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Abstract
At present, Alzheimer’s disease (AD) and type 2 diabetes mellitus (T2DM) are two 
highly prevalent disorders worldwide, especially among elderly individuals. 
T2DM appears to be associated with cognitive dysfunction, with a higher risk of 
developing neurocognitive disorders, including AD. These diseases have been 
observed to share various pathophysiological mechanisms, including alterations 
in insulin signaling, defects in glucose transporters (GLUTs), and mitochondrial 
dysfunctions in the brain. Therefore, the aim of this review is to summarize the 
current knowledge regarding the molecular mechanisms implicated in the 
association of these pathologies as well as recent therapeutic alternatives. In this 
context, the hyperphosphorylation of tau and the formation of neurofibrillary 
tangles have been associated with the dysfunction of the phosphatidylinositol 3-
kinase and mitogen-activated protein kinase pathways in the nervous tissues as 
well as the decrease in the expression of GLUT-1 and GLUT-3 in the different 
areas of the brain, increase in reactive oxygen species, and production of 
mitochondrial alterations that occur in T2DM. These findings have contributed to 
the implementation of overlapping pharmacological interventions based on the 
use of insulin and antidiabetic drugs, or, more recently, azeliragon, amylin, 
among others, which have shown possible beneficial effects in diabetic patients 
diagnosed with AD.

https://www.f6publishing.com
https://dx.doi.org/10.4239/wjd.v12.i6.745
http://orcid.org/0000-0003-2764-8846
http://orcid.org/0000-0003-2764-8846
http://orcid.org/0000-0001-8511-0230
http://orcid.org/0000-0001-8511-0230
http://orcid.org/0000-0003-4059-7086
http://orcid.org/0000-0003-4059-7086
http://orcid.org/0000-0003-4059-7086
http://orcid.org/0000-0002-7180-4765
http://orcid.org/0000-0002-7180-4765
http://orcid.org/0000-0002-7180-4765
http://orcid.org/0000-0001-9769-1693
http://orcid.org/0000-0001-9769-1693
http://orcid.org/0000-0001-9769-1693
http://orcid.org/0000-0003-4211-528X
http://orcid.org/0000-0003-4211-528X
http://orcid.org/0000-0003-4211-528X
http://orcid.org/0000-0002-7349-3059
http://orcid.org/0000-0002-7349-3059
http://orcid.org/0000-0002-2472-1238
http://orcid.org/0000-0002-2472-1238
http://orcid.org/0000-0003-4994-075X
http://orcid.org/0000-0003-4994-075X
http://orcid.org/0000-0003-1880-8887
http://orcid.org/0000-0003-1880-8887
mailto:juanjsv18@hotmail.com


Rojas M et al. Alzheimer's disease and T2DM

WJD https://www.wjgnet.com 746 June 15, 2021 Volume 12 Issue 6

reviewers. It is distributed in 
accordance with the Creative 
Commons Attribution 
NonCommercial (CC BY-NC 4.0) 
license, which permits others to 
distribute, remix, adapt, build 
upon this work non-commercially, 
and license their derivative works 
on different terms, provided the 
original work is properly cited and 
the use is non-commercial. See: htt
p://creativecommons.org/License
s/by-nc/4.0/

Manuscript source: Invited 
manuscript

Specialty type: Endocrinology and 
metabolism

Country/Territory of origin: 
Venezuela

Peer-review report’s scientific 
quality classification
Grade A (Excellent): 0 
Grade B (Very good): 0 
Grade C (Good): C 
Grade D (Fair): 0 
Grade E (Poor): 0

Received: February 13, 2021 
Peer-review started: February 13, 
2021 
First decision: March 16, 2021 
Revised: March 20, 2021 
Accepted: May 21, 2021 
Article in press: May 21, 2021 
Published online: June 15, 2021

P-Reviewer: Ugo O 
S-Editor: Gao CC 
L-Editor: A 
P-Editor: Ma YJ

Key Words: Alzheimer’s disease; Type 2 diabetes mellitus; Oxidative stress; Islet amyloid 
polypeptide; Glucagon-like peptide 1; Cognitive dysfunction; Hypoglycemic agents

©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Alzheimer’s disease and type 2 diabetes mellitus are highly prevalent chronic 
diseases that have shown a significant association. Important pathways have shown to 
be involved in this relationship, including the phosphatidylinositol 3-kinase and 
mitogen-activated protein kinase pathways, among others. This has led to the develop-
ment of therapeutic approaches that can overlap and address both diseases. Some of the 
most promising interventions include the use of azeliragon, amylin, and glucagon-like 
peptide-1.
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INTRODUCTION
Alzheimer’s disease (AD) and type 2 diabetes mellitus (T2DM) are highly prevalent 
diseases in elderly patients[1,2]. According to the International Diabetes Federation, 1 
in 11 people had DM in 2019, amounting to approximately 463 million cases 
worldwide, of which 90% is attributed to T2DM. These alarming numbers have 
quadrupled since 1990, with a prevalence of 9.3% in adults[3-5]. Moreover, numerous 
complications have been associated with this disorder, among which are renal disease
[6], retinopathy[7], dermopathy[8], peripheral vasculopathy[9], and cognitive 
alterations[10]. The latter have been investigated recently, due to the prominent link 
between T2DM and any type of neurocognitive disorder, especially AD.

As a progressive, degenerative, and irreversible disorder, AD is characterized by 
neuronal loss, the formation of senile plaques composed of extracellular deposits of 
amyloid beta, and the presence of neurofibrillary tangles (NT) in neuronal 
microtubules [11]. Recent studies have demonstrated a higher incidence of AD in 
patients with T2DM in comparison to those without comorbidities. This epidemiologic 
association has spawned various hypothetical pathophysiological links between both 
diseases[12]. These studies focus on the role of insulin as a necessary hormone for 
glucose metabolism in the central nervous system (CNS), with receptors widely 
localized in the hippocampus, frontal area, and entorhinal cortex, which are all 
structures involved in memory and learning[13].

Insulin resistance (IR) is a key alteration of this hormone’s signaling and is the 
pathogenic cornerstone of T2DM, where it promotes a chronic state of hyperinsu-
linemia and hyperglycemia[14]. IR has been associated with the disruption of amyloid 
protein metabolism in the brain, tau phosphorylation in microtubules[15], and the 
formation of reactive oxygen species (ROS) in the mitochondria. Thus, these conditions 
may contribute to the pathogenesis and development of AD.

