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Abstract: A multihead weighing process is a packaging technology that can be 

of strategic importance to a company, as it can be a key to competitive advantage 

in the modern food industry. The improvement in the process quality and sensory 

quality of food packaged in a multihead weighing process investigated in this 

paper is relevant to industrial engineering. A bi-objective ad hoc algorithm based 

on explicit enumeration for the packaging processes in multihead weighers with 

an unequal supply of the product to the weighing hoppers is developed. The 

algorithm uses an a priori strategy to generate Pareto-optimal solutions and select 

a subset of hoppers from the set of available ones in each packing operation. The 

relative importance of both aforementioned objectives is dynamically managed 

and adjusted. The numerical experiments are provided to illustrate the 

performance of the proposed algorithm and find the optimum operational 

conditions for the process. 
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1 Introduction 

1.1 Multihead weighers 

Multihead weighers or combinational weighers are used to provide accurate weights at high 

packing speed, and are they currently the most widely used dosing method for many kinds 

of products, including those with heterogeneous characteristics (Keraita and Kim, 2007). 

Combinational weighers have a number of weighing hoppers that statically weigh the 

product; these weight data are fed into a computer, which calculates all of the possible 

combinations of product weights in order to dispense the best combination (closest match 

to target weight) to a packaging machine.  The weighing system consists of three elements, 

namely: A system to automate the product feed to the weighing stations (depending on the 

layout of the machine, the feed system is configured either in a radial or in line 

construction); a system to collect the product and feed it into a weighing hopper (this 

system consists of a set of hoppers, commonly known as feed hoppers); and a set of 

weighing hoppers. 

1.2 Problem description 

A multihead packing process performs an operation by choosing a subset 𝐻′ from set 𝐻 of 

the current 𝑛 hoppers to produce a food package. The basic model of the automated packing 

system consists of 𝑛 weighing hoppers. A quantity of food is placed in each hopper 𝑖, (𝑖 =
1,2, … , 𝑛) (Karuno et al., 2007), and the weight signal is transmitted to the built-in 

computer.  The computer calculates the combinations of weights that come closest to the 

desired weight 𝑇, and the combination of the closest weights is ejected from the 

corresponding hoppers. The resulting empty hoppers are supplied with new quantities of 

food. The computer continuously repeats this process until it obtains the number of 

packages (𝑄) needed, one by one. Based on our experience in this field, multihead 

weighers are able to produce between 50 and 250 packages per minute, depending on the 

specific setting.  

The number of possible different hopper subsets 𝐻′ depends on the number 𝑘 of 

hoppers to be combined each time. In fact, as Imahori et al. (2011) pointed out, the 

optimization problem that focuses on minimizing the difference between the actual and 

target package weight is equivalent to the NP-complete subset-sum combinatorial problem 

(Garey and Johnson, 1979) when 𝑘 is neither previously fixed nor constant. 
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This paper deals with the case where the number of hoppers 𝑘 to be combined in each 

packing operation is constant and fixed in advance. In addition, it assumes that the weights 

in the hoppers follow a normal probability distribution. 

An additional point to take into account in this kind of packaging process is that a given 

quantity of product can remain for a long time in its corresponding hopper until it is chosen 

for packing. This can be a problem when handling a product that will deteriorate quickly, 

such as, a frozen product. One possible way to tackle this problem is to monitor and control 

the load time spent in each hopper, which can be done by assigning a priority coefficient 

𝑃𝑖  to each hopper, as suggested by Karuno et al. (2007). The priority 𝑃𝑖  measures the 

duration of the load in hopper 𝑖 before it is chosen for packing, and it can be calculated as 

follows: Let ℓ denote the current iteration number of the packing operation, and let ℓ𝑖 

denote the iteration number at which weight 𝑖 was thrown into the 𝑖-th hopper when the 

hopper was empty. Therefore, 𝑃𝑖 = ℓ − ℓ𝑖 + 1 expresses the residence time (in number of 

packing operations) of weight 𝑖 in its hopper. Note that 1 ≤ ℓ ≤ Q . The idea is that hoppers 

with higher priorities at a given moment should be more likely to be chosen for emptying 

in that packing operation. 

In real-world engineering, optimization problems are often characterized by the 

presence of multiple objective functions. Multi-objective optimization involves the 

simultaneous optimization of two or more conflicting objectives. A considerable amount 

of research has been conducted in this area in the past thirty years. The principles, 

implementation and applications of multi-objective optimization models in engineering 

optimization problems can be followed in Jaimes and Coello (2008), Marler (2009), Seng 

and Rangaiah (2009), Rangaiah and Bonilla-Petriciolet (2013), Collette and Siarry (2013), 

Liu and Papageorgiou (2013), and Zavala et. al (2014). 

1.3 Previous related works 

The scientific references in the field of multihead weighing are scarce. Basically, 

conference papers, patents, and commercial documentation of manufacturers of this type 

of machine are available. With these restrictions, a state-of-the-art for improving the 

multihead weighing technology is presented. Some authors have studied the possibility of 

improving multiweighing procedures in packing processes’ performance. For example, 

Salicrú et al. (1996) and Barreiro et al. (1998) proposed the use of the percentage variability 

reduction index for the reduction and control of production process variability. Keraita and 

Kim (2006) investigated the optimum scheme for the determination of the operation time 

of line feeders in automatic combination weighers. Keraita and Kim (2007) proposed a 

weighing algorithm for multihead weighers based on bit operation. In Karuno et al. (2007), 

a second objective called “priority” is introduced. They formulated the problem as a bi-

criteria optimization problem, and proposed an algorithm based on dynamic programming. 

The proposed approach aimed to minimize the maximum duration in the system of items 

heuristically (maximum priority), while making the total weight of each package as close 

to the target weight as possible. Some authors (Imahori et al., 2011; Imahori et al., 2012; 

Karuno et al., 2013; Karuno and Tateishi, 2014) have studied the possibility of improving 

the bi-criteria optimization model proposed by Karuno et al. (2007). Other authors, such as 

Imahori et al. (2012) and Karuno et al. (2010), investigated different types of actual packing 

operations. In these investigations, several algorithms are developed for double-layered 
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food packing systems and duplex packing systems, where in an operation two disjointed 

subsets are simultaneously selected to produce two packages. 

