Mostrar el registro sencillo del ítem

dc.rights.licenseLicencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacionalspa
dc.contributor.authorCamacho, Jhonatan
dc.contributor.authorQuintero, Andrés
dc.contributor.authorRuiz, Magda
dc.contributor.authorVillamizar, Rodolfo
dc.contributor.authorMujica, Luis
dc.date.accessioned2018-11-13T19:21:35Z
dc.date.available2018-11-13T19:21:35Z
dc.date.issued2018-11
dc.identifier.issn14248220
dc.identifier.urihttp://hdl.handle.net/20.500.12442/2347
dc.description.abstractThe implementation of damage-detection methods for continuously assessing structural integrity entails systems with attractive features such as storage capabilities, memory capacity, computational complexity and time-consuming processing. In this sense, embedded hardware platforms are a promising technology for developing integrated solutions in Structural Health Monitoring. In this paper, design, test, and specifications for a standalone inspection prototype are presented, which take advantage of piezo-diagnostics principle, statistical processing via Principal Component Analysis (PCA) and embedded systems. The equipment corresponds to a piezoelectric active system with the capability to detect defects in structures, by using a PCA-based algorithm embedded in the Odroid-U3 ARM Linux platform. The operation of the equipment consists of applying, at one side of the structure, wide guided waves by means of piezoelectric devices operated in actuation mode and to record the wave response in another side of the structure by using the same kind of piezoelectric devices operated in sensor mode. Based on the nominal response of the guide wave (no damages), represented by means of a PCA statistical model, the system can detect damages between the actuated/sensed points through squared prediction error (Q-statistical index). The system performance was evaluated in a pipe test bench where two kinds of damages were studied: first, a mass is added to the pipe surface, and then leaks are provoked to the pipe structure by means of a drill tool. The experiments were conducted on two lab structures: (i) a meter carbon-steel pipe section and (ii) a pipe loop structure. The wave response was recorded between the instrumented points for two conditions: (i) The pipe in nominal conditions, where several repetitions will be applied to build the nominal statistical model and (ii) when damage is caused to the pipe (mass adding or leak). Damage conditions were graphically recognized through the Q-statistic chart. Thus, the feasibility to implement an automated real-time diagnostic system is demonstrated with minimum processing resources and hardware flexibility.eng
dc.language.isoengeng
dc.publisherMDPIeng
dc.sourceSensorseng
dc.sourceVol. 18, No.11 (2018)spa
dc.source.urihttps://doi.org/10.3390/s18113730eng
dc.subjectPrincipal component analysiseng
dc.subjectEmbedded systemeng
dc.subjectOnline monitoringeng
dc.subjectStructural health monitoringeng
dc.subjectGuided waveseng
dc.subjectPipeline damage detectioneng
dc.titleImplementation of a Piezo-diagnostics Approach for Damage Detection Based on PCA in a Linux-Based Embedded Platformeng
dc.typearticleeng
dcterms.referencesMalinowski, P.; Wandowski, T.; Ostachowicz, W.; Luba, T.; Borowik, G.; Rawski, M.; Tomaszewski, P. Signal processing system for guided wave-based SHM technique. In Proceedings of the 9th InternationalWorkshop on Structural Health Monitoring (IWSHM), Stanford, CA, USA, 10–12 September 2013; pp. 964–971.eng
dcterms.referencesHong, M.;Wang, Q.; Su, Z.; Zhou, L. Real-time signal processing of guided waves acquired on high-speed trains for health monitoring of bogie systems. In Recent Advances in Structural Integrity Analysis—Proceedings of the International Congress (APCF/SIF-2014):(APCFS/SIF 2014);Woodhead Publishing: Sawston, UK, 2015; p. 188.eng