Therefore, the aim of this narrative review is to summarize the current knowledge 
on the molecular mechanisms linking T2DM with the development of AD, along with 
possible emerging therapeutic strategies.

MOLECULAR BASIS OF GLUCOSE METABOLISM IN THE BRAIN
Of all organs, the brain requires the largest energetic demand[16] (Figure 1). Under 
physiological conditions, a constant supply of glucose, which is the main substrate, is 
necessary for a normal metabolic functionality. Glucose traffic to the brain is regulated 
in the endothelial wall of the capillaries by the blood-brain barrier (BBB), a structure 
composed of two semipermeable membranes, one luminal and one abluminal[17]. 
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Figure 1 Molecular basis of brain glucose and insulin metabolism. Glucose transporter (GLUT)-1 and GLUT-3 are widely expressed in the brain blood 
barrier (BBB), allowing glucose transport. Likewise, GLUT-1, GLUT-2, GLUT-3, and GLUT-4 are present in the membrane of glial cells, whereas GLUT-1, GLUT-3, 
GLUT-4, and GLUT-8 are expressed in neurons. These allow the transport of glucose to the intracellular environment, ready for energetic metabolism. On the other 
hand, it has been proposed that insulin crosses the BBB through a saturable transporter and then couples to the insulin receptor substrate (IRS) in the neuronal 
membrane, causing a conformational change that phosphorylates IRS-1/2, which mainly activates the AKT and extracellular signal-regulated kinase (ERK)-1/2 
pathways. After a phosphorylation cascade, this activates mTOR and various transcriptional factors involved in the growth and cellular differentiation of the nervous 
system. Glu: Glucose; GLUT: Glucose transporters; IR: Insulin receptor; MCT: Monocarboxylate transporter; IRS: Insulin receptor substrate; GRB2: Growth factor 
receptor-bound protein 2; SOS: Son of Sevenless homolog; RAF: Rapidly accelerated fibrosarcoma kinase; MEK: Mitogen-activated protein kinases; ERK: 
Extracellular signal-regulated kinase; PI3K: Phosphatidylinositol 3-kinase; PIP-3: Phosphatidylinositol (3,4,5)-trisphosphate; PDK1: Phosphoinositide-dependent 
kinase-1; AKT: Protein kinase B; TCA cycle: Tricarboxylic acid cycle.

Both are aligned next to endothelial cells, regulating the transportation of hydrophilic 
metabolic substrates, such as carbohydrates and amino acids, in the CNS[18].

Glucose is a polar and hydrophilic molecule, preventing its diffusion through the 
blood capillaries. Thus, it needs a system of specific transporters[16]. Glucose trans-
porters (GLUTs) in the cells of superior organisms are classified into two large 
families: the family of facilitated diffusion GLUTs and the family of sodium and 
glucose co-transporters. GLUTs are glycoproteins located in the plasmatic membrane. 
They have a range between 45 and 55 kDa and their N- and C-terminal ends are both 
located in the cytoplasm[19].

GLUTs in the nervous system: GLUT-1 and GLUT-3
GLUT-1 and GLUT-3 isoforms display the highest affinity for glucose. Therefore, their 
presence in tissues that exclusively depend on glucose for their metabolic require-
ments is extremely important[16]. They are expressed in the endothelial cells of the 
BBB as well as the plasma membranes of neurons and glial cells[20].

The GLUT-1 gene is located in the 1p35.31.3 chromosome, which is widely 
expressed in numerous tissues, and is considered the main GLUT of the BBB[16]. It is 
3-4 times more abundant in the luminal membrane than the abluminal membrane and 
mediates the transport of glucose from the blood to astrocytes. GLUT-1 isoforms vary 
on molecular weight. 55-kD GLUT-1 is expressed in the endothelial cells of the brain 
blood vessels, whereas 45-kD GLUT-1 is mainly expressed in astrocytes. GLUT-1 is 
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highly hydrophobic, and its high glucose affinity (Km = 1-2 mmol/L) allows it to 
transport glucose into cells at virtually any concentration[17], with selectivity for D-
glucose. Therefore, it is thought to act as a basal GLUT that maintains stable glucose 
levels in the CNS[20].

GLUT-3 works in harmony with GLUT-1, allowing the vectorial transport of glucose 
to neurons[16]. It is a high-affinity GLUT (Km = 1-2 mmol/L) found primarily in the 
brain, although low levels of GLUT-3 have been detected in the myocardium, placenta, 
liver, and muscle. Regarding its kinetic properties, it appears to alternate between the 
intake and release of glucose[21]. Current hypotheses suggest the facilitated transport 
of glucose involves conformational changes in the tertiary structure of the transporter. 
This is triggered by the presence of glucose in its binding site on the extracellular 
portion of the transporter and its progressive movement to the intracellular portion of 
it, where another binding site is found[19].

The expression of GLUT in the nervous system varies across different cells. 
Astrocytes express different isoforms of the GLUT family, including GLUT-1, GLUT-2, 
and GLUT-4. These cells cover 99% of the BBB and it is through these GLUT isoforms 
that glucose is able to cross this barrier[18]. Meanwhile, neurons express GLUT-3, 
GLUT-4, and GLUT-8. Despite the expression of these GLUT isoforms, it has been 
investigated whether astrocytes, which take glucose and release lactate, are a 
necessary mediator between glucose and neurons or, as the conventional hypothesis 
proposes, neurons receive glucose directly from the interstitial fluid of the brain in 
aerobic conditions[21]. Through this process, glucose would enter the glycolytic 
pathway and the tricarboxylic acid pathway for its later oxidation, which provides the 
cell with the necessary energy to maintain cellular function[17]. The aforementioned 
glucose transportation mechanism can become the limiting step in certain situations, 
including the development of hypoglycemia and other conditions, such as AD, mainly 
limiting blood flow, BBB permeability, and changes in GLUT-1 expression[18].

Role of insulin in the brain
Insulin is a peptide hormone necessary for maintaining glucose homeostasis[22]. In the 
brain, it has important neuroprotective and neuromodulatory functions, such as 
regulating its growth, repairing dendritic cells and neurons, and having anorexigenic 
effects on the hypothalamus, among other effects[23]. It is chiefly synthesized in the 
pancreas[24], although the presence of insulin mRNA in neurons suggests that it may 
be locally produced in the nervous tissues, especially in the hypothalamus, cerebral 
cortex, olfactory bulb, substantia nigra, and pituitary gland[16]. Insulin may also 
intervene in learning and memory brain functions, especially verbal memory, as 
evidence shows this hormone modulates the secretion of neurotransmitters, such as 
acetylcholine, and favors synaptic plasticity[22].

