Mostrar el registro sencillo del ítem

dc.rights.licenseLicencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacionalspa
dc.contributor.authorSanmartin, Paul
dc.contributor.authorRojas, Aldo
dc.contributor.authorFernandez, Luis
dc.contributor.authorAvila, Karen
dc.contributor.authorJabba, Daladier
dc.contributor.authorValle, Sebastian
dc.date.accessioned2018-05-23T19:35:31Z
dc.date.available2018-05-23T19:35:31Z
dc.date.issued2018-04
dc.identifier.issn14248220
dc.identifier.urihttp://hdl.handle.net/20.500.12442/2108
dc.description.abstractThis paper presents the adaptation of a specific metric for the RPL protocol in the objective function MRHOF. Among the functions standardized by IETF, we find OF0, which is based on the minimum hop count, as well as MRHOF, which is based on the Expected Transmission Count (ETX). However, when the network becomes denser or the number of nodes increases, both OF0 and MRHOF introduce long hops, which can generate a bottleneck that restricts the network. The adaptation is proposed to optimize both OFs through a new routing metric. To solve the above problem, the metrics of the minimum number of hops and the ETX are combined by designing a new routing metric called SIGMA-ETX, in which the best route is calculated using the standard deviation of ETX values between each node, as opposed to working with the ETX average along the route. This method ensures a better routing performance in dense sensor networks. The simulations are done through the Cooja simulator, based on the Contiki operating system. The simulations showed that the proposed optimization outperforms at a high margin in both OF0 and MRHOF, in terms of network latency, packet delivery ratio, lifetime, and power consumption.eng
dc.language.isoengeng
dc.publisherMDPI.eng
dc.sourceSensorseng
dc.sourceVol. 18, No.4 (2018)spa
dc.source.urihttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5948651/spa
dc.subjectLLNeng
dc.subjectRPLeng
dc.subjectObjective functioneng
dc.subjectRouting metriceng
dc.titleSigma Routing Metric for RPL Protocoleng
dc.typearticleeng
dcterms.referencesKim, T.-H.; Ramos, C.; Mohammed, S. Smart City and IoT; Elsevier: New York, NY, USA, 2017.eng
dcterms.referencesAng, L.-M.; Seng, K.P.; Zungeru, A.M.; Ijemaru, G.K. Big sensor data systems for smart cities. IEEE Internet Things J. 2017, 4, 1259–1271. [CrossRef]eng
dcterms.referencesAbdelgadir, M.; Saeed, R.A.; Babiker, A. Mobility routing model for vehicular Ad-Hoc networks (VANETS), smart city scenarios. Veh. Commun. 2017, 9, 154–161. [CrossRef]eng
dcterms.referencesPeixoto, J.P.J.; Costa, D.G.Wireless visual sensor networks for smart city applications: A relevance-based approach for multiple sinks mobility. Future Gener. Comput. Syst. 2017, 76, 51–62. [CrossRef]eng
dcterms.referencesBoukerche, A.; Turgut, B.; Aydin, N.; Ahmad, M.Z.; Bölöni, L.; Turgut, D. Routing protocols in Ad Hoc networks: A survey. Comput. Netw. 2011, 55, 3032–3080. [CrossRef]eng
dcterms.referencesAna De Pablo, E. Development of aWireless Sensor Network with 6LoWPAN Support. Available online: https://upcommons.upc.edu/bitstream/handle2099.1/7806/memoria.pdf?sequense=1&isAlloweb=y (accessed on 13 October 2017).eng
dcterms.referencesErgen, S.C. ZigBee/IEEE 802.15. 4 Summary; UC Berkeley: Berkeley, CA, USA, 2004; Volume 10, p. 17.eng
