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Abstract. In this research a three step method for right heart segmentation based on a gradient–

based difference operator and machine learning techniques is reported. The proposed method is 

applied to human heart multi–slice computerized tomography (MSCT) volumes. The first step 

is the preprocessing, where a gradient–based difference operator is applied to exploit the 

functional relationship between the original input image and its edge enhanced version. In the 

second step, the least squares support vector machines (LSSVM) are used with a double purpose. 

First, an appropriate volume-of-interest is automatically established in order to isolate the 

structure to segment. Second, another LSSVM is trained for locating the voxels required for 

initializing the seed based clustering procedure. In the third step (segmentation step), the 

preprocessed volumes are subsequently processed with an unsupervised clustering technique 

based on simple linkage region growing. Dice score is used as a metric function to compare the 

segmentations obtained using the proposed method with respect to ground truth volumes traced 

by a cardiologist. The right atrium, pulmonary valve, right ventricle and venae cavae are 

segmented from 80 cardiac MSCT volumes. Reported metrics confirm that this method is a 

promising technique for right heart segmentation. 

1. Introduction 

Powerful incentives to instigate the researches that generate clinical supports can lead to early diagnosis 

of diseases and planning of clinical routine procedures useful to raise the quality of life of cardiac 

patients. The pulmonary hypertension, coronary heart disease, dysplasia and cardiomyopathies are the 

main cardiac disorders associated with the right side of the heart. In this sense, the evaluation of cardiac 

structures of the right heart is of great importance in the management of these disorders. However, and 

despite its important diagnostic value, the assessment of right heart function often remains disregarded 

in patients referred for cardiac imaging exploration [1]. 

1.1. The right side of the heart 

The right heart is composed by the right atrium (RA), the superior and inferior venae cavae, the tricuspid 

and pulmonary valves, and the right ventricle (RV). The superior and inferior venae cavae return 

deoxygenated blood from all peripheral tissues to the right atrium. During the right ventricular diastole, 
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the venous return flows passively, through the opened tricuspid valve, from the right atrium to the right 

ventricle. The remaining deoxygenated blood is actively pushed into the right ventricle during atrial 

systole. During ventricular systole, the right ventricular pressure closes the tricuspid valve, open the 

pulmonary valve and then push blood into the pulmonary artery. 

1.2. Purpose 

The objective of this work is to develop an approach for detecting the anatomic structures that conforms 

the right heart from multi slice CT sequences. The approach integrates a gradient–based difference 

operator with machine learning techniques in order to segment the RA, pulmonary valve, RV and 

superior vena cava. Three–dimensional (3–D) cardiac images are preprocessed using an image–

enhancement scheme based on a gradient–based difference operator in order to minimize the artifacts 

impact in the image sequences and improving the information inside the cardiac structures. Therefore, 

this enhancement scheme allows to increase the low contrast associated with MSCT sequences. A 

volume–of–interest (VOI) for each structure is obtained by means of the LSSVM by detecting several 

anatomical landmarks that allow to locate certain planes useful for isolating the cardiac structure to be 

segmented. Additionally, a voxel called initial seed is automatically located in the each structure of 

interest using the LSSVM. For each structure of the right heart, the voxel seed is compared with certain 

neighborhood voxels characteristics such as intensity and topological relationship according to a simple 

linkage region-growing algorithm. 

The segmentation algorithm allows to obtain a binary 3–D image with each structure and the 

background. In order to validate the accuracy of the structures segmented and assessing the performance 

of the proposed method, the inter and intra–subject variability of the complete approach is evaluated 

using the Dice score (Ds). The images segmented using the current approach are compared with respect 

to segmentation manually traced by a cardiologist in the same images. 

1.3. Related works 

The section is dedicated to presenting previous studies that have some connection with this research. 

Zhuang et al. [2], propose an automatic method based on the locally affine registration method and free-

form deformations with adaptive control point status for segmenting the heart in magnetic resonance 

imaging (MR). The authors report an average Ds of 0.84, for right ventricle segmentation. 

An automatic method based on multi–atlas approach is developed for detecting the outer surface of 

the pericardium and cardiac chambers in CT images [3]. They report optimal Ds for left ventricle 

segmentation of 0.91 and the RV of 0.88. 