Once in the plasma, insulin can cross the BBB via active transportation mediated by 
its receptor, which is abundantly expressed in neurons and, in lower quantities, in glial 
cells[22]. After binding to its receptor, insulin promotes the autophosphorylation of 
tyrosine residues, triggering its intrinsic tyrosine kinase activity and phosphorylating 
the insulin receptor substrate (IRS) coupling protein in the tyrosine residue[24]. The 
majority of this response is coupled to IRS-1 and IRS-2, which are ubiquitously 
expressed and the main mediators of insulin-dependent mitogenesis, and the 
regulation of glucose metabolism in the majority of cell types[21]. Historically, IRS-1 
was the first insulin substrate to be identified and represents the prototype of IRS 
family proteins, whereas IRS-2 is mainly involved in the regulation of brain growth. 
The phosphorylation of tyrosine residues on IRS activates Akt, which phosphorylates 
substrates, such as the mammalian target of rapamycin (mTOR) and the glycogen 
synthase kinase-3 (GSK3), among other targets[25]. Insulin also activates the 
extracellular signal receptor kinase (ERK) pathway by activating type 1 and type 2 
ERKs[24]. These molecules can modify the expression of certain genes (c-fos, Elk-1) 
involved in cell growth and differentiation[22].

PATHOGENESIS OF AD: NEUROBIOLOGICAL PRINCIPLES
AD is a neurogenerative disorder that results in a gradual and irreversible deteri-
oration of memory and other cognitive functions. It can also be frequently accom-
panied by other manifestations, such as psychosis, depression, and behavioral 
alterations[26]. Various environmental, genetic, and biologic factors participate in its 
pathogenesis[27,28]. Genetic data suggest that AD may be the result of the dysfunction 
in the amyloid protein precursor pathway, where the production of presenilin 1 
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(PSEN1) and presenilin 2 (PSEN2) takes place. The PSEN1 gene is located in 
chromosome 14, whereas the PSEN2 gene is located in chromosome 1[29]. Although 
mutations in these genes lead to the familiar autosomal presentations of AD, the 
presence of the E4 allele of the E apolipoprotein (APOE) is the main genetic suscept-
ibility factor that has been identified. People with E4/4 homozygotes are eight times 
more likely to suffer AD compared to those who do not have these alleles[30].

Amyloid metabolism: Senile plaques
Physiologically, neuronal cells release soluble amyloid beta, which is a peptide with a 
molecular weight of 4 kD and a length of 42-43 amino acids. The main types of 
amyloid (Aβ40 and Aβ42) emerge as a product of the normal secretion of the 
transmembrane amyloid protein precursor after a proteolytic process that requires the 
participation of secretases (α β γ). α-Secretase acts on the amyloid beta peptide, 
promoting its breakdown in two segments, which are nexin II and soluble amyloid 
beta peptide, which has 16 amino acids[31].

Afterward, the α-2-macroglobulin acts forming the BA-A2M complex, which will 
couple to a protease enzyme to reenter the neuron[32]. During this process, the 
secretases cleave the BA peptide from 40 to 42 amino acids. Such enzymes include the 
beta secretase (acting on amino acid 1) and gamma secretase (40-42 activity). The 
accumulation in the interstitial tissue of insoluble 1-42 beta amyloid fragments goes 
through various transformations in relation to its protein structure until it acquires a 
folded shape that is difficult to break down. Furthermore, other stable proteins are 
associated with this process, such as the serum amyloid P component[33]. The 
presence of these structures leads to the activation of the immune system, especially 
the phagocytic cells of the CNS (microglia), which perpetuate the lesion due to 
pseudoinflammation and the release of ROS. However, recent studies have suggested 
that the participation of amyloid beta is attributed to its deposit on the brain blood 
vessels, which leads to degeneration and hemorrhages, which are important events in 
the physiopathology of AD[34].

Neurofibrillary metabolism: NT
Tau is a protein that is highly associated with neuronal microtubules[35]. Through its 
isoforms and phosphorylation, tau protein interacts with tubulin to stabilize the 
structure of neuronal microtubules, allowing for an efficient synaptic activity[36]. The 
tau hypothesis indicates that an excessive or abnormal phosphorylation of this protein 
results in the transformation to a paired helical filament conformation (PHF-tau). This 
leads to its precipitation and autoaggregation, which slows the axonal transport and 
causes neurodegeneration due to possible apoptosis[37]. NT can be intracellular and 
extracellular. Intracellular NT are hyperphosphorylated and usually found in 
abundance in the neuritic component of the neuritic plaque. Meanwhile, extracellular 
NT are the result of neuronal death and the denomination of the insoluble fibrillar 
skeleton and is characterized by insoluble neurofibrillary components that are difficult 
to proteolyze. These persist even after neuronal death as remains in the extracellular 
medium[38].

AD, IR, AND T2DM: PHYSIOPATHOLOGICAL LINKS
General glucose metabolism involves various intracellular processes, including 
glycolysis, the Krebs cycle, and oxidative phosphorylation. Likewise, it requires 
extracellular factors, such as its transportation from the circulation to the intracellular 
environment, in which insulin has a key regulating role[12]. T2DM is associated with 
the progressive loss of sensitivity to this hormone in a growing IR state, which is also 
present in AD. This outlines a possible overlap in the pathogenesis of both condi-tions
[39].

T2DM has been associated with changes in cognition and cognitive dysfunction, 
reporting a higher risk of developing any type of neurocognitive disorder, including 
AD[40]. Indeed, various clinical and preclinical studies suggest that these disorders 
may share multiple biochemical characteristics and signaling pathways[41] (Figure 2).