dcterms.referencesNguyen, T.; Chan, T.H.; Thambiratnam, D.P.; King, L. Development of a cost-effective and flexible vibration DAQ system for long-term continuous structural health monitoring. Mech. Syst. Signal Process. 2015, 64, 313–324.eng
dcterms.referencesYan, S.;Wu, J.; Sun,W.; Ma, H.; Yan, H. Development and application of structural health monitoring system based on piezoelectric sensors. Int. J. Distrib. Sens. Netw. 2013, 9, 270927.eng
dcterms.referencesLiu, L.; Yuan, F. Active damage localization for plate-like structures using wireless sensors and a distributed algorithm. Smart Mater. Struct. 2008, 17, 055022.eng
dcterms.referencesProduct Overview—Acellent Technologies. Available online: https://www.acellent.com/products/ overview (accessed on 23 September 2018).eng
dcterms.referencesVibration Monitoring with Digitexx Accelerometers. Available online: http://www.digitexx.com/uni-triaxial- accelerometers (accessed on 23 September 2018).eng
dcterms.referencesMandache, C.; Genest, M.; Khan, M.; Mrad, N. Considerations on structural health monitoring reliability. In Proceedings of the International Workshop Smart Materials, Structures & NDT in Aerospace, Montreal, QC, Canada, 2–4 November 2011; Volume 24.eng
dcterms.referencesMitra, M.; Gopalakrishnan, S. Guided wave-based structural health monitoring: A review. Smart Mater. Struct. 2016, 25, 053001.eng
dcterms.referencesGaudenzi, P.; Nardi, D.; Chiapetta, I.; Atek, S.; Lampani, L.; Sarasini, F.; Tirillò, J.; Valente, T. Impact damage detection in composite laminate plates using an integrated piezoelectric sensor and actuator couple combined with wavelet -based features extraction approach. In Proceedings of the 7th ECCOMAS Thematic Conference on Smart Structures and Materials, Azores, Portugal, 3–6 June 2015.eng
dcterms.referencesSpiegel, M.D. Damage Detection in Composite Materials Using PZT Actuators And Sensors for Structural Health Monitoring. Ph.D. Thesis, University of Alabama Libraries, Tuscaloosa, AZ, USA, 2014.eng
dcterms.referencesWang, T.; Yang, C.; Ye, L.; Spray, D.; Xiang, Y. Evaluation of guided wave propagation in steel pipes. In Recent Advances in Structural Integrity Analysis—Proceedings of the International Congress (APCF/SIF-2014); Woodhead Publishing: Sawston, UK, 2015; p. 255.eng
dcterms.referencesKolbadi Nejad, M.; Selk Ghafari, A.; Zabihollah, A. Fault Detection in a Cracked Pipeline Embedded with Piezoelectric Sensors/Actuators Employing Bond Graph Approach. Adv. Mater. Res. 2012, 476, 1015–1019.eng
dcterms.referencesKaramizadeh, S.; Abdullah, S.M.; Manaf, A.A.; Zamani, M.; Hooman, A. An overview of principal component analysis. J. Signal Inf. Process. 2013, 4, 173.eng
dcterms.referencesLiu, C.; Harley, J.B.; Bergés, M.; Greve, D.W.; Oppenheim, I.J. Robust ultrasonic damage detection under complex environmental conditions using singular value decomposition. Ultrasonics 2015, 58, 75–86.eng
dcterms.referencesTrendafilova, I.; Cartmell, M.P.; Ostachowicz, W. Vibration-based damage detection in an aircraft wing scaled model using principal component analysis and pattern recognition. J. Sound Vib. 2008, 313, 560–566.eng
dcterms.referencesMujica, L.E.; Vehí, J.; Ruiz, M.; Verleysen, M.; Staszewski, W.; Worden, K. Multivariate statistics process control for dimensionality reduction in structural assessment. Mech. Syst. Signal Process. 2008, 22, 155–171.eng
dcterms.referencesMujica, L.; Rodellar, J.; Fernandez, A.; Güemes, A. Q-statistic and T2-statistic PCA-based measures for damage assessment in structures. Struct. Health Monit. 2011, 10, 539–553.eng
dcterms.referencesTibaduiza, D.; Mujica, L.; Rodellar, J. Comparison of several methods for damage localization using indices and contributions based on PCA. In Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2011; Volume 305, p. 012013.eng