1.4. Objectives and structure 

This paper focuses on improving the quality of a multihead packing process in a two-fold 

way: the quality of the process and the sensorial quality of the product. Specifically, we 

propose a bi-objective programming approach in order to simultaneously deal with both 

the criterion of minimizing the difference between the target and actual package weight in 

absolute value (improving the quality of the process), and the criterion of maximizing the 

total priority of the chosen combination of hoppers ∑ 𝑃𝑖 𝑖∊𝐻′ (improving the sensorial 

quality). More precisely, we use compromise programming (Yu, 1973; Zeleny, 1973; 

Marler, 2009; Collette and Siarry, 2013) as a tool to determine the combination of hoppers 

that comes as close to optimizing both criteria at the same time as possible in each iteration 

or packing operation, that is, each time a new package has to be made. An enumerative —

and, therefore, exact— procedure is proposed to determine the best hopper combination 

according to this approach. Our procedure includes an easy-to-implement way to 

dynamically adjust the relative importance of each objective (weight and priority). Further 

information about multi-objective programming and other multicriteria techniques can be 

found in Marler and Arora (2004), Ehrgott (2005), Branke, J. et al. (2008) and Rangaiah 

and Bonilla-Petriciolet (2013). As mentioned above, Karuno et al. (2007) introduced the 

use of multicriteria techniques in automated packing systems. Later in this paper we will 

point out the differences between their approach and ours. 

This paper is organized as follows: In section 2, the problem formulation is presented. 

In section 3, the bi-objective algorithm is explained. Section 4 shows the computational 

experiments. In section 5, we offer the conclusions of this work. 

2 Problem Formulation 

2.1 Notation 

Problem parameters and symbols: 

 𝐻: Set of the current 𝑛  hoppers. 

 𝐻′: Subset of the current 𝑘  hoppers. 

 ℓ: Current iteration number of the packing operation. 

 ℓ𝑖: Iteration number at which weight 𝑖 was thrown into the 𝑖-th hopper when the hopper 

was empty. 

 𝑃MAX: Maximum allowed priority for any hopper. 

 𝑘: Number of hoppers to be combined in each packing operation. 

 𝑋𝑖 : Real weight in hopper 𝑖 ∈ {1, … , 𝑛}. We assume that each weight follows a normal 

probability distribution N(μj, σ), with 𝑗 ∈ {1, … ,5}, depending the subgroup to which 

the hopper belongs (see below). 

 μj : Average weight for hopper subgroup 𝑗 ∈ {1, … ,5}. 

 σ: Standard deviation of weights in every hopper. It is equal for all the  𝑛  hoppers. 

 𝐶𝑉: Percentage value used to calculate the standard deviation of weights in every 

hopper (σ). 
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 Delta: Real value used to establish μj for hopper subgroup 𝑗 ∈ {1, … ,5}. 

 𝑛𝑗: Number of hoppers in hopper subgroup 𝑗 ∈ {1, … ,5}. 

 𝑑: Qualitative factor. It determines how the total number of hoppers (𝑛) are distributed 

in each hopper subgroup 𝑗 ∈ {1, … ,5}. 

 Zα
2⁄ : Critical value of the standard normal probability distribution N(0,1) for a 

significance level 𝛼.  

 𝑇: Target weight for a single package, which is assumed to be a positive number. 

 𝑊: Total weight. It is calculated as the sum of the weights provided by the selected 

combination of  𝑘  hoppers. 

 𝑧1: Difference (in absolute value) between the target weight (𝑇) and the actual weight 

of the selected combination (𝑊). 

 𝑧2: Sum of the priorities 𝑃𝑖  into 𝑘 hoppers. 

 𝑄: Total number of packages needed. 

 

Algorithm parameters and symbols: 

 

 𝜃: Relative weight or importance of the priority objective. It is dynamically adjusted 

in each iteration. 

 𝑃𝑖: Positive integer priority in hopper 𝑖 ∈ {1, … 𝑛}. 

 z1
min: Minimum difference (in absolute value) between the target weight (𝑇) and the 

actual weight of the selected combination (𝑊). 

 z1
max: Maximum difference (in absolute value) between the target weight (𝑇) and the 

actual weight of the selected combination (𝑊). 

 z2
min: Minimum sum of the priorities 𝑃𝑖  in 𝑘 hoppers. 

 z2
max: Maximum sum of the priorities 𝑃𝑖  in 𝑘 hoppers. 

 𝑆: The set of all valid combinations in each package operation. 

2.2 Sources of variability 

The total weight of packages 𝑊 produced by a multihead weighing process can be seen as 

a random variable. The variability depends on the value of several process and operational 

parameters. 

As mentioned previously, the package weight is the result of the sum of the weights 

contained in the subset of  𝑘 hoppers selected to form the package, assuming that the 

weights in each hopper are normally distributed. Particularly, if all the hoppers are 

independently filled according to the same distribution 𝑁(𝜇, 𝜎) and the 𝑘 hoppers are 

randomly selected in each packing operation, then the weight of the packages would follow 

a normal distribution 𝑁(𝑘𝜇, √𝑘𝜎), where the average package mean weight  𝑘𝜇  is 

expected to equal the target  𝑇.  The value of  √𝑘𝜎  (the standard deviation if hoppers are 

selected at random) is considered to be an index of quality in the packaging process. 

However, the subset of hoppers to be discharged 𝐻′ is actually not selected at random, but 

rather in a driven way, so that the total weight  𝑊 = ∑ 𝑋𝑖𝑖∈𝐻′  is as close to  𝑇  as possible. 

Therefore, 𝜎package
2 =  VAR (∑ 𝑋𝑖𝑖∈𝐻′ ). This proposal was also presented by Salicrú et al. 

(1996) and Barreiro et al. (1998).  