Different studies have demonstrated the association between IR and AD, even in the 
absence of hyperglycemia or DM. In this sense, it has been found that neurocognitive 
functions dependent on insulin in patients with sporadic AD could play an important 
role in the physiopathology of this disease, causing disruptions of insulin signaling in 
the brains of these individuals[42]. Similarly, a second study examining AD patients 
non-homozygous for the APOE-ε4 allele reported the presence of fasting insulinemia 
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Figure 2 Pathophysiological links between Alzheimer’s disease and type 2 diabetes mellitus. Alterations in insulin signaling (1), particularly insulin 
resistance (IR), decrease the bioavailability of intracellular glucose, altering the synthesis of acetylcholine precursors, which affects synaptic transmissions related to 
cognition. Likewise, IR alters the intracellular signaling cascade of the PI3K (phosphoinositide 3-kinase), MAPK (mitogen-activated protein kinase), GSK-3 (glycogen 
synthase kinase-3), and IDE (insulin-degrading enzyme) pathways. This increases tau hyperphosphorylation. On the other hand, the low expression of glucose 
transporter (GLUT)-1 and GLUT-3 in the different brain regions (2) is related to the downregulation of hexosamines, which decreases O-GlcNAcylation and increases 
tau hyperphosphorylation. Moreover, mitochondrial dysfunction (3) caused by functional and structural changes in mitochondria and the production of ROS (4) 
increase protein aggregation and compromise both the intracellular and membrane components of the neurons. Moreover, mitophagy and autophagy dysfunction (5) 
also contribute to the development and progression of Alzheimer’s disease in type 2 diabetes mellitus. PI3K: Phosphoinositide 3-kinase; MAPK: Mitogen-activated 
protein kinase; IDE: Insulin-degrading enzyme; GSK-3: Glycogen synthase kinase-3; PSEN1: Presenilin 1; ROS: Reactive oxygen species.

and a lower concentration of insulin in the cerebrospinal fluid (CSF), which shows 
decreased brain insulin uptake[43]. These findings together with those reported by 
other studies[44,45], suggest that insulin signaling disruption can be particularly 
important in the physiopathology of AD in those individuals who are not homozygous 
for the APOE-ε4 allele.

More recent studies point out that due to its effects on neurodegeneration, brain 
glucose metabolism, and cognitive performance, peripheral IR could be associated 
with the pathophysiology of AD in pre-diabetic[46] and non-diabetic patients[47,48]. A 
study that included 130 non-diabetic patients with AD reported that IR was 
independently associated with decreased glucose metabolism in the hippocampus and 
with a lower volume of gray matter[47]. Likewise, a second study reported that high 
serum insulin levels were significantly associated with severe AD presentations. This 
significance persisted when non-diabetic patients were excluded[48]. In fact, different 
studies have shown a decrease in AD incidence[49] and improvement of cognitive 
performance and brain insulin metabolism in patients with AD that have been treated 
with insulin or insulin-sensitizing drugs. This provides further evidence of the role of 
IR in the pathogenesis of AD[15,50,51].

Abnormalities in insulin signaling: Phosphatidylinositol 3-kinase and mitogen-
activated protein kinase pathways
The terms “type 3 diabetes mellitus” or “brain insulin resistance” have been coined to 
describe the dysfunction of insulin signaling seen in AD[52]. IR decreases the 
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availability of glucose needed for neuronal synaptic transmissions due to the 
deficiency of certain metabolites produced in the glycolytic pathway, such as 
coenzyme A and succinyl coenzyme A. These are key precursors for the synthesis of 
acetylcholine, the main neurotransmitter related to cognition[53]. Similarly, it has been 
proposed that IR induces a series of changes in molecular mechanisms that promote 
the synthesis and degradation of the amyloid beta peptide and the hyperphos-
phorylation of the tau protein[54].

Dysfunction in insulin signaling mainly affects the efficiency of the phosphatidylin-
ositol 3-kinase (PI3K). Studies have reported that the brains of patients suffering from 
AD and T2DM have decreased levels of PI3K, which leads to nervous tissue degene-
ration. Furthermore, deficient insulin signaling leads to hypoglycemia, which is 
characteristically found in AD. A decrease in the O-GlcN-acylation of tau has also been 
observed in the brains of these patients, which is a consequence of hypoglycemia as O-
GlcN-acylation is a glucose-dependent process[55,56]. However, this is not the only 
pathway involved in the pathogenesis of AD. Other factors, such as the mitogen-
activated protein kinase (MAPK) pathway, GSK-3, insulin-degrading enzyme (IDE), 
and microvascular dysfunction, also play an important role in tau hyperphos-
phorylation. In this sense, a decrease in GSK-3 phosphorylation and increase of its 
activity can facilitate γ-secretase activities and the processing of the amyloid precursor 
protein, resulting in higher levels of intracellular amyloid beta peptide[57]. Altern-
atively, IDE is a zinc metalloprotease that participates in the degradation of different 
extracellular substrates, such as insulin and amyloid beta. Therefore, its low quantities 
contribute to an increase in brain amyloid beta levels, especially in the hippocampus
[58].

Abnormalities in GLUT-1 and GLUT 3
In regard to GLUTs, clinical studies have revealed that part of the brain hypometa-
bolism in individuals with AD and T2DM may be attributed to a decrease in the 
expression of GLUT-1 and GLUT-3 in the different areas of the brain[59,60]. Possible 
causes appear to be post-translational, as no changes have been found in the GLUT-1 
ARNm levels in the cerebral cortex[61]. Alterations in glucose transport lead to a 
reduction in its metabolism, which is associated with the down-regulation of the 
hexosamine biosynthesis pathway. This involves a decrease in the O-glycosylation of 
the Ser/Thr residues of tau protein by the β-N-acetylglucosamine (or O-GlcNA 
cylation), which leads to its abnormal hyperphosphorylation and the formation of NT, 
contributing to the progression to AD[62].

Moreover, reduced neuronal levels of GLUT-3 have also been identified in patients 
with T2DM[63]. Likewise, this decrease in the O-GlcNAcylation and hyperphos-
phorylation of tau has been correlated with decreased levels of GLUT-1 and GLUT-3 in 
the brain tissue samples of patients with AD[64]. Similarly, other research groups have 
found a decreased expression of GLUT-1 and/or GLUT-3 in the brain cortex[65] and 
the dentate gyrus of the hippocampus[66], which were related to the formation of NT. 
However, the decrease in the expression of these GLUTs, rather than being the main 
cause of the hypometabolism observed in patients with AD, is more likely to be the 
result of a decrease in energy demand[64]. Further studies are needed to confirm the 
direct link between the alterations of GLUTs and neurodegeneration.

Oxidative stress and mitochondrial dysfunction in AD and T2DM
The brain is particularly vulnerable to oxidative damage and mitochondrial 
dysfunction because of the neurons’ high metabolic rate, their dependence on 
mitochondria to obtain energy, and their low antioxidant defenses[67,68]. Numerous 
findings have indicated that mitochondrial dysfunction and oxidative stress are 
implicated in the physiopathology of AD and T2DM[69,70].