dcterms.referencesCamacho, J.; Ruiz, M.; Villamizar, R.; Mujica, L.; Martínez, F. Damage detection in structures using robust baseline models. In Proceedings of the 7th ECCOMAS Thematic Conference on Smart Structures and Materials (SMART2015), Ponta Delgada, Portugal, 3–6 June 2015; pp. 3–6.eng
dcterms.referencesPermasense—Experts in Remote Monitoring Solutions. Available online: https://www.permasense.com/ (accessed on 23 September 2018).eng
dcterms.referencesRuiz Ordóñez, M.L. Multivariate Statistical Process Control and Case-Based Reasoning for Situation Assessment of Sequencing Batch Reactors; Universitat de Girona: Girona, Spain, 2008.eng
dcterms.referencesTibaduiza Burgos, D.A.; Mujica Delgado, L.E.; Güemes Gordo, A.; Rodellar Benedé, J. Active piezoelectric system using PCA. In Proceedings of the Fifth European Workshop on Structural Health Monitoring, Naples, Italy, 28 June–4 July 2010; pp. 164–169.eng
dcterms.referencesQuiroga, J.; Mujica Delgado, L.E.; Villamizar Mejía, R.; Ruiz Ordóñez, M.; Camacho-Navarro, J. Signal-based bending stress monitoring using guided waves in hollow cylinders. In Proceedings of the SMART 2017: ECCOMAS Thematic Conference on Smart Structures and Materials, Madrid, Espanya, 5–8 June 2017; Centre Internacional de Mètodes Numèrics en Enginyeria (CIMNE): Barcelona, Spain, 2017; pp. 1390–1397.eng
dcterms.referencesQuiroga, J.; Mujica, L.; Villamizar, R.; Ruiz, M.; Camacho, J. PCA-based stress monitoring of cylindrical specimens using PZTs and guided waves. Sensors 2017, 17, 2788.eng
dcterms.referencesAn, Y.K.; Kim, M.; Sohn, H. Piezoelectric transducers for assessing and monitoring civil infrastructures. In Sensor Technologies for Civil Infrastructures; Elsevier: Amsterdam, The Netherlands, 2014; pp. 86–120.eng
dcterms.referencesQuiroga, J.L.; Quiroga, J.E.; Villamizar, R. Influence of the Coupling Layer on Low Frequency Ultrasonic Propagation in a PCA Based Stress Monitoring. In Proceedings of the 6th Panamerican Conference for NDT, Cartagena, Colombia, 12–14 August 2015; pp. 12–14.eng
dcterms.referencesConnecting Electrical Leads. Available online: https://www.americanpiezo.com/images/stories/content_ images/pdf/connecting_electrical_leads.pdf (accessed on 23 September 2018).eng
dcterms.referencesJolliffe, I. Principal component analysis. In International Encyclopedia Of Statistical Science; Springer: Berlin, Germany, 2011; pp. 1094–1096.eng
dcterms.referencesLiang, Y.; Lee, H.; Lim, S.; Lin, W.; Lee, K.; Wu, C. Proper orthogonal decomposition and its applications Part I: Theory. J. Sound Vib. 2002, 252, 527–544.eng
dcterms.referencesRisvik, H. Principal Component Analysis (PCA) & NIPALS Algorithm. 2007. Available online: https: //folk.uio.no/henninri/pca_module/pca_nipals.pdf (accessed on 1 November 2018).eng
dcterms.referencesTorres-Arredondo, M.A.; Buethe, I.; Tibaduiza, D.A.; Rodellar, J.; Fritzen, C.P. Damage detection and classification in pipework using acousto-ultrasonics and non-linear data-driven modelling. J. Civ. Struct. Health Monit. 2013, 3, 297–306.eng
dcterms.referencesMujica Delgado, L.E.; Vehi, J.; Rodellar, J.; Kolakowski, P. A Hybrid Approach of Knowledge-Based Reasoning for Structural Assessment; Universitat de Girona: Girona, Spain, 2006.eng
dcterms.referencesKarki, J. Signal conditioning piezoelectric sensors. Application Report on Mixed Signal Products (SLOA033A); Texas Instruments: Dallas, TX, USA, 2000.eng
dcterms.referencesUSB Oscilloscopes & Mixed Signal Oscilloscopes. Available online: https://www.picotech.com/ oscilloscope/2000/picoscope-2000-overview (accessed on 23 September 2018).eng
dcterms.referencesCamacho-Navarro, J.; Ruiz Ordóñez, M.; Villamizar Mejía, R.; Mujica Delgado, L.E.; Pérez, O. Evaluation of piezo-diagnosticsdiagnostics approach for leaks detection in a pipe loop. Key Eng. Mater. 2016, 713, 107–110.eng
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Artículos
    Artículos científicos evaluados por pares

Mostrar el registro sencillo del ítem