cascade laser spectroscopyeng
dc.subjectQCLeng
dc.subjectHigh explosiveseng
dc.subjectHEseng
dc.subjectClassical least squareseng
dc.subjectCLSeng
dc.subjectNatural and synthetic fabricseng
dc.subjectDiscriminant analysiseng
dc.subjectDAeng
dc.titleClassical Least Squares-Assisted Mid-Infrared (MIR) Laser Spectroscopy Detection of High Explosives on Fabricseng
dc.typearticleeng
dcterms.referencesJ.E. Parmeter. ‘‘The Challenge of Standoff Explosives Detection’’. In: 38th Annual 2004 International Carnahan Conference on Security Technology, 2004. Pp. 355–358.eng
dcterms.referencesJ.C. Carter, S.M. Angel, M. Lawrence-Snyder, J. Scaffidi, et al. ‘‘Standoff Detection of High Explosive Materials at 50 Meters in Ambient Light Conditions Using a Small Raman Instrument’’. Appl. Spectrosc. 2005. 59(6): 769–775.eng
dcterms.referencesW. Ortiz-Rivera, L.C. Pacheco-London˜o, J.R. Castro-Suarez, H. Felix- Rivera, et al. ‘‘Vibrational Spectroscopy Standoff Detection of Threat Chemicals’’. In: Defense + Commercial Sensing, Micro and Nanotechnology Sensors, Systems, and Applications III. Proc. SPIE. 2011. 8031: 803129.eng
dcterms.referencesJ. Moros, J.A. Lorenzo, K. Novotny´, J.J. Laserna. ‘‘Fundamentals of Stand-Off Raman Scattering Spectroscopy for Explosive Fingerprinting’’. J. Raman Spectrosc. 2013. 44(1): 121–130.eng
dcterms.referencesS.Wallin, A. Pettersson, H. O ¨ stmark, A. Hobro. ‘‘Laser-Based Standoff Detection of Explosives: A Critical Review’’. Anal. Bioanal. Chem. 2009. 395(2): 259–274.eng
dcterms.referencesN.J. Gala´n-Freyle, L.C. Pacheco-London˜o, A.M. Figueroa-Navedo, S.P. Hernandez-Rivera. ‘‘Standoff Detection of Highly Energetic Materials Using Laser-Induced Thermal Excitation of Infrared Emission’’. Appl. Spectrosc. 2015. 69(5): 535–544.eng
dcterms.referencesJ.R. Castro-Suarez, L.C. Pacheco-London˜o, M. Ve´lez-Reyes, M. Diem, et al. ‘‘FT-IR Standoff Detection of Thermally Excited Emissions of Trinitrotoluene (TNT) Deposited on Aluminum Substrates’’. Appl. Spectrosc. 2013. 67(2): 181–186.eng
dcterms.referencesJ. Suter, B. Bernacki, M. Phillips. ‘‘Spectral and Angular Dependence of Mid-Infrared Diffuse Scattering from Explosives Residues for Standoff Detection Using External Cavity Quantum Cascade Lasers’’. Appl. Phys. B. 2012. 108(4): 965–974.eng
dcterms.referencesL.C. Pacheco-London˜o, W. Ortiz-Rivera, O.M. Primera-Pedrozo, S.P. Herna´ndez-Rivera. ‘‘Vibrational Spectroscopy Standoff Detection of Explosives’’. Anal. Bioanal. Chem. 2009. 395(2): 323–335.eng
dcterms.referencesA. Pettersson, I. Johansson, S. Wallin, M. Nordberg, et al. ‘‘Near Real- Time Standoff Detection of Explosives in a Realistic Outdoor Environment at 55m Distance’’. Propellants Explos. Pyrotech. 2009. 34(4): 297–306.eng
dcterms.referencesJ. Faist, F. Capasso, D.L. Sivco, C. Sirtori, et al. ‘‘Quantum Cascade Laser’’. Science. 1994. 264(5158): 553–556.eng
dcterms.referencesL. Hvozdara, N. Pennington, M. Kraft, M. Karlowatz, et al. ‘‘Quantum Cascade Lasers for Mid-Infrared Spectroscopy’’. Vib. Spectrosc. 2002. 30(1): 53–58.eng
dcterms.referencesP.C. Castillo, I. Sydoryk, B. Gross, F. Moshary. ‘‘Ambient Detection of CH4 and N2O by Quantum Cascade Laser’’. In: Advanced Environmental, Chemical, and Biological Sensing Technologies X. Proc. SPIE. 2013. 8718: 87180J. doi: 10.1117/12.2016294.eng