Regarding mitochondrial disorders, a decrease in the activity of the pyruvate 
dehydrogenase and α-ketoglutarate dehydrogenase complexes has been found in the 
brains of patients with AD. Both complexes are involved in the Krebs cycle, which can 
lead to mitochondrial dysfunction, glucose hypometabolism, and neuronal oxidative 
stress[71,72]. Similarly, brain hypometabolism in individuals with AD is related to a 
disruption in mitochondrial oxidative phosphorylation[73]. Cytochrome c oxidase is 
the complex with greater alterations in the respiratory chain in neurons from different 
cortical regions[74-76]. Moreover, mitochondrial dysfunction in AD is associated with 
an imbalance in mitochondrial fusion and fission, alterations in mitochondrial 
permeability, calcium homeostasis, and the release of proapoptotic factors[77,78]. 
Furthermore, the accumulation of amyloid beta deposits in the mitochondria of 
individuals with AD alters the functions of the respiratory chain and other mitoch-
ondrial components, which impacts multiple neuronal properties and activities[79-82].
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On the other hand, the increase in ROS and their effects on biomolecules have been 
associated with the development of cell disorders related to age in AD and DM. 
Therefore, oxidative stress is one of the main mediators in the processes underlying 
both diseases[83,84]. Oxidative damage to structural components of the neuronal 
membrane affects enzymes, ionic channels, and receptors anchored to it. Likewise, it 
also affects intracellular structures, such as organelles (mitochondria) and DNA or 
RNA, be it through lipidic peroxidation, nitration, nitrosylation, or carbonylation[85]. 
Likewise, oxidative stress can lead to the formation of peroxides, carbonyls, advanced 
glycation end products (AGEs), and advanced oxidation protein products. 
Furthermore, this results in the denaturalization and aggregation of proteins[86].

The increase in ROS inhibits the cellular production of energy and decreases insulin 
secretion and sensitivity[87]. Similarly, oxidative damage affects a variety of signaling 
pathways related to the unfolded protein response and protein degradation, which 
could lead to IR[88]. Finally, studies have found that mitochondrial disorders related 
to age increase the oxidative stress in individuals with T2DM, contributing to the 
development and progression of AD[89-91].

Autophagy in AD and T2DM
Autophagy is a catabolic process which is both constitutive and inducible, wherein a 
cell uses the liposomal machinery to degrade components or cellular organelles that 
are damaged or senescent. This process can also recycle biomolecules that are then 
available for the ensemble of new cell structures[92]. Different studies have reported 
that autophagy is a crucial deleterious process in AD and T2DM[93-95]. Furthermore, 
evidence suggests autophagic dysfunction in β-pancreatic cells and other peripheral 
tissues could contribute to IR[96,97]. This can occur through the deposit of amyloid in 
the islets, mitochondrial dysfunction, or disorders in regulatory mechanisms, such as 
the AMPK pathway and the mTOR pathway[69,97-99]. All of these factors are 
involved in the regulation of autophagy, glucose homeostasis, and peripheral insulin 
sensitivity.

Moreover, autophagy also intervenes in synaptic plasticity, axonal myelinization, 
and inflammatory modulation by glial cells. Therefore, alterations in this process 
contribute to the occurrence and development of neurodegenerative disorders, such as 
AD[100-102]. This association has been supported by animal and human studies 
related to AD, reporting alterations in genes and proteins associated with autophagy 
[95]. Transgenic mice studies have focused on the role of defective lysosomal 
degradation in the pathogenesis of this condition[103,104]. Studies in patients with AD 
have reported that mutations in PSEN1 contribute to the defective proteolysis of 
autophagy substrates[105]. Furthermore, it has been suggested that the excess of 
autophagy vacuoles reported in dystrophic neurons in such patients is the result of a 
defective clearance of the autophagosome[106]. Likewise, a significant reduction in the 
expression of Beclin-1 has been observed in AD patients, which is a fundamental 
protein in the stages of initiation and maintenance of autophagy, interfering with 
autophagy activities[107]. Furthermore, dysfunctions in mitophagy have also been 
identified. This mechanism participates in the detection and elimination of damaged 
mitochondria. It has also been associated with AD as it induces the deterioration of 
neuroplasticity by increasing the levels of ROS and decreasing the levels of cellular 
energy[108,109]. Alterations at the beginning of autophagy, deficient clearance of 
autophagy substrates, and dysfunction in mitophagy constitute the physiopathological 
processes important in AD[110].

In synthesis, various associations between T2DM and the development of neurocog-
nitive disorders, specifically AD, have been reported over the years. However, some 
authors suggest that this association may be confounded by factors, such as smoking, 
hypertension, APOE E ε4, or brain infarctions, which could explain the progressive 
emergence of cognitive deterioration and clinical diagnosis of AD in patients with 
T2DM[111]. At any rate, various epidemiological and postmortem studies (Table 1) 
have observed the high frequency of AD in patients with T2DM, which could be 
explained by the different common pathophysiological mechanisms explained in the 
previous section[112-120].

NEW STRATEGIES FOR THE TREATMENT OF AD
Concerning the multiple pathophysiological links between T2DM and AD, the 
neuroprotective effects of lifestyle interventions, antidiabetic drugs, and other 
molecules have gained interest in the scientific community in the past years (Table 2).
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Table 1 Epidemiological studies on the link between Alzheimer’s disease and type 2 diabetes mellitus

Ref. Methodology Results

Gudala et 
al[112]

Meta-analysis with 28 prospective observational studies which 
evaluated the association between diabetes and the risk of 
developing AD

A 56% risk of developing AD [RR = 1.56 (95%CI: 1.41-1.73), P < 0.05] was 
reported in patients with diabetes

Profenno 
et al[113]

Meta-analysis of 16 cross-sectional studies evaluating the 
relationship between diabetes and AD

The presence of diabetes significantly and independently increased the 
risk of AD [OR = 1.54 (95%CI: 1.33-1.79; P < 0.001]

Ohara et al
[114]

Prospective study that evaluated the association between glucose 
tolerance status and the development of neurocognitive disorders 
in 1017 individuals ≥ 60 yr

AD incidence was significantly higher in subjects with T2DM compared 
to subjects with normal tolerance to glucose [HR = 2.05 (95%CI: 1.18 to 
3.57), P = 0.01]

Xu et al
[115]

Prospective study that examined the association between diabetes 
and the different types of neurocognitive disorders in 1248 older 
adults. Diagnoses were based on the DSM-III-R criteria

Individuals with non-diagnosed diabetes had a HR of 3.29 (95%CI: 1.20-
9.01) P < 0.05 for AD diagnosis

Xu et al
[116]