Ghesu et al. [4] propose a pipeline for detecting and for segmenting objects in the context of 

volumetric image parsing. The problem is solved as a two-step learning problem: anatomical pose 

estimation and boundary delineation. A learning framework known as Marginal Space Deep Learning 

(MSDL) is introduced in order to exploit the strengths of efficient object parameterization in hierarchical 

marginal spaces and the automated feature design of Deep Learning network architectures. Finally, other 

authors using finite element method [5], level set method [6] and commercially available software [7] 

in order to automatically segment anatomical structures of the right heart. 

2. Materials and methods 

An overview of the proposed method is shown on the flowchart in Figure 1. 

 

 
Figure. 1. Overview of the proposed right heart segmentation method. 
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2.1. Data source 

The images of this research are derived by two multi–slice computed tomography (MSCT) machines 

with retrospective electrocardiographic (ECG) gating. Two 64-channel scanners, the LightSpeed VCT 

and the Discovery CT750 HD General Electric Medical System are used. Each study consists of 20 

volumes taken at different times during the ECG–gated cardiac cycle and belongs to a single subject. 

Four volumes are captured in signed 12–bits DICOM format. Each volume could contain between 

148 and 326 slices. The slice thickness varies from 0.400𝑚𝑚 to 0.625𝑚𝑚. In all volumes, the slices 

have an isotropic resolution of 512 × 512 pixels, but the pixel size varies from 0.273𝑚𝑚 to 0.488𝑚𝑚. 

2.1.1. Dataset of points patterns. The dataset of point patterns is constructed from a subset of several 

volumes of the test dataset which have been enhanced and down sampled. The considered volumes are 

enhanced using the technique described in section 2.2. A cubic interpolation method is used with the 

basic idea of reducing the spatial resolution of each volume [8]. The expected reduction factor is 8. In 

this sense, the slices in the enhancement MSCT volume with a resolution of 512 × 512 pixels after the 

down sampling will have 64 × 64 pixels. A manual process performed by a specialist is applied to locate 

a circular neighbourhood with radius 10 pixels corresponding to each point. Five points are considered 

in order to define this dataset. Table 1 and Figure 2 describe the points location. 

 

Table 1. Location of the points for planes construction. 
Point  Location 

p1 Right atrium–right ventricle joint 

p2 Right ventricle apex 

p3 Right atrium–superior vena cava joint 

p4 Pulmonary valve–pulmonary artery joint 

p5 Pulmonary valve–right ventricle joint 

 

 

Figure. 2. Location of the 

points on the right side of heart. 

2.2. The gradient–based difference operator 

The boundaries between the nearby structures of the right heart are nearly indistinguishable basically by 

the low contrast to noise ratio of the MSCT images. In this regard, the gradient–based difference operator 

is proposed as a preprocessing stage for enhancing the computerized tomography volumes and thus 

improving the generally low contrast of these images. 

The operator is defined as the magnitude of difference between the original 3–D image information 

and the information obtained applying to original image a simple edge detector based on gradient 

magnitude. For an original image denoted by Io and its edge enhanced versions Ig, the gradient–based 

difference operator of the original image denoted by 𝑂𝑔[𝐼𝑜] is computed according to Equation (1). 

 

𝑂𝑔[𝐼𝑜] = |𝐼𝑜 − 𝐼𝑔|    (1) 
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2.3. Volume–of–interest definition 

Four cropping planes are constructed in order to define the three–dimensional regions on the enhanced 

image volumes that contain the right heart structures to be segmented. The idea is to isolate the right 

ventricle of the right atrium, the pulmonary valve of the right ventricle and the pulmonary artery, and 

finally, the superior venae cavae (SVC) of the right atrium. The construction of each plane requires at 

least two points located in the MSCT enhanced volume (one of the points belongs to the plane and the 

vector defined by both points is the normal). The points in Table 1 are considered for this purpose. 

2.3.1. Points detection based on supervised learning. The automatic detection of points (p1, p2, p3, p4 

and p5) is performed by applying an automatic learning approach. This approach considers a down 

sampling of the enhanced MSCT volumes followed by the application of a least square support vector 

machine (LSSVM) [9]. The cubic interpolation method considered to construct the dataset of point 

patterns (section 2.2) is here also considered as down sampling procedure. The classifiers based on the 

highly selective LSSVM are implemented in order to identify only those regions that have a high degree 

of correlation with the training point pattern. A detailed description for the implementation of selective 

LSSVM, for construction of cropping planes can be found in [11]. 