dcterms.referencesC. Kumar, N. Patel. ‘‘Quantum Cascade Lasers and Applications in Defense and Security’’. In: Photonics Society Summer Topical Meeting Series, 2011 IEEE. 2011. Pp. 49–50.eng
dcterms.referencesC. Kumar, N. Patel. ‘‘Mid Wave Infrared and Long Wave Infrared QCLs and their Applications to Sensors’’. In: Optical Chemical and Biological Sensors II session. Optical Sensors 2013. Rio Grande, Puerto Rico, USA; July 14–17, 2013. Paper SW2B.eng
dcterms.referencesE. Normand, I. Howieson, M. McCulloch, P. Black. ‘‘Quantum Cascade Laser (QCL) Based Sensor for the Detection of Explosive Compounds’’. In: Optics and Photonics for Counterterrorism and Crime Fighting II. Proc. SPIE. 2006. 6402: 64020G. doi: 10.1117/ 12.695423.eng
dcterms.referencesC.K.N. Patel. ‘‘Laser Based In-Situ and Standoff Detection of Chemical Warfare Agents and Explosives’’. In: Optically Based Biological and Chemical Detection for Defence V. Proc. SPIE. 2009. 7484: 748402. doi: 10.1117/12.835883.eng
dcterms.referencesC.K.N. Patel, A. Lyakh. ‘‘High Power Quantum Cascade Lasers for Infrared Countermeasures, Targeting and Illumination, Beacons and Standoff Detection of Explosives and CWAs’’. In: T. George, A.K. Dutta, M.S. Islam, editors. Micro- and Nanotechnology Sensors, Systems, and Applications VII. Proc. SPIE. 2015. 9467: 946702.eng
dcterms.referencesJ.R. Castro-Suarez, M. Hidalgo-Santiago, S.P. Herna´ndez-Rivera. ‘‘Detection of Highly Energetic Materials on Non-Reflective Substrates Using Quantum Cascade Laser Spectroscopy’’. Appl. Spectrosc. 2015. 69(9): 1023–1035.eng
dcterms.referencesL. Zhang, G. Tian, J. Li, B. Yu. ‘‘Applications of Absorption Spectroscopy Using Quantum Cascade Lasers’’. Appl. Spectrosc. 2014. 68(10): 1095–1107.eng
dcterms.referencesC.W. van Neste, L.R. Senesac, T. Thundat. ‘‘Standoff Spectroscopy of Surface Adsorbed Chemicals’’. Anal. Chem. 2009. 81(5): 1952–1956.eng
dcterms.referencesC. Charlton, A. Katzir, B. Mizaikoff. ‘‘Infrared Evanescent Field Sensing with Quantum Cascade Lasers and Planar Silver Halide Waveguides’’. Anal. Chem. 2005. 77(14): 4398–4403.eng
dcterms.referencesL. Ciaffoni, G. Hancock, J.J. Harrison, J.-P.H. van Helden, et al. ‘‘Demonstration of a Mid-Infrared Cavity Enhanced Absorption Spectrometer for Breath Acetone Detection’’. Anal. Chem. 2012. 85(2): 846–850.eng
dcterms.referencesJ. Kohoutek, A. Bonakdar, R. Gelfand, D. Dey, et al. ‘‘Integrated All-Optical Infrared Switchable Plasmonic Quantum Cascade Laser’’. Nano Lett. 2012. 12(5): 2537–2541.eng
dcterms.referencesM.R. Kole, R.K. Reddy, M.V. Schulmerich, M.K. Gelber, et al. ‘‘Discrete Frequency Infrared Microspectroscopy and Imaging with a Tunable Quantum Cascade Laser’’. Anal. Chem. 2012. 84(23): 10366–10372.eng
dcterms.referencesB. Lendl, J. Frank, R. Schindler, A. Mu¨ller, et al. ‘‘Mid-Infrared Quantum Cascade Lasers for Flow Injection Analysis’’. Anal. Chem. 2000. 72(7): 1645–1648.eng
dcterms.referencesA. Mertiri, H. Altug, M.K. Hong, P. Mehta, et al. ‘‘Nonlinear Midinfrared Photothermal Spectroscopy Using Zharov Splitting and Quantum Cascade Lasers’’. ACS Photonics. 2014. 1(8): 696–702.eng
dcterms.referencesM.A. Pleitez, T. Lieblein, A. Bauer, O. Hertzberg, et al. ‘‘In Vivo Noninvasive Monitoring of Glucose Concentration in Human Epidermis by Mid-Infrared Pulsed Photoacoustic Spectroscopy’’. Anal. Chem. 2012. 85(2): 1013–1020.eng