Note that the parameter  𝑘  is one of the factors that can clearly affect the final 

variability of the product, as it limits the number of possible hopper combinations (i.e., (𝑛
𝑘

), 
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the number of possible different subsets of size  𝑘  from a set of  𝑛  hoppers) in each packing 

operation. For the same reason, the number of total available hoppers 𝑛  is also a source of 

variability in the package weight. Obviously, the existing variability in each hopper (which 

can be represented by the standard deviation (𝜎) will somehow affect the final package 

variability. It can actually be expressed in a dimensionless way by means of the coefficient 

of variation 𝐶𝑉 (see later in subsection 4.1). 

Furthermore, let us consider the general case where each hopper 𝑖 is expected to be 

filled with a different average quantity of food 𝜇𝑖 (instead of a common value 𝜇). In this 

case, the degree of variability between these average hopper weights 𝜇1, … , 𝜇𝑛 is expected 

to somehow be related to the final package variability. In this paper we will explore the 

case where several hoppers weights are set in such a way that they share the same value 

for 𝜇𝑖 (see subsections 3.1 and 4.1 later), as this has been shown to be an efficient strategy 

to reduce package variability (Barreiro et al., 1998; Keraita and Kim, 2007; Pulido-Rojano 

and García-Díaz, 2016). More precisely, Pulido-Rojano and García-Díaz (2016) showed 

that the strategy of dividing hoppers into 5 groups with different average filling weights 

and a certain deviation among these average weights was a better strategy than an equal 

supply of the product to all hoppers. Therefore, in this paper we will use a filling strategy 

divided into "5 subgroups" of hoppers. 

These and other parameters, such as the maximum allowed priority for any hopper 

(which will be denoted as 𝑃MAX) should be considered as sources of variability in a 

multihead packaging process. Later, in Section 4, we perform numerical experiences to 

assess the real influence of these factors on the final package quality, in terms of variability 

from the target 𝑇, when using the hopper selection algorithm we present in subsection 2.5. 

2.3 Problem Constraints 

The decision problem we address in this paper is how to choose the best (or the most 

appropriate) combination of  𝑘  hoppers in each packing operation. In order to make the 

problem more realistic, we state two additional constraints that any 𝑘-hopper combination  

𝐻′ should meet in order to be eligible: 

 

1. | 𝑇 − ∑ 𝑋𝑖𝑖∈𝐻′  | ≤ Z𝛼 2⁄ √𝑘𝜎, which avoids any 𝑘-hopper combination that would 

produce a package too far from the target  𝑇.  Z𝛼 2⁄  represents the critical value of the 

standard normal probability distribution 𝑁(0,1) for a significance level 𝛼. This is 

called the confidence level constraint. 

2. 𝑃𝑖 ≤ 𝑃MAX ,   ∀ 𝑖 ∈ 𝐻′, which means that the selected 𝑘-hopper combination must not 

involve any hopper containing food that exceeds the maximum allowed residence time 

(in terms of priority, as defined in section 1.2). 

 

Every 𝑘-hopper combination that simultaneously meets conditions 1 and 2 is said to be 

a valid combination. The set of all valid combinations in each package operation will be 

denoted by S, 𝑆 = { 𝐻′ ⊆ 𝐻  |   |𝐻′| = 𝑘  and 𝐻′ meets conditions 1 and 2 }.  
Thus, the subset 𝐻′ of hoppers selected to form the package has to belong to 𝑆. In the 

following subsections, we describe our proposal about how to make this decision. 
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2.4 Objective functions 

In line with what was introduced in section 1.2, the selection of hoppers 𝐻′ to be discharged 

in each package operation should address the following two objectives in order to be 

considered a good combination: 

 

 First objective: To try to make the difference between the real package weight 𝑊 =
∑ 𝑋𝑖𝑖∈𝐻′  and the target weight  𝑇  as small as possible. This will be expressed through 

the following objective function which will be minimized: 𝑧1 = |  𝑇 − ∑ 𝑋𝑖𝑖∈𝐻′   |.  

 Second objective: To make those hoppers that have not been discharged for a long 

time (i.e., with a long residence time) more likely to be selected. In terms of priority, 

this can be achieved by maximizing the following function: 𝑧2 = ∑ 𝑃𝑖𝑖∈𝐻′  ,  which 

represents the aggregated priority of a given 𝑘-hopper combination. In the next 

subsection we develop our proposal about how to simultaneously take into account 

these two objectives in each packing operation. 

2.5 Bi-objective approach 

We propose using a single weighted performance or utility function that combines 

information about the two objectives or criteria being considered in this work (weight and 

priority), where the relative weight or importance of each objective is dynamically adjusted 

in each iteration or packing operation. More precisely, in each iteration, our approach 

consists of looking for the 𝑘-hopper combination that minimizes a sort of “distance” to the 

so-called utopia or ideal point (z1
min, 𝑧2

max) in the criterion space, where 𝑧1
min is the 

minimum possible difference (in absolute value) between the target and the actual weight 

of a 𝑘-hopper combination for the current hopper loads, and 𝑧2
max is the maximum possible 

aggregated or total priority, that is: 

𝑧1
min = min

𝐻′∈ 𝑆
| 𝑇 − ∑ 𝑋𝑖𝑖∈𝐻′  | ,                    (1) 

and       𝑧2
max = max

𝐻′∈ 𝑆
∑ 𝑃𝑖𝑖∈𝐻′ .                               (2) 

Therefore,  𝑧1
min and  𝑧2

max are the respective optimal values for the two objectives being 

considered for the current hopper setting, if each of them was optimized separately. Prior 

to calculating the Euclidean distance (𝐷) from a given solution to the ideal point, each of 

these two values (difference from target weight and priority) is normalized and then 

assigned a relative weight of  (1 − 𝜃) and 𝜃, respectively, so that the final aspect of the 

function whose value is intended to be minimized is the following:    

𝐷 =  √(1 − 𝜃) (
𝑧1−𝑧1

min

𝑧1
max−𝑧1

min)
2

+ 𝜃 (
𝑧2−𝑧2

max

𝑧2
max−𝑧2

min)
2

  ,          (3) 

 

where 𝑧1
max and 𝑧2

min are respectively defined as the maximum difference from the 

target weight and the minimum total priority in the current set of valid 𝑘-hopper 

combinations. 