Prospective study that evaluated the association between T2DM 
and neurocognitive disorders and AD in 1301 older adults

T2DM diagnosis was significantly associated with neurocognitive 
disorders [HR = 1.5 (95%CI: 1.0-2.1) P = 0.04] and AD [HR = 1.3 (95%CI: 
0.9-2.1) P < 0.05]

Peila et al
[117]

Prospective study that examines the association between T2DM 
and neurocognitive disorder incidence in 2574 Japanese-American 
men. Diagnosis of neurocognitive disorder was performed 
through physical exam and MRI according to the NINCDS-
ADRDA and DSM-IV criteria

T2DM was significantly associated with AD diagnosis [RR = 1.8 (95%CI: 
1.1-2.9) P < 0.05]

McIntosh 
et al[118]

Prospective study that examined the relationship between T2DM, 
biomarkers, and the risk for suffering from neurocognitive 
disorders in 1289 dementia-free participants. AD biomarker levels 
were measured from the CSF. Neurocognitive disorders were 
evaluated through the CDRSB

Untreated diabetic individuals had higher levels of p-tau, p-tau/Aβ1-42, 
and t-tau/Aβ1-42 in their CSF than normoglycemic or prediabetic 
individuals (P < 0.05). The untreated group did not progress to 
neurocognitive disorder in higher rates than normoglycemic individuals 
[HR = 1.602 (95%CI: 1.057-2.429); P = 0.026]

AD: Alzheimer’s disease; T2DM: Type 2 diabetes mellitus; RR: Relative risk; HR: Hazard ratio; DSM-III-R: Diagnostic and Statistical Manual of Mental 
Disorders, revised third edition; CSF: Cerebrospinal fluid; CDRSB: Clinical Dementia Rating Sum of Boxes; p-tau: Phosphorylated tau; t-tau: Total tau; 
Aβ1-42: β-amyloid 1-42; MRI: Magnetic resonance imaging; NINCDS: National Institute of Neurological and Communicative Disorders and Stroke; 
ADRDA: Alzheimer’s Disease and Related Disorders Association; CI: Confidence interval; OR: Odds ratio.

Lifestyle interventions such as nutritional counseling and physical activity are 
among the first indications made to diabetic and insulin-resistant patients as 
established by international guidelines[121]. A systematic review by Dunkley et al[122] 
reported the efficacy of these interventions in diabetes prevention, similar to what was 
observed by a second systematic review in which high-risk T2DM patients 
participated in lifestyle interventions, observing that there was a lower incidence of 
T2DM among these subjects[123].

Numerous benefits have also been observed in the context of lifestyle interventions 
and cognitive decline. As it has been reported, nutritional behaviors such as calorie 
restriction and the inclusion of an antioxidant-rich diet have shown a beneficial effect 
in slowing the progression of neurodegenerative illnesses[124]. In addition, dietary 
interventions with meals characterized by low saturated fat and low glycemic index 
have shown improvement not only in insulin sensitivity but also in molecular markers 
of AD, such as an increase of Aβ42 in the CSF, which normally shows reduced levels 
in patients with AD[125].

Furthermore, when examining the impact of healthy lifestyle behaviors in AD 
incidence, two longitudinal studies found that there is an additive effect. In 
consequence, those individuals who practiced two to three behaviors such as 
following the Mediterranean diet, performing physical activity, and having a low 
consumption of alcohol showed a lower incidence of AD than those performing only 
one or none of these behaviors[126]. Overall, lifestyle interventions for diabetic 
patients, patients with IR, and patients with AD show benefits at the metabolic and 
cognitive levels and are recommended as part of non-pharmacological treatment and 
preventive interventions for these conditions.

There are numerous pharmacological interventions for the treatment of T2DM and 
AD. The systematic administration of insulin has been widely associated with a 
decrease in the pathological accumulation of amyloid beta as well as with cognitive 
improvement[127], especially in declarative memory[128,129] and attention[127]. 
Nevertheless, the use of insulin has not yet proven to be a safe and effective treatment 
for AD. Furthermore, there are adverse effects such as hypoglycemia[130], which is 
one of the main issues associated with insulin therapy, related in some cases to higher 
cardiovascular risk and, subsequently, death[131,132]. Likewise, repeated episodes of 
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Table 2 Summary of key evidence and ongoing trials on Alzheimer’s disease and type 2 diabetes mellitus

Ref. Antidiabetic 
drug Methodology Results

Craft et al[137] Intranasal 
insulin

Randomized, double-blind, placebo-controlled trial which 
evaluated the effects of intranasal insulin administration in 
104 adults with amnestic mild cognitive impairment or 
mild to moderate AD

Treatment with 20 UI of insulin improved delayed 
memory (P ≤ 0.05). According to caretakers, a functional 
improvement was observed in the groups receiving 20 and 
40 UI of insulin, respectively (P ≤ 0.01)

Alp et al[164] Beta-glucan 
and gliclazide

Preclinical assay including mice with induced diabetes. 
These were subdivided into six groups among which two 
groups received treatment with beta-glucan or gliclazide. 
Different parameters were used to determine the level of 
oxidative stress, including paraoxonase-1, total 
antioxidative status, and malondialdehyde

Mice with induced diabetes with no treatment presented 
high levels of malondialdehyde with a decrease in 
paraoxonase-1. Groups treated with beta-glucan and 
gliclazide presented a return of these values to normal 
levels after treatment, showing a decrease in brain 
oxidative stress (P ≤ 0.05)

Mostafa et al
[174]

Metformin Preclinical study in mice in which a group received 
scopolamine and metformin at and the other group 
received scopolamine and rivastigmine. Malondialdehyde, 
Akt, phosphorylated Akt, phosphorylated tau, and 
acetylcholinesterase levels were determined

The functionality of mice receiving scopolamine and a 
dose of metformin of 100 mg/kg per day was better than 
the group that was not administered with metformin. 
They also presented less inflammation and oxidative stress 
compared with the group receiving rivastigmine. An 
increase in phosphorylated Akt was observed

Qi et al[188] Liraglutide Forty mice were divided into four groups. The group with 
amyloid beta-induced AD was administered with 
liraglutide for 8 weeks and their cognitive performance was 
evaluated using a Morris water labyrinth

A protective effect in cognitive performance was observed 
in mice administered with liraglutide. Likewise, less 
structural changes in pyramidal neurons were observed, 
as well as a decrease in tau phosphorylation

Adler et al
[209]