The LSSVM classifiers are based on a radial base (Gaussian) kernel function (RBF) with hyper–

parameters σ and γ [10]. These hyper–parameters represent the error penalty factor of the learning 

paradigms and the selectivity factor associated with the width of the RBF kernel, respectively. Five 

LSSVMs are created to recognize the points needed to build the tricuspid, cava, artery and pulmonary 

planes. 

2.3.2. Seed detection. A process analogous to that developed for the detection of the points that define 

the cropping planes, is applied for the detection of the seed points using LSSVM. The seeds must be 

located within the cardiac cavity to be segmented. These seeds are used to initialize the clustering 

procedure considered in the segmentation step. 

2.4. The segmentation procedure 

The segmentation step is based on an unsupervised clustering technique that considers the simple–

linkage region growing (RG) algorithm in order to group voxels into 3–D regions. This clustering 

algorithm starts with a seed voxel that lies inside the region of interest (𝑙 × 𝑙 × 𝑙) and grows a region by 

appending connected neighboring voxels that reaches a certain homogeneity criterion. 

The mean (ӯ) and standard deviation (𝜎𝑠) calculated in the initial region are used to define a range 

of permissible intensities. This range of permissible intensities constitutes the homogeneity criterion. 

The voxels that do not fulfill with the homogeneity criterion are rejected. This process is applied to the 

entire enhancement volume until all voxels are clustered and tagged. 

The following steps are used to implement the general procedure of the segmentation stage: 1.) A 

seed voxel (𝑣𝑠) is taken as the first to analyze. 2.) An initial region is established as a neighborhood of 

voxels around the seed. 3.) The mean and standard deviation (𝜎𝑠) calculated in the initial region are 

used to define a range of permissible intensities given by [𝑣𝑠 − 𝜏𝜎𝑠, 𝑣𝑠 + 𝜏𝜎𝑠], where the scalar 𝜏 

allows to scale the range. 4.) All voxels in the neighborhood are checked for inclusion in the region. In 

this sense, each voxel is analyzed in order to determine if its gray level value satisfies the condition for 

inclusion in current region. If the intensity value is in the range of permissible intensities the voxel is 

added to the region and it is labeled as a foreground voxel. If the gray level value of the voxel is outside 

the permitted range, it is rejected and marked as a background voxel. 5.) Once all voxels in the 

neighborhood have been checked, the algorithm goes back to Step 4 to analyze the (𝑙 × 𝑙 × 𝑙) new 

neighborhood of the next voxel in the image volume. 6.) Steps 4–5 are executed until region growing 

stops. 7.) The algorithm stops when no more voxels can be added to the foreground region. The method 

output is a binary three–dimensional image where each foreground voxel is labeled to 1 and the 

background voxels are labeled with 0. For each of eighty volumes in the test dataset, a binary volume 

with the right ventricle, right atrium, pulmonary valve and superior vena cava labeled with 1 is obtained. 
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3. Results 

3.1. Setting of the method parameters 

The segmentation step is performed for the end–diastolic MSCT volume considering the following: 

• The odd size of the neighborhood of the median filter is varied between 3 × 3 × 3 and 

9 × 9 × 9. 

• In order to set the hyper–parameters of the LSSVM, a fixed and arbitrary value is assigned to 

σ2 and values are systematically assigned to hyper–parameter γ. The value of σ2 is initially set 

to 25. Then, γ is varied between [0 100] with the step size of 0.25. An analogous process is 

applied to set the hyper–parameter γ, that is, it is assigned to the optimal value obtained above 

and, a step size of 0.25 is considered to assign the value range to 𝜎 in the interval [0 50]. The 

optimal values of the hyper–parameters are those derived from the above process. 

• The region growing algorithm is applied by varying the value of parameters τ and 𝑙. In this 

sense, for 𝜏, all the values included in the interval [0 10] with a step size of 0.1 are evaluated, 

meanwhile 𝑙 varies between 1 and 20 with step size of 1. 