The parameter 𝜃 is updated in each iteration. The idea is that the objective of selecting 

a 𝑘-hopper combination with a high aggregated priority becomes more important as the 
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maximum current hopper priority gets close to the maximum allowed priority 𝑃MAX.   With 

this in mind,  𝜃  can be defined as: 

𝜃 =  
1

 𝑃MAX −max
𝑖∈𝐻

𝑃𝑖 + 1 
  .        (4) 

 

Therefore, during the first iterations, in which all the hoppers are expected to have low 

priority values, the value of 𝜃 will remain relatively small, and so, the objective of 

minimizing the difference from the target packet weight will be assigned a higher 

importance. As packages production progresses, the closer the maximum hopper priority 

gets to 𝑃MAX, the larger 𝜃 will become and the greater the importance given to the priority 

objective. The combination of hoppers that minimizes the distance to the ideal point is 

known to be an efficient or nondominated solution (Marler and Arora, 2004), which means 

that there is no other valid combination of 𝑘 hoppers that is at least as good with regard to 

(at least) one of the objectives (weight or priority) and strictly better in the case of the other 

objective (Ehrgott, 2005). This is generally regarded as a basic desirable property for the 

solution(s) returned by multi-objective techniques. 

This bi-objective approach makes it possible to easily select a valid 𝑘-hopper 

combination that is reasonably close to optimizing both objectives being considered. In 

order to show this, a simple practical example and further complete numerical experiences 

are presented in sections 3 and 4, respectively. 

Our approach goes one step further than the one by Karuno et al. (2007), who only 

show how to generate different nondominated solutions, without specifying which of them 

should be selected in each packaging operation, whereas we are suggesting a way to 

automatically determine a compromise solution within the nondominated ones.  Moreover, 

although Karuno et al. (2007) are not following a purely lexicographic approach (i.e., a 

subordinated objective importance structure), they are still considering the weight 

objective to be more important than the priority objective (namely, they look for  solutions 

that reduce residence time without moving too far away from the target weight, rather than 

the other way around). Conversely, we consider both objectives to potentially be equally 

important, as explained above. In addition, the respective contexts for the two studies are 

quite different. To be precise, Karuno et al. (2007) look for combinations of any number 

of hoppers in each iteration; that is, the parameter 𝑘  is not fixed in advance and can change 

in each iteration; also, they consider the values for the weights  𝑋𝑖 to be integers and 

uniformly distributed, whereas this paper deals with real-values following a normal 

distribution. 

3 Bi-objective Algorithm 

In this section, our bi-objective algorithm is outlined, along with a numerical example 

showing a sample iteration. This algorithm can be implemented in the software systems 

installed in the control unit of a multihead weigher. 

As suggested by previous studies (see subsection 2.2) aimed at a better performance, 

the set of hoppers will be divided into five subgroups, with the hoppers in each of them 

being filled with a different average amount of product. More precisely, each hopper in the 

third subgroup will be assigned an average weight of 𝜇3 = 𝑇/𝑘, whereas the rest of the 

hopper subgroups will be assigned the same average weight plus or minus a certain shift, 

according to a given pattern. The mean shift in groups 1, 2, 4 and 5 is determined by means 
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of two parameters,  𝐷𝑒𝑙𝑡𝑎  and  𝑚𝑖𝑛_ 𝐷𝑒𝑙𝑡𝑎, to be provided to the algorithm (see Step 1). 

The rest of the details about the algorithm have been introduced in sections 1 and 2. 

3.1 Step-by-step algorithm 

 Input: 

 𝑛:  Total number of hoppers.  𝑛 > 0. 

 𝑘:  Number of hoppers to be combined in each packing operation. 2 ≤ 𝑘 < 𝑛. 

 𝑇:  Target weight.  𝑇 > 0. 

 𝑛1, … , 𝑛5:  Number of hoppers in each subgroup of hoppers. 𝑛𝑗 ≥ 0, ∀𝑗 =

1, … ,5; ∑ 𝑛𝑗
5
𝑗=1 = 𝑛. 

 𝜎:  Standard deviation of the weight to be provided to each hopper.  𝜎 > 0. 

 𝐷𝑒𝑙𝑡𝑎:  Relative mean shift for hoppers in subgroups 1 and 5 with regard to 

subgroup 3.  𝐷𝑒𝑙𝑡𝑎 > 0. 

 𝑚𝑖𝑛_ 𝐷𝑒𝑙𝑡𝑎:  A value such that  𝐷𝑒𝑙𝑡𝑎 − 𝑚𝑖𝑛_ 𝐷𝑒𝑙𝑡𝑎  is the relative mean shift 

for hoppers in subgroups 2 and 4 with regard to subgroup 3.  0 < 𝑚𝑖𝑛_ 𝐷𝑒𝑙𝑡𝑎 ≤
𝐷𝑒𝑙𝑡𝑎. 

 𝑃MAX:  Maximum allowed priority (number of iterations without being chosen) 

for any hopper.  𝑃MAX ≥ 1. 

 𝑄:  Total number of packages to be produced.  𝑄 ≥ 1. 

 Step 1. Initialization. 

 Assign each hopper to a subgroup, so that the number of hoppers in subgroup  𝑗  

is  𝑛𝑗, for all 𝑗. 

 Calculate the average hopper weight to be provided to each hopper subgroup.  

𝜇1 = 𝑇 𝑘⁄ − 𝐷𝑒𝑙𝑡𝑎 · 𝜎 ;  𝜇2 = 𝑇 𝑘⁄ − (𝐷𝑒𝑙𝑡𝑎 − 𝑚𝑖𝑛_ 𝐷𝑒𝑙𝑡𝑎) · 𝜎 ;  𝜇3 = 𝑇 𝑘⁄  ;  

𝜇4 = 𝑇 𝑘⁄ + (𝐷𝑒𝑙𝑡𝑎 − 𝑚𝑖𝑛_ 𝐷𝑒𝑙𝑡𝑎) · 𝜎 ;  𝜇5 = 𝑇 𝑘⁄ + 𝐷𝑒𝑙𝑡𝑎 · 𝜎. 

 Set initial values for weights and priorities for each hopper.  𝑋𝑖 = 0, 𝑃𝑖 = 0,
∀𝑖 = 1, … , 𝑛. 