dcterms.referencesAl-Turjman, F. Cognitive routing protocol for disaster-inspired internet of things. Future Gener. Comput. Syst. 2017. [CrossRef]eng
dcterms.referencesChejerla, B.K.; Madria, S.K. QoS guaranteeing robust scheduling in attack resilient cloud integrated cyber physical system. Future Gener. Comput. Syst. 2017, 75, 145–157. [CrossRef]eng
dcterms.referencesVasseur, J.-P.; Kim, M.; Pister, K.; Dejean, N.; Barthel, D. Routing Metrics Used for Path Calculation in Low-Power and Lossy Networks; 2070-1721; IETF: Fremont, CA, USA, 2012.eng
dcterms.referencesThubert, P. Objective Function Zero for the Routing Protocol for Low-Power and Lossy Networks (RPL). Available online: https://tools.ietf.org/html/rfc6552 (accessed on 15 September 2017).eng
dcterms.referencesKarkazis, P.; Leligou, H.-C.; Sarakis, L.; Zahariadis, T.; Trakadas, P.; Velivassaki, T.H.; Capsalis, C. Design of primary and composite routing metrics for RPL-compliant wireless sensor networks. In Proceedings of the 2012 International Conference on Telecommunications and Multimedia (TEMU), Chania, Greece, 30 July–1 August 2012; pp. 13–18.eng
dcterms.referencesPark, J.; Kim, K.-H.; Kim, K. An algorithm for timely transmission of solicitation messages in RPL for energy-efficient node mobility. Sensors 2017, 17, 899. [CrossRef] [PubMed]eng
dcterms.referencesGnawali, O. The Minimum Rank with Hysteresis Objective Function. Available online: https://tools.ietf. org/html/rfc6719 (accessed on 11 September 2017).eng
dcterms.referencesZhao, M.; Nawaz, A.; Rongxing, L. An energy-efficient and self-regioning-based-based RPL for low-power and lossy networks. In Proceedings of the 2016 IEEE 84th Vehicular Technology Conference (VTC-Fall), Montreal, QC, Canada, 18–21 September 2016.eng
dcterms.referencesKim, S.; Kawahara, Y.; Georgiadis, A.; Collado, A.; Tentzeris, M.M. Low-cost inkjet-printed fully passive rfid tags for calibration-free capacitive/haptic sensor applications. IEEE Sens. J. 2015, 15, 3135–3145. [CrossRef]eng
dcterms.referencesXiao,W.; Liu, J.; Jiang, N.; Shi, H. An optimization of the object function for routing protocol of low-power and lossy networks. In Proceedings of the 2014 2nd International Conference on Systems and Informatics (ICSAI), Shanghai, China, 15–17 November 2014; pp. 515–519.eng
dcterms.referencesSanmartin, P.; Cardona, J.; Jabba, D. QoS in heterogeneous networks based on based on dwdm technology. In Proceedings of the 2015 CHILEAN Conference on Electrical, Electronics Engineering, Information and Communication Technologies (CHILECON), Santiago, Chile, 28–30 October 2015; pp. 339–344.eng
dcterms.referencesDíaz, J.M.; Mendoza, P.S.; Céspedes, J.D. Modelado y Simulación de Redes: Aplicación de los QoS con Opnet Modeler; Universidad del Norte: Barranquilla, DC, USA, 2013.spa
dcterms.referencesTrakadas, P.; Zahariadis, T. Design Guidelines for Routing Metrics Composition in LLN. Available online: https://tools.ietf.org/html/draft-zahariadis-roll-metrics-composition-03 (accessed on 15 September 2017).eng
dcterms.referencesDe Couto, D.S.J.; Aguayo, D.; Bicket, J.; Morris, R. A high-throughput path metric for multi-hop wireless routing. Wirel. Netw. 2005, 11, 419–434. [CrossRef]eng
dcterms.referencesJavaid, N.; Javaid, A.; Khan, I.A.; Djouani, K. Performance study of etx-based-based wireless routing metrics. In Proceedings of the 2009 2nd International Conference on Computer, Control and Communication (IC4 2009), Karachi, Pakistan, 17–18 February 2009; pp. 1–7.eng