Amylin The amylin levels in AD patients, patients with mild 
cognitive dysfunctions, and the control group were 
determined. Likewise, pramlintide, an amylin analog, was 
administered in AD mice in which oxidative stress and 
cognition were evaluated

Lower levels of amylin in patients with AD and mild 
cognitive dysfunction were observed compared with the 
control group. Mice administered with pramlintide 
showed improvement in cognition and synaptic markers 
as well as a decrease in oxidative stress in the 
hippocampus

NCT01843075
[190]

Liraglutide Multicenter, randomized, double-blind, placebo-controlled 
Phase IIb study in patients with mild AD

-

NCT03980730
[208]

Azeliragon Multicenter, randomized, double-blind, placebo-controlled, 
Phase II/III studies to evaluate the safety and efficacy of 
azeliragon as a treatment for subjects with mild AD

-

NCT02462161
[142]

Intranasal 
insulin aspart

Pilot phase I clinical trial that will examine the effects of 
intranasal insulin aspart on cognition, daily function, blood, 
and cerebral spinal fluid markers of AD

-

NCT02503501
[143]

Intranasal 
insulin 
glulisine

A phase II, single center, randomized, double-blind, 
placebo-controlled study that will evaluate the safety and 
effectiveness of intranasal glulisine in patients with 
probable AD

-

AD: Alzheimer’s disease.

hypoglycemia caused by insulin therapy could be involved in the worsening of the 
cognitive deficit observed in certain patients with DM[133,134]. Therefore, this limits 
the use of insulin as treatment in patients with AD and other cognitive disorders[135]. 
Furthermore, pharmacological preparations for insulin injections do not entirely cross 
the BBB, limiting its distribution in the CNS[136]. Therefore, intranasal insulin 
administration emerges as a highly viable alternative[137-143].

Although only a few studies have evaluated its short-term effect on healthy 
individuals[138,139], the chronic administration of intranasal insulin in cognitively 
normal patients has been associated with higher memory performance. In this context, 
a study performed by Reger et al[140] showed that patients with cognitive defects who 
were administered with intranasal insulin (20 IU, 2×/d) displayed an improvement in 
both memory recall and their functional state based on the observations of their 
caretakers. Similar findings were reported by Benedict et al[139] who administered 
intranasal insulin (3×/d, 40 IU/doses) for 8 wk, which led to an improvement in late 
words recall. Likewise, a phase II/III clinical assay conducted by Craft et al[141] 
included patients with AD or mild cognitive deficits who were treated with intranasal 
insulin through a special device (Kurve Technology). Significant score improvements 
were found at months 15 and 18 (-5.70 and -5.78 points, nominal P = 0.004 and 0.018).

Alternatively, leptin and ghrelin are hormones with several functions in energetic 
balance and have a possible role in the pathophysiology and treatment of AD[144]. 
Indeed, late-life weight loss and midlife obesity — both of which involve dysfunctions 
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in leptin signaling — have been associated with a higher risk of developing AD[145]. 
Midlife obesity is linked to high levels of circulating leptin, which leads to the central 
resistance to these pathologically high levels. This has been described among obese 
individuals as a component in IR and T2DM. Meanwhile, late-life weight loss has been 
related to low circulating levels of leptin[145,146]. Low brain leptin signaling has been 
found to worsen hippocampus functionality and decrease the neuroprotection against 
various central processes in the pathogenesis of AD, such as the metabolism of 
amyloid beta and tau[145,147]. The administration of leptin may renew insulin 
sensitivity by interacting with the insulin receptor and its signaling pathway[148-150] 
and by decreasing the pro-inflammatory response[146]. Likewise, in mice with AD, 
leptin has shown a promising therapeutic effect, improving the formation of memory, 
synaptic plasticity, and performance in learning activities[151-153].

On the other hand, many researchers have recently focused on evaluating the 
influence of the ghrelin-insulin system in glucose homeostasis. Ghrelin is unable to 
improve insulin sensitivity as it is activated with low levels of blood glucose and acts 
as a counterregulatory hormone[154]. However, it activates a vast number of signaling 
pathways for growth factors that compensate the loss of insulin signaling[155]. 
Although a large long-term impact in glycogenic metabolism has not been observed, 
the administration of ghrelin in AD patients has emerged as a possible therapeutic 
target by improving the pathological markers of the disease. This could be due to an 
interaction with the growth hormone secretagogue receptor 1α (GHSR1α). 
Ghrelin/GHSR1α signaling plays an important role in the synaptic physiology of the 
hippocampus and memory maintenance through the regulation of the D1 dopamine 
receptor (DRD1)[155,156]. Current emergent evidence suggests that the disruption of 
GHSR1α function induces hippocampal stress and memory deficits[157]. Furthermore, 
animal model studies have reported that the administration of ghrelin or analogs, such 
as MK0677 and LY444711, can inhibit the accumulation of amyloid beta and the 
hyperphosphorylation of tau protein by phosphorylating GSK-3β via the AMPK and 
PI3K/Akt pathways[158-160]. This may also reduce oxidative stress, excitotoxicity, 
and neuroinflammation and improve cognition and memory[158,161,162].

Clinical evidence has shown that the use of certain oral hypoglycemic drugs is 
associated with a lower risk of dementia[163]. Sulfonylureas have been observed to 
modulate diabetes-induced oxidative stress[70]. In this context, Alp et al[164] reported 
that the administration of gliclazide can potentiate antioxidant mechanisms and 
decrease the oxidative index in the brain of diabetic rats. These findings are consistent 
with that of Baraka and ElGhotny[165] and Abdallah et al[166], in which the adminis-
tration of glibenclamide in mice reduced the hyperphosphorylation of tau and 
modulation of oxidative stress. However, further research is required to demonstrate 
the efficacy of sulfonylureas as a possible treatment for AD. In addition, it has been 
demonstrated that just as insulin therapy, sulfonylureas also have severe hypogly-
cemic effects[167,168], and repeated hypoglycemia episodes could lead to cognitive 
alterations or a worsening of cognitive deficits.