 Set an initial value for the number of produced packages so far.  𝑞 = 0. 

 Step 2. New packaging operation.  Initialize  𝑧1
min = +∞ , 𝑧1

max = −∞ , 𝑧2
min =

+∞ , 𝑧2
max = −∞ , 𝐷min = +∞ ,   𝐻min

′ = ∅. 

 Step 3. Refill all empty hoppers and update priorities.  For all hopper  𝑖  in subgroup  

𝑗  such that  𝑋𝑖 = 0:  Let  𝑋 = random value from a 𝑁(𝜇𝑗 , 𝜎) distribution.  For all 

hopper  𝑖:  Let  𝑃𝑖 = 𝑃𝑖 + 1. 

 Step 4. Discard and discharge (out of the package) any hopper that does not meet the 

priority constraint.  For all hopper  𝑖  such that  𝑃𝑖 > 𝑃MAX:  Let  𝑋𝑖 = 0, 𝑃𝑖 = 0. 
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 Step 5. First evaluation of all valid combinations, in order to calculate 𝑧1
min , 𝑧1

max ,
𝑧2

min , 𝑧2
max.  For all 𝑘-hopper combination  𝐻′  such that it does not contain any hopper  

𝑖  with  𝑃𝑖 = 0  and such that | 𝑇 − ∑ 𝑋𝑖𝑖∈𝐻′  | ≤ Z𝛼 2⁄ √𝑘𝜎 : 

 Calculate  𝑧1 and 𝑧2. 

 If  𝑧1 < 𝑧1
min,  then  𝑧1

min = 𝑧1. 

 If  𝑧1 > 𝑧1
max,  then  𝑧1

max = 𝑧1. 

 If  𝑧2 < 𝑧2
min,  then  𝑧2

min = 𝑧2. 

 If  𝑧2 > 𝑧2
max,  then  𝑧2

max = 𝑧2. 

 Step 6. Check that the set of valid combinations is not empty. If  𝑧1
min = +∞  then: 

(there is no valid combination; all hoppers must be discharged and refilled)  For all 

hopper  𝑖:  Let  𝑋𝑖 = 0, 𝑃𝑖 = 0; go to Step 2.  Otherwise: go to Step 7. 

 Step 7. Calculate 𝜃.  (relative importance of the priority objective; it is recalculated 

before each packing operation). 

 Step 8. Second evaluation of all valid combinations, in order to select the one that 

minimises the performance function 𝐷. For all 𝑘-hopper combination  𝐻′ such that it 

does not contain any hopper 𝑖 with  𝑃𝑖 = 0 and such that | 𝑇 − ∑ 𝑋𝑖𝑖∈𝐻′  | ≤ Z𝛼 2⁄ √𝑘𝜎: 

 Retrieve  𝑧1  and  𝑧2  for  𝐻′. Calculate  𝐷. If  𝐷 < 𝐷min then let  𝐷min = 𝐷, 𝐻min
′ =

𝐻′. 

 Step 9. The 𝑘-hopper combination minimising  𝐷  is the one that has to be selected to 

produce the package.  Return  𝐻min
′   (as the set of hoppers to be combined to create 

the (𝑞 + 1)-th package).  For all hopper  𝑖  belonging to 𝐻min
′ : (it is discharged into 

the package)  Let  𝑋𝑖 = 0, 𝑃𝑖 = 0. 

 Step 10. Update the number of packages produced and check whether the process is 

finished or not.  Let  𝑞 = 𝑞 + 1.  If 𝑞 < 𝑄 then go to Step 2; otherwise, END. 

 

Steps 5 and 8 of this algorithm reveal the enumerative nature of our proposal. Each of 

the two steps can easily be implemented by using nested loops (as many loops as  𝑘). More 

precisely, because every feasible solution (i.e., valid 𝑘-hopper combination) is evaluated 

in each iteration of the algorithm, our approach can be said to follow an explicit 

enumerative strategy (or exhaustive search), as announced in the introduction section. In 

particular, the number of combinations to be evaluated in a single iteration equals (𝑛
𝑘

) =

𝑛! (𝑘! (𝑛 − 𝑘)!)⁄  at most (because some hoppers can be discarded in Step 4 due to the 

priority constraint). Although it is a simple strategy, this allows our bi-objective algorithm 

to be considered an exact (not heuristic) search (Michalewicz and Fogel, 2004). This 

establishes another difference between our bi-objective approach and the one by Karuno et 

al. (2007), who propose a heuristic strategy (in the sense that they do not necessarily 

generate all the nondominated solutions to the problem, but only those that are close 

enough to the target weight). The computational cost of generating and evaluating all the 

valid hopper combinations can be accepted by our algorithm because it only considers 

combinations of  𝑘  hoppers, with the parameter  𝑘  being fixed in advance. 
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Notice that step 6 of the algorithm describes a situation in which all hoppers should be 

discharged in order to avoid producing packages that would not meet the quality 

requirements for the final product in terms of weight. In practical terms, all of this 

discharged product could be taken and reused in the process again, for instance. In any 

case, this full discharge happens very infrequently (as can be seen later in Section 4.4) and, 

therefore, would not significantly affect the final cost of the packaging process.  

3.2 Numerical example 

For clarity, we show an example of how the iterations of the proposed algorithm work. 

Assume 𝑇 = 500 grams and σ = 12.50 grams, and suppose that we are choosing  𝑘 = 4 out 

of  𝑛 = 16 hoppers in each iteration, which are distributed as stated in step 1 of the 

algorithm, with  𝑛1 = 3, 𝑛2 = 3, 𝑛3 = 4, 𝑛4 = 3 and 𝑛5 = 3. Let us also suppose that the 

value of exchange is 𝐷𝑒𝑙𝑡𝑎 = 1.5, 𝑚𝑖𝑛_ 𝐷𝑒𝑙𝑡𝑎 = 0.5 and the maximum allowed priority for 

any hopper is 𝑃MAX = 10. In these conditions the filling setting would be: μ1 = 106.25 

grams, μ2 = 112.50 grams, μ3 = 125 grams, μ4 = 137.50 grams and μ5 = 143.75 grams. 