dcterms.referencesKim, H.-S.; Ko, J.; Culler, D.E.; Paek, J. Challenging the IPv6 routing protocol for low-power and lossy networks (RPL): A survey. IEEE Commun. Surv. Tutor. 2017, 19, 2502–2525. [CrossRef]eng
dcterms.referencesKamgueu, P.O.; Nataf, E.; Ndié, T.D.; Festor, O. Energy-Based Routing Metric for RPL; INRIA: Roquecourbe, France, 2013.eng
dcterms.referencesThulasiraman, P. RPL routing for multigateway AMI networks under interference constraints. In Proceedings of the 2013 IEEE International Conference on Communications (ICC), Budapest, Hungary, 9–13 June 2013; pp. 4477–4482.eng
dcterms.referencesMorton, A. Framework for Metric Composition; Framework; IETF: Fremont, CA, USA, 2010.eng
dcterms.referencesSilva, M.D.; Senne, E.L.F.; Vijaykumar, N.L. An optimization model to minimize the expected end-to-end transmission time in wireless mesh networks. Pesq. Oper. 2017, 37, 209–227. [CrossRef]eng
dcterms.referencesAguirre, E.A.; Pedraza, L.F.; Puerta, G.A. WCETT routing-metric setup assessment on a cognitive radio network. Tecnura 2013, 17, 55–62. [CrossRef]eng
dcterms.referencesHinton, K.; Jalali, F. A survey of internet energy efficiency metrics. In Proceedings of the 2016 5th International Conference on Smart Cities and Green ICT Systems (SMARTGREENS), Rome, Italy, 23–25 April 2016; pp. 1–9.eng
dcterms.referencesYang, Y.;Wang, J. Design guidelines for routing metrics in multihop wireless networks. In Proceedings of the IEEE INFOCOM, Phoenix, AZ, USA, 13–18 April 2008; pp. 1615–1623.eng
dcterms.referencesFotouhi, H.; Moreira, D.; Alves, M. MRPL: Boosting mobility in the Internetthe Internet of things. Ad Hoc Netw. 2015, 26, 17–35. [CrossRef]eng
dcterms.referencesTodolí-Ferrandis, D.; Santonja-Climent, S.; Sempere-Payá, V.; Silvestre-Blanes, J. RPL routing in a real life scenario with an energy efficient objective function. In Proceedings of the 2015 23rd Telecommunications Forum Telfor (TELFOR), Belgrade, Serbia, 24–26 November 2015; pp. 285–288.eng
dcterms.referencesKim, H.-S.; Cho, H.; Kim, H.; Bahk, S. DT-RPL: Diverse bidirectional traffic delivery through RPL routing protocol in low power and lossy networks. Comput. Netw. 2017, 126, 150–161. [CrossRef]eng
dcterms.referencesDuquennoy, S.; Eriksson, J.; Voigt, T. Five-nines reliable downward routing in RPL. arXiv, 2017.eng
dcterms.referencesKhallef, W.; Molnar, M.; Benslimane, A.; Durand, S. Multiple constrained qos routing with RPL. In Proceedings of the 2017 IEEE International Conference on Communications (ICC), Paris, France, 21–25 May 2017; pp. 1–6.eng
dcterms.referencesKim, H.S.; Paek, J.; Bahk, S. QU-RPL: Queue utilization-based-based RPL for load balancing in large scale industrial applications. In Proceedings of the 2015 12th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON), Seattle, WA, USA, 22–25 June 2015; pp. 265–273.eng
dcterms.referencesZhao, M.; Kumar, A.; Chong, P.H.J.; Lu, R. A comprehensive study of RPL and P2P-RPL routing protocols: Implementation, challenges and opportunities. Peer-to-Peer Netw. Appl. 2017, 10, 1232–1256. [CrossRef]eng
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • Artículos
    Artículos científicos evaluados por pares

Mostrar el registro sencillo del ítem