dcterms.referencesA. Ru¨ther, M. Pfeifer, V.A. Lo´renz-Fonfrı´a, S. Lu¨deke. ‘‘pH Titration Monitored by Quantum Cascade Laser-Based Vibrational Circular Dichroism’’. J. Phys. Chem. B. 2014. 118(14): 3941–3949.eng
dcterms.referencesK. Wo¨ rle, F. Seichter, A. Wilk, C. Armacost, et al. ‘‘Breath Analysis with Broadly Tunable Quantum Cascade Lasers’’. Anal. Chem. 2013. 85(5): 2697–2702.eng
dcterms.referencesK. Yeh, S. Kenkel, J.-N. Liu, R. Bhargava. ‘‘Fast Infrared Chemical Imaging with a Quantum Cascade Laser’’. Anal. Chem. 2014. 87(1): 485–493.eng
dcterms.referencesD.C. Grills, A.R. Cook, E. Fujita, M.W. George, et al. ‘‘Application of External-Cavity Quantum Cascade Infrared Lasers to Nanosecond Time-Resolved Infrared Spectroscopy of Condensed-Phase Samples Following Pulse Radiolysis’’. Appl. Spectrosc. 2010. 64(6): 563–570.eng
dcterms.referencesE.L. Holthoff, L.S. Marcus, P.M. Pellegrino. ‘‘Quantum Cascade Laser Based Photoacoustic Spectroscopy for Depth Profiling Investigations of Condensed-Phase Materials’’. Appl. Spectrosc. 2012. 66(9): 987–992.eng
dcterms.referencesS. Schaden, A. Domı´nguez-Vidal, B. Lendl. ‘‘On-Line Reaction Monitoring in the Liquid Phase Using Two Mid-Infrared Quantum Cascade Lasers Simultaneously’’. Appl. Spectrosc. 2006. 60(5): 568–571.eng
dcterms.referencesN.B. Gallagher, T.A. Blake, P.L. Gassman, J.M. Shaver, et al. ‘‘Multivariate Curve Resolution Applied to Infrared Reflection Measurements of Soil Contaminated with an Organophosphorus Analyte’’. Appl. Spectrosc. 2006. 60(7): 713–722.eng
dcterms.referencesN.J. Gala´n-Freyle, L.C. Pacheco-London˜o, A.D. Roma´n-Ospino, S.P. Hernandez-Rivera. ‘‘Applications of Quantum Cascade Laser Spectroscopy in the Analysis of Pharmaceutical Formulations’’. Appl. Spectrosc. 2016. 70(9): 1511–1519.eng
dcterms.referencesJ.N. Miller, J.C. Miller. Estadistica y Quimiometria Para Quimica Analitica. Madrid: Prentice Hall, 2002.eng
dcterms.referencesR. Infante-Castillo, L. Pacheco-London˜o, S.P. Herna´ndez-Rivera. ‘‘Vibrational Spectra and Structure of RDX and its 13C- and 15N-Labeled Derivatives: A Theoretical and Experimental Study’’. Spectrochim. Acta, Part A. 2010. 76(2): 137–141.eng
dcterms.referencesR. Infante-Castillo, L.C. Pacheco-London˜o, S.P. Herna´ndez-Rivera. ‘‘Monitoring the a!b Solid–Solid Phase Transition of RDX with Raman Spectroscopy: A Theoretical and Experimental Study’’. J. Mol. Struct. 2010. 970(1–3): 51–58.eng
dcterms.referencesJ.L. Ruiz-Caballero, J.A. Aparicio-Bolan˜o, A.M. Figueroa-Navedo, L.C. Pacheco-London˜o, et al. ‘‘Optical Properties of b-RDX Thin Films Deposited on Gold and Stainless Steel Substrates Calculated from Reflection–Absorption Infrared Spectra’’. Appl. Spectrosc. 2017. 71(8): 1990–2000.eng
dcterms.referencesA.M. Figueroa-Navedo, J.L. Ruiz-Caballero, L.C. Pacheco-London˜o, S.P. Herna´ndez-Rivera. ‘‘Characterization of a- and b-RDX Polymorphs in Crystalline Deposits on Stainless Steel Substrates’’. Cryst. Growth Des. 2016. 16(7): 3631–3638.eng
dcterms.referencesG.L. Long, J.D. Winefordner. ‘‘Limit of Detection A Closer Look at the IUPAC Definition’’. Anal. Chem. 1983. 55(07): 712A–724A.eng
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Artículos [1351]
    Artículos científicos evaluados por pares

Mostrar el registro sencillo del ítem