Figure 1 shows the situation at iteration 1000 of this specific example.  

Combining different sets of 4 hoppers results in a total of 1790 valid combinations, 

after discarding those that do not meet the condition stated in steps 4 and 6. In the figure, 

each of these solutions is represented according to its coordinates in the decision or 

criterion space, with the horizontal and vertical axes corresponding to the difference from 

the target weight and the total priority, respectively. 

The lowest difference with regard to the target weight,  𝑧1
min = 0.05481 grams, is 

achieved by combining hoppers 1, 2, 10 and 14, whereas the highest aggregated priority 

𝑧2
max = 17 corresponds to hoppers 6, 10, 11 and 13. As a direct consequence, the ideal point 

is (𝑧1
min = 0.05481, 𝑧2

max = 17). As shown in the chart, there are five nondominated or 

efficient solutions, which form the so-called Pareto set or Pareto frontier, and the two 

aforementioned solutions are part of it. The maximum current hopper priority in this 

iteration is 5, and therefore 𝜃 = 1 (10 − 5 + 1)⁄ = 0.1667, according to (4). This means 

that, in this very specific iteration, the ratio of importance of the two objectives (weight 

and priority) is (1 − 𝜃): 𝜃 = 5: 1 (namely, the objective of getting a package close to the 

target weight is five times more important than the objective of selecting a 4-hopper 

combination with a high total priority). 

Each of the 1790 solutions is compared to the performance function 𝐷 (weighted 

normalized distance to the ideal point), as defined in (3). Notice that it would only be 

necessary to check the value of 𝐷 in the five nondominated solutions, as the point that 

minimizes the value of 𝐷 always belongs to the Pareto set in compromise programming. 

However, numerically finding out whether each of the 1790 valid combinations is 

dominated or not would be equivalent to calculating 𝐷 in each of them, in terms of 

computational effort. 

In this example, the minimum value of 𝐷 is given by choosing hoppers 1, 5, 6 and 11, 

which corresponds to a difference from the target weight of only 0.06173 grams (the second 

best combination, with regards to this objective) and a total priority of 14 (to be more 

precise, one of the priorities of these four hoppers that are going to be discharged is equal 

to 5, which was the maximum priority in this iteration). This example illustrates how 

compromise programming succeeds in balancing the objectives being considered in an 

automatic and reasonable way. 
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Figure 1 Feasible solutions set and Pareto frontier (nondominated solutions) for the numerical 

example in Section 3.2, showing a snapshot of a specific iteration of the proposed bi-objective 

algorithm. Each point represents a valid hopper combination. The coordinates for each point 

represent the difference of that combination with regards to the target weight (𝑧1) and the total priority 

of that combination (𝑧2). The five ‘big’ black dots represent the nondominated solutions (candidates 

to be returned as the selected hopper combination) and the ‘empty’ dot represents the ideal solution 

(a theoretical one combining the best of 𝑧1 and 𝑧2). The hopper combination that is finally selected 

(i.e., the compromise solution) is the one that is closer to the ideal point, using the distance D defined 

in Section 2.5.  

 

 

 

 

 

 

 

 

 

 

4 Computational Experiments 

In this section, an extensive set of numerical simulation experiments is presented to study 

the performance of the proposed bi-objective algorithm.  

4.1 Tested process and operational parameters 

In order to find the optimum operative conditions to minimize the variability in the total 

weight (𝑊), a design of experiments (DOE) was carried out. The response variable used is 

the "coefficient of variation of the package" (CVpackage =
σpackage

μpackage
· 100%). This DOE 

takes into consideration a large number of possible productive configurations of the 

multihead weigher. The factors and their levels to study in the DOE are shown in Table 1 

and 2.  In this case, the design of experiments is a balanced factorial design of fixed effects 

factors.  

As has been seen, the factor “Value of exchange” (Delta) helps to adjust the filling 

setting during the packaging operation. This means that Delta makes it possible to observe 

the influence of fixing the average weights for the subgroups of hoppers (μj) in many 

different cases.  In this way, Delta (As has been seen in step 1 of the algorithm) involves 

voluntary changes in the supply of products to different subgroups of hoppers, except for 

𝑛3.  

On the other hand, the factor 𝑑 represents the distribution of the hoppers in each 

subgroup and its levels define the number of hoppers that will be in each. Therefore, an 

Equal level means that the number of hoppers in the subgroups is as homogeneous as 
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possible. In the Central level, the largest number of hoppers is concentrated in the subgroup 

of hoppers whose filling objective has not been modified (𝑛3). In the Extreme level, the 

largest number of hoppers is concentrated in the subgroups of hoppers where the filling 

objective has been modified (𝑛1, 𝑛2, 𝑛4 y 𝑛5).  

The coefficient of variation (CV) is used to calculate the standard deviation of the 

weights in every hopper (𝜎) as an input in the packaging process, e.g., if CV =
√𝑘σ

𝑇
·

100% = 5%, 𝑇 = 500 and 𝑘 = 4. Theoretically, we have √𝑘σ = 25 and, therefore, σ = 

12.50. The above allows the simulation of different scenarios of the standard deviation of 

weights in every hopper. However, it does not mean that √𝑘σ will be the actual variability 

obtained in the package produced through our proposed approach. Thus, calculating all the 

combinations of factors will result in 37800 treatments, which were simulated 10000 times 

each, i.e., 10000 units of packaged products for each treatment. The conclusions of the 

analysis are presented in subsection 4.3. 

 

Table 1 Levels of the factors studied 

Factor Levels 

Number total of hoppers (𝑛) 8,10,12,14,16 

Number of hoppers to be combined (𝑘) 2,3,4,5,6,7 

Target weight (𝑇) 125, 250,500, 1000, 2000 g. 