For each set of parameters the resulting segmented structures are compared with the corresponding 

structures traced by cardiologists. The differences are estimated using the Dice coefficient as error 

metric. The metric quantifies the degree of overlap between two volumes and it corresponds to the ratio 

of twice the volume of intersection to the sum of the two volumes [12]. 

3.2. Application of the gradient difference operator 

The results obtained in the preprocessing step of the three–dimensional MSCT, considering the optimal 

parameters and the median filtering are presented. The gradient based difference operator is applied to 

the MSCT volumes, generating an output with a subtle smoothing of the Poisson noise. The smoothing 

filter based on median filters is then used to minimize this noise effect while preserving the stronger 

edges. Column b of Figure 3 illustrates the application of the operator to a slice of the MSCT volume. 

Column c of Figure 3 shows the results of applying the median filter in which the right heart structures 

are clearly shown. 

 

   

Figure 3. Results obtained for 

preprocessing step. (a) Original 

slice, (b) Gradient filter, and (c) 

Median filter. (a) (b) (c) 

3.3. Location of points for planes construction 

The process used to define the volume–of–interest generates images in which each right structure to 

segment is isolated from other structures. Figure 4 shows the obtained isolate region at axial views for 

each cropping plane. 

 

    
(a) (b) (c) (d) 

Figure 4. Cropping planes and ROI. (a) RV, (b) RA, (c) PV, and (d) SVC. 
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3.4. Segmentation of right heart structures 

Considering the filtered images at end–diastole time, the RV, RA, PV and SVC are isolated from the 

other structures using the LSSVM. The size of the median filter kernel is 7 × 7 × 7. The optimal 

parameters are summarized in Table 2. 

 

Table 2. Optimal parameters for the proposed method. 
Parameter  RV RA PV SVC 

γ–Hyper–parameter of LSSVM 10 5 2.20 1.75 

σ2–Hyper–parameter of LSSVM 1.50 2.5 1.38 0.90 

l –Neighborhood size for RG 20 3 5 2 

τ –Scale factor for RG 3 2.8 3.1 2.8 

Maximum Ds 0.9126 0.8300 0.8700 0.9100 

 

For the remaining cardiac instants, the proposed technique is applied, using the optimal parameters 

obtained considering the image at end–diastole time. In addition, Figures 5, 6, 7 and 8 show ten instants 

of all segmented structure of one MSCT sequence.  

 

          
Figure 5. Right ventricle segmentation results. 

 

          
Figure 6. Right atrium segmentation results. 

 

          
Figure 7. Pulmonary valve segmentation results. 

 

          
Figure 8. Superior vena cava segmentation results. 

 

Table 3 presents the average values (𝜇 ± 𝜎) for the metric function that quantify the performance of 

the segmentation three step proposed method. This metric is calculated after segmentation of four 

databases used for validation. The values in this table are for four structure segmented. 

 

Table 3. Dice coefficient average values for each structure. 
 RV RA PV SVC 

Dice score 0.8665±0.0471 0.8300±0.0078 0.8700±0.0244 0.9100±0.0061 

4. Results discussion 

One of the main contributions of the present work is to have segmented the superior vena cava which 

can be useful in the analysis of its structure to establish if the superior vena cava presents a normal 

anatomy and functionality or not. Another contribution is generating the 3–D segmentations of both the 

right ventricle and the right atrium. They are useful to monitor the ventricular and right heart functions. 
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5. Conclusions 

A three step method has been developed based on a gradient–based difference operator and machine 

learning techniques for segmenting the right heart structures. The segmentations obtained may be useful 

for the detection of pathologies associated with the right heart size, such as, for example, the detection 

of hypertensive processes. In addition, this type of segmentation allows the development of 

computational models that allow the planning of virtual surgical processes related to right heart half. 

One of the main contributions of the present work is to have segmented the superior vena cava which 

can be useful, on the one hand, in the analysis of its structure to establish if the superior vena cava 

presents a normal anatomy and functionality or not and, on the other, in the construction of realistic 

models of the superior vena cava using 3–D printers, for therapeutic purposes linked to the planning of 

radio–chemo therapies processes that allow to minimize the volume or extension of the various 

neoplasms linked to the superior vena cava syndrome. Another contribution of the present work is to 

have segmented the pulmonary valve without using multiplanar reconstruction (MPR), which is usually 

performed in the clinical context before segmenting the 3–D morphology of the valve. 
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