Mostrar el registro sencillo del ítem

dc.rights.licenseLicencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacionalspa
dc.contributor.authorSagastume Gutierrez, A.
dc.contributor.authorCabello Eras, J.J.
dc.contributor.authorHernandez Herrera, H.
dc.date.accessioned2018-08-10T21:35:10Z
dc.date.available2018-08-10T21:35:10Z
dc.date.issued2018
dc.identifier.issn1816949X
dc.identifier.urihttp://hdl.handle.net/20.500.12442/2222
dc.description.abstractThermoeconomic evaluation aims at diagnosing the malfunction of energy systems and at optimizing their structure and performance. One of the main limitations of this approach is the adequate treatment of dissipative components, i.e., components where exergy is destroyed without gaining thermodynamically useful output (condensers, throttling valves, etc.). Such components are constituents of some energy systems and influence their overall thermal efficiency. This research introduces the use of a different criterion of exergy efficiency to assess dissipative components. In this case, it is possible to define the efficiency of dissipative components without the introduction of negentropy flows. As case study, a Rankine cycle discussed in literature is selected. The different approaches to evaluate dissipative components are applied and compared with the proposed one. Results show that with the proposed approach it is possible to evaluate dissipative components in isolation avoiding the inconsistencies resulting from the use of negentropy flows in the assessment. The introduction of negentropy flows also increases the complexity of the assessment.eng
dc.language.isoengeng
dc.publisherMedwell Journals (Scientific Research Publishing Company)eng
dc.rightsinfo:eu-repo/semantics/openAccess
dc.sourceJournal of Engineering and Applied Scienceseng
dc.sourceVol. 13, No.9 (2018)eng
dc.source.urihttp://docsdrive.com/pdfs/medwelljournals/jeasci/2018/2560-2569.pdfeng
dc.subjectDissipative componentseng
dc.subjectEnergy efficiencyeng
dc.subjectThermoeconomic assessment increaseseng
dc.subjectDissipative assessmentmeng
dc.subjectApproacheng
dc.titleThermoeconomic Evaluation and Exergy Efficiency of Dissipative Components: A New Approacheng
dc.typeArticleeng
dcterms.bibliographicCitationAlkan, M.A., A. Kecebas and N. Yamankaradeniz, 2013. Exergoeconomic analysis of a district heating system for geothermal energy using specific exergy cost method. Energy, 60: 426-434.eng
dcterms.bibliographicCitationFarshi, L.G., S.M.S. Mahmoudi and M.A. Rosen, 2013. Exergoeconomic comparison of double effect and combined ejector-double effect absorption refrigeration systems. Appl. Energy, 103: 700-711.eng
dcterms.bibliographicCitationGutierreza, A.S. and C. Vandecasteele, 2011. Exergy-based indicators to evaluate the possibilities to reduce fuel consumption in lime production. Energy, 36: 2820-2827.eng
dcterms.bibliographicCitationJodat, A., 2016. Exergoeconomic analysis of gas turbines cogeneration systems. J. Eng. Appl. Sci., 11: 2545-2550.eng
dcterms.bibliographicCitationKutas, T.J., 1995. The Exergy Method of Thermal Plant Analysis, Florida. Krieger Publishing, Malabar, Florida,.eng
dcterms.bibliographicCitationLazzaretto, A. and G. Tsatsaronis, 2006. SPECO: A systematic and general methodology for calculating efficiencies and costs in thermal systems. Energy, 31: 1257-1289.eng
dcterms.bibliographicCitationLourenco, A.B., S.A. Nebra, J.J.C. Santos and J.L.M. Donatelli, 2015. Application of an alternative thermoeconomic approach to a two-stage vapour compression refrigeration cascade cycle. J. Braz. Soc. Mech. Sci. Eng., 37: 903-913.eng
dcterms.bibliographicCitationLozano, M., A. Valero and L. Serra, 1993. Theory of Exergetic Cost and Thermoeconomic Optimization. In: Energy System and Ecology, Szargut, J. (Ed.). University of Zaragoza, Zaragoza, Spain, pp: 339-350.eng
dcterms.bibliographicCitationLozano, M.A. and A. Valero, 1993. Thermoeconomic Analysis of Gas Turbine Cogeneration Systems. In: Thermodynamics and the Design, Analysis and Improvement of Energy Systems, Richter, H.J. (Ed.). ASME, New York, USA., pp: 311-320.eng
dcterms.bibliographicCitationLuo, X., J. Hu, J. Zhao, B. Zhang and Y. Chen et al., 2014. Improved exergoeconomic analysis of a retrofitted natural gas-based cogeneration system. Energy, 72: 459-475.eng
dcterms.bibliographicCitationPiacentino, A. and E. Cardona, 2010. Scope oriented Thermoeconomic analysis of energy systems, Part II: Formation structure of optimality for robust design. Appl. Energy, 87: 957-970.eng
dcterms.bibliographicCitationPiacentino, A. and F. Cardona, 2010. Scope-oriented thermoeconomic analysis of energy systems Part I: Looking for a non-postulated cost accounting for the dissipative devices of a vapour compression chiller; Is it feasible?. Appl. Energy, 87: 943-956.eng
dcterms.bibliographicCitationPiacentino, A., 2015. Application of advanced thermodynamics, thermoeconomics and exergy costing to a multiple effect distillation plant: In-depth analysis of cost formation process. Desalin., 371: 88-103.eng
dcterms.bibliographicCitationSantos, D.R.G.D., P.R. Faria, J.J. Santos, D.J.A. Silva and O.D. Florez, 2016. Thermoeconomic modeling for CO2 allocation in steam and gas turbine cogeneration systems. Energy, 117: 590-603.eng
dcterms.bibliographicCitationSantos, J., M. Nascimento, E. Lora and A.M. Reyes, 2009. On the negentropy application in thermoeconomics: A fictitious or an exergy component flow?. Intl. J. Thermodyn., 12: 163-176.eng
dcterms.bibliographicCitationSharifi, M. and S. Khalilarya, 2016. Exergoeconomic evaluation and optimisation of a novel combined power and absorption-ejector refrigeration cycle driven by natural gas. Intl. J. Exergy, 19: 232-258.eng
dcterms.bibliographicCitationTeixeira, D.S.M. and D.O.S. Junior, 2001. Thermoeconomic evaluation of cogeneration systems for a chemical plant. Intl. J. Thermodyn., 4: 157-163.eng
dcterms.bibliographicCitationTorres, C., A. Valero, V. Rangel and A. Zaleta, 2008. On the cost formation process of the residues. Energy, 33: 144-152.eng
dcterms.bibliographicCitationValero, A., 2006. Exergy accounting: Capabilities and drawbacks. Energy, 31: 164-180.eng
dcterms.bibliographicCitationValero, A., F. Lerch, L. Serra and J. Royo, 2002. Structural theory and thermoeconomic diagnosis: Part II: Application to an actual power plant. Energy Convers. Manage., 43: 1519-1535.eng
dcterms.bibliographicCitationValero, A., M.A. Lozano, L. Serra and C. Torres, 1994. Application of the exergetic cost theory to the CGAM problem. Energy, 19: 365-381.eng
dcterms.bibliographicCitationYao, H., D. Sheng, J. Chen, W. Li, A. Wan and H. Chen, 2012. Exergoeconomic analysis of a combined cycle system utilizing associated gases from steel production process based on structural theory of thermoeconomics. Applied Therm. Eng., 51: 476-489.eng


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Artículos
    Artículos científicos evaluados por pares

Mostrar el registro sencillo del ítem