Coefficients of variation (𝐶𝑉) 1%, 2.5%, 5% 

Distribution of weighing hoppers (𝑑)*   Equal, Center, Extreme 

Value of exchange (𝐷𝑒𝑙𝑡𝑎) 0.0,0.5,1.0,1.5,2.0,2.5,3.0 

Maximum allowed priority for any hopper (𝑃MAX) 10, 30, 50, 100 

         * See Table 2 

Table 2 Distribution of weighing hoppers for each subgroup 

   Equal  Center  Extreme 

 
 𝑛1 𝑛2 𝑛3 𝑛4 𝑛5 

 
𝑛1 𝑛2 𝑛3 𝑛4 𝑛5 

 
𝑛1 𝑛2 𝑛3 𝑛4 𝑛5 

T
o

ta
l 

n
u

m
b

er
 o

f 

h
o

p
p

er
s 

 (
𝑛

) 8 1 2 2 2 1 1 1 4 1 1 3 1 0 1 3 

10  2 2 2 2 2  1 1 6 1 1  4 1 0 1 4 

12  3 2 2 2 3  1 1 8 1 1  4 2 0 2 4 

14  3 3 2 3 3  1 1 10 1 1  5 2 0 2 5 

16  3 3 4 3 3  1 1 12 1 1  6 2 0 2 6 

4.2 Performance measures 

The most important calculated parameters, as a measure of performance to evaluate our bi-

objective approach, are: Average weight of the total number of packages produced 

(𝜇𝑝𝑎𝑐𝑘𝑎𝑔𝑒), the standard deviation of the total number of packages produced (𝜎𝑝𝑎𝑐𝑘𝑎𝑔𝑒), 

percentage of discharge due to the confidence level (DCL), the number of hoppers 

discarded by priority for each iteration (HDP), the average maximum priority for each 

hopper (AMP),  and  the Trade-off values. 

4.3 Statistical analysis 

Analysis of variance (ANOVA) was used to determine the statistical significance of the 

factors and their interaction.  The ANOVA procedure assumes that the observations are 
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normally and independently distributed, with the same variance for each treatment or factor 

level. In order to verify the statistical validity of the results and ascertain what the best 

configuration is, we performed a multifactor ANOVA where the response variable is 

log(𝐶𝑉𝑝𝑎𝑐𝑘𝑎𝑔𝑒). The transformation of the response variable was necessary in order to 

ensure compliance with the ANOVA’s three important hypotheses; normality, 

homogeneity of variance and independence of the residuals (Montgomery, 2012). 

The ANOVA confirms that all the main effects and interactions of the factors are 

statistically significant when CV𝑝𝑎𝑐𝑘𝑎𝑔𝑒  is measured, except for 𝑇. The 𝐶𝑉 factor is the 

most significant and it does not interact with any of the other factors. Moreover, significant 

interactions between Delta and k, Delta and d, k and n, and d and k are highlighted (the 

ANOVA table is not shown due to lack of space). 

The mean plots and least significant differences (LSD) intervals for k, Delta and d are 

shown in Figure 2. As Figure 2 shows, some deductions can be made. When the number 

of weighing hoppers combined reaches values of 𝑘 = 4 or 𝑘 = 5, low CV𝑝𝑎𝑐𝑘𝑎𝑔𝑒  values are 

obtained. A value of exchange (Delta) of 2.0 reduces the CV𝑝𝑎𝑐𝑘𝑎𝑔𝑒  value. A homogeneous 

distribution of hoppers (Equal) in subgroups causes a decrease in the CV𝑝𝑎𝑐𝑘𝑎𝑔𝑒 . 

Figure 3 shows the interaction plots for significant factors. The analysis of interaction 

plots shows some interesting results. The value of exchange (Delta), which results in a 

reduction in the CV𝑝𝑎𝑐𝑘𝑎𝑔𝑒 , depends on the way the weighing hoppers are distributed and 

the number of weighing hoppers combined (𝑘). The values of exchange (Delta) of 1.5, 2.0 

and 2.5 provide the best results when the total number of weighing hoppers (𝑛) is the 

highest.The values of exchange (Delta) of 1.5 or 2.0 are statistically equivalent and provide 

a decrease in CV𝑝𝑎𝑐𝑘𝑎𝑔𝑒  when the maximum allowed priority for any hopper (𝑃MAX) 

reaches its highest value. Note that for 𝑘 = 2, a Central distribution of weighing hoppers is 

preferred. A homogeneous distribution of hoppers (Equal) is able to reduce the CV𝑝𝑎𝑐𝑘𝑎𝑔𝑒  

when multihead machines with a high number of weighing hoppers (𝑛) are employed and 

the maximum allowed priority for any hopper (𝑃MAX) takes the value of 100. A number of 

weighing hoppers combined (𝑘) of 6 or 7 is statistically equivalent and provides the best 

results in reducing the CV𝑝𝑎𝑐𝑘𝑎𝑔𝑒  when the total number of weighing hoppers (𝑛) is used. 

Note that the best value of 𝑘 also depends on the value 𝑛, which is confirmed by the strong 

interaction between these factors.  

 

Figure 2 Mean plots and LSD intervals for significant factors as a function of 

log(CV𝑝𝑎𝑞𝑢𝑒𝑡𝑒). 

 

 

 

 

 

 

 

 

Fig. 5. Graphics of means and intervals of the means for a 95% confidence level for 𝑪𝑽, 𝒌, 𝒏, Delta, 

𝑷MAX y 𝒅. 
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Fig. 5. Graphics of means and intervals of the means for a 95% confidence level for 𝑪𝑽, 𝒌, 𝒏, Delta, 

𝑷MAX y 𝒅. 
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Fig. 5. Graphics of means and intervals of the means for a 95% confidence level for 𝑪𝑽, 𝒌, 𝒏, Delta, 

𝑷MAX y 𝒅. 
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Figure 3 Interactions plots and LSD intervals for significant factors as a function of 

log(CV𝑝𝑎𝑞𝑢𝑒𝑡𝑒). 

Based on this analysis, we can now obtain optimum operating conditions that minimize 

the response variable. The final levels for the factors are shown in Table 3. 