Evidence regarding the use of metformin in the treatment of AD has been partic-
ularly controversial recently. In theory, it could decrease tau phosphorylation[169] and 
the interleukin-1β-mediated activation of phosphokinases Akt and MAPK[170]. 
Moreover, it can inhibit complex 1 of the mitochondrial respiratory chain, inducing an 
increase in cyclic adenosine monophosphate (cAMP) and activating PKA and AMPK
[171,172]. Likewise, a study evaluated the ability of metformin treatment for a year in 
mice models of AD, reporting a gender-dependent effect, wherein AMPK activation in 
female mice improved memory and learning, while in male mice memory and 
cognitive behavior worsened, possibly due to hormonal issues[173]. Furthermore, 
Mostafa et al[174] reported that only low doses of metformin (100 mg/kg) in rats were 
associated with a delay in memory loss, possibly due to the suppression of Akt. 
Despite this, a study assessing the risk of AD in patients treated with antidiabetics 
found that those with long-term metformin treatment were associated with worse 
cognitive performance[175]. Long-term studies, with a greater number of patients and 
a standardized methodology, are needed to understand the true role of metformin in 
AD treatment, as current evidence appears contradictory.

The use of TZD has also been a subject of study for the treatment of AD, as they 
cause an overexpression of PPARγ in the temporal cortex, which has been associated 
with a decrease in amyloid beta plaque formation, a decrease in β-secretase levels, and 
the expression of PPA. Likewise, it modulates calcium homeostasis in the 
hippocampus, in association with an improvement in cognition[176-178]. Cheng et al
[179] reported that pioglitazone can improve memory and cognition in the early stages 
of AD. Similarly, in a pilot study performed in individuals with AD and T2DM, Sato et 
al[180] have found that patients treated with pioglitazone for 6 mo showed cognitive 
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improvement compared with the placebo group. However, another study in which 
AD patients without diabetes were treated with TZD for 18 mo did not find any 
significant cognitive improvement[181]. Currently, an active clinical assay 
(NCT1931566) with a more extensive sample intends to determine the efficacy of 
pioglitazone treatment for a longer period in patients with mild cognitive impairment 
[182].

Since the activation of glucagon-like peptide 1 (GLP-1) receptors and glucose-
dependent insulinotropic polypeptides (GIP) in the CNS has been associated with 
neuroprotective effects[183], the use of GLP-1 and GIP analogs in AD has emerged as a 
promising therapeutic option. In preclinical studies, the administration of liraglutide 
in mice has demonstrated to decrease tau hyperphosphorylation and the deposition of 
amyloid plaque. Likewise, it prevents neuronal loss and the deterioration of synaptic 
plasticity and promotes beneficial effects on neurogenesis and brain microcir-culation
[184-188]. A pilot study that evaluated the administration of liraglutide for 6 mo in AD 
patients did not find any significant cognitive improvement. However, it was shown 
that patients treated with GLP-1 agonists had less deterioration of glucose metabolism 
compared with those treated with placebo[189]. Moreover, a clinical trial assessing the 
efficacy of liraglutide in a larger group of patients with AD is ongoing[190].

With regard to GIP, different analogs have been able to show improvement in 
neurodegenerative diseases. Gault and Hölscher[191] reported that the use of D-ala2-
GIP and N-glyc-GIP analogs reversed the synaptic plasticity alterations that had been 
induced by amyloid. D-Ala2-GIP has also been reported to decrease the amyloid 
plaque load, chronic inflammation, and oxidative stress, improving memory formation 
and synaptic plasticity as well as normalizing neurogenesis in AD animal models[192,
193]. Based on these findings, the therapeutic effect of novel dual GLP-1/GIP agonists 
has been evaluated, as well as more recent triple GLP-1/GIP/glucagon agonists[194]. 
Clear neuroprotective effects have also been observed, reducing inflammation, 
oxidative stress, and apoptotic signaling and protecting memory formation and 
synaptic activity[194-196]. On the other hand, the administration of DPP4 inhibitors, 
such as saxagliptin and vildagliptin, have also been associated with a decrease in 
amyloid beta deposition, tau phosphorylation, and improvement in memory retention
[197,198]. However, these findings are limited to preclinical studies in mice.

Similarly, sodium-glucose transport protein 2 inhibitors (SGLT2i) have been proven 
to have neuroprotective effects in animal models[199]. This has been reported in obese 
and diabetic mice, in which positive results on metabolic and brain function 
parameters have been observed. In addition, the attenuation of physiopathological 
processes like mitochondrial dysfunction, IR, inflammation, oxidative stress, and 
apoptosis as well as improvement in cognition, neurogenesis, synaptic density, and 
synaptic plasticity of the hippocampus has been reported[200-202].

These findings have been recently observed in AD-T2M mice in a study performed 
by Hierro-Bujalance et al[203], in which it was reported that empagliflozin can reduce 
the density of the senile plaque and the levels of amyloid beta in the brain cortex and 
hippocampus.

There is a scarce number of studies providing clinical evidence on the use of SGLT2i 
in AD. In this sense, Wium-Andersen et al[204] performed a nested case-control study 
in which they established that the use of SGLT2i reduces the risk of dementia in 
diabetic patients (odds ratio of 0.58; 95% confidence interval: 0.42-0.81; P < 0.05). 
Currently, a double-blind, randomized, placebo-controlled, parallel group, 12-wk 
study is underway. Its goal is to investigate the effect of dapagliflozin in patients who 
possibly have AD[205].

Azeliragon, a novel drug, has been reported to decrease amyloid deposition and 
brain inflammation by antagonizing the AGE receptor[206,207]. Based on the 
preliminary results from a phase III 18-month clinical trial in AD patients, the use of 
azeliragon decreased pro-inflammatory markers, hippocampus atrophy, and cognitive 
deterioration. More clinical trials are needed to confirm these findings[208]. Finally, 
amylin, which can cross the BBB and has effects at the CNS level, has been suggested 
to have a role in mood disorders as well as neurodegenerative disorders[136]. In AD 
patients, amylin plasma levels are considerably low, and the administration of 
analogs, such as pramlintide, has been associated with a decrease in neuroinflam-
mation, oxidative stress, and memory improvement in AD mice[209]. Therefore, its 
potential use in clinical studies in the upcoming years could be promising.
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CONCLUSION
Different studies have demonstrated the existence of a marked association between 
T2DM and the development of AD. Significant advances in the field of neuroendo-
crinology have investigated the underlying molecular mechanisms involved in the link 
between both disorders. Although various confounding factors may intervene in this 
relationship, studies have found that these diseases may share pathophysiological 
phenomena, including several abnormalities in insulin signaling in the PI3K and 
MAPK pathways in the brain tissues as well as the disruption of mitochondrial 
function, autophagy, GLUTs 1 and 3, and oxidative stress. This overlap leads to new 
common therapeutic perspectives, and various antidiabetic treatments have been 
implemented in multiple large-scale clinical and epidemiological studies. However, 
future clinical trials on the efficacy of these novel therapeutic interventions are needed 
to better characterize the true scope of this prospect.
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