 

Table 3 The best operational conditions for the multihead weighing process 

 

 

 

 

 

Factor Best Level 

Number total of hoppers (𝑛) 16 

Number of hoppers to be combined (𝑘) 4 

Coefficients of variation (𝐶𝑉) 1% 

Distribution of weighing hoppers (𝑑)  Equal 

Value of exchange (𝐷𝑒𝑙𝑡𝑎) 2.0 

Maximum allowed priority for any hopper (𝑃MAX) 100 

Fig. 6. Graphics of the significant interactions and intervals of the means for a 95% confidence 

level. 
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4.4 Numerical results and discussion 

As a supplement to the statistical analysis described in 4.3, a summary of results is 

presented that makes it possible to analyse the behaviour of performance parameters during 

the packaging process when the proposed bi-objective algorithm is run. These results were 

compared to the outputs in a mono-objective approach. Taking into account that the levels 

of certain factors, due to the high interaction between them, depend on the levels of other 

factors, we decided to summarize the results by using the following inputs. 

Consider a packaging process under control where we aim to obtain a target weight of 

500 grams. The computational experiment was performed using the following case: 𝑛 = 

16, Delta = 2.0, 𝑚𝑖𝑛_ 𝐷𝑒𝑙𝑡𝑎 = 0.5, 𝑃MAX :{10, 30, 50, 100} and 𝑘:{2, 3, 4, 5, 6, 7} hoppers. 

An Equal distribution of the weighing hoppers in each subgroup was used, so: 𝑛1 = 3, 

𝑛2 = 3, 𝑛3 = 4, 𝑛4 = 3 and 𝑛5 = 3. To calculate the standard deviation of weights in 

every hopper (𝜎) as an input in the packaging process, 𝐶𝑉:{1%, 2.5%, 5%} were used. 

A way of measuring the loss in the increases in variability in the package in exchange 

for a decrease in the duration of the product in the hopper is to calculate the Trade-off 

value, as follows: 

  Trade-off = | 
∆ 𝜎package

∆ Average maximum priority /Hopper
 | ,  (5) 

 

where "∆ 𝜎package" is a measure of the shift in the package variability, and 

"∆ Average maximum priority /Hopper" is a measure of the change in the average 

maximum priority for each hopper for a mono-objective approach and our bi-objective 

approach.  

Tables 4 and 5 show the performance parameters for the bi-objective approach 

proposed and the mono-objective approach. 𝑃MAX values allow the monitoring of the 

evolution of the performance parameters of the process. 𝑃MAX represents the maximum 

residence time of the product in a hopper. For instance, for a multihead weigher with a 

capacity of fifty packages per minute and 𝑃MAX  = 100, the residence time is calculated as 

follows: 50 packages/60 seconds is equivalent to 1.2 seconds/package. Therefore, 1.2 

seconds/package·100 packages = 120 seconds.  

In table 4, the results show that when the priority 𝑃𝑖  is considered, the variability of the 

package increases and the duration of the product in the hopper decreases (as expected). It 

can be observed that in the bi-objective approach, there were no full discharges for the 

confidence level of any of the 𝑃MAX values considered. The above confirms that, regardless 

of the increased variability in the weight of the packaged product due to low values of 

maximum allowed priority (𝑃MAX), at least one of the weights obtained from all the 

combinations in each iteration was within the confidence level of 99.73%.  Note that 

discharges of hoppers due to exceeding the maximum allowed priority only occurs when 

𝑃MAX = 10 and 𝑘 = 2. The largest decrease in the duration of the product in hopper and the 

largest increase in variability are produced when we use 𝑘 = 2 for any of the 𝑃MAX values. 

In fact, in these cases the variability of the packaged product is higher than the variability 

when the packaging process is performed randomly. Note that in each case analysed, when 

𝑘 = 7, the lowest values for the  𝐶𝑉𝑝𝑎𝑐𝑘𝑎𝑔𝑒  are obtained in both approaches (bi-objective 

and mono-objective). This shows the strong interaction between the number of weights 

combined (𝑘) and the total number of hoppers (𝑛).  
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Table 4 Simulation results from the bi-objective algorithm for different values of the maximum allowed priority (𝑃MAX) compared to results from the mono-

objective approach. See section 4.2 for a further explanation of the performance parameters listed. 

 

 

 

 

 

  

 

  

 

 

 

 

 

 

 

 

 

 

    Bi-objective approach 

 

Mono-objective approach 

    
 

𝑷MAX = 10 
 

𝑷MAX = 30 
 

𝑷MAX = 50 
 

𝑷MAX = 100 
  

√kσ 𝑘 

 

μpackage  CV𝑝𝑎𝑐𝑘𝑎𝑔𝑒  DCL HDP APM 

 

μpackage  𝐶𝑉𝑝𝑎𝑐𝑘𝑎𝑔𝑒  DCL HDP APM 

 

μpackage  CV𝑝𝑎𝑐𝑘𝑎𝑔𝑒  DCL HDP APM 

 

μpackage  CV𝑝𝑎𝑐𝑘𝑎𝑔𝑒  DCL HDP APM 

 

μpackage  CV𝑝𝑎𝑐𝑘𝑎𝑔𝑒  APM 

 
2 

 
499.92 1.1362 0.00 0.0026 9.00 

 
499.67 0.8125 0.00 0.00 13.75 

 
499.70 0.8065 0.00 0.00 17.52 

 
499.77 0.7864 0.00 0.00 24.49 

 
499.99 0.1558 888.84 

 
3 

 
499.98 0.1680 0.00 0.00 6.64 

 
499.99 0.0740 0.00 0.00 7.16 

 
500.00 0.0600 0.00 0.00 7.37 

 
499.99 0.0460 0.00 0.00 7.72 

 
500.00 0.0105 23.95 

 
4 

 
499.99 0.0940 0.00 0.00 5.11 

 
500.00 0.0500 0.00 0.00 5.27 

 
500.00 0.0400 0.00 0.00 5.34 

 
500.00 0.0300 0.00 0.00 5.45 

 
500.00 0.0022 14.08 

5 5 
 

500.00 0.0680 0.00 0.00 4.15 
 

500.00 0.0400 0.00 0.00 4.22 
 

500.00 0.0320 0.00 0.00 4.27 
 

499.99 0.0240 0.00 0.00 4.34 
 

499.99 0.0008 10.46 

 
6 

 
499.99 0.0540 0.00 0.00 3.45 

 
499.99 0.0320 0.00 0.00 3.58 

 
499.99 0.0260 0.00 0.00 3.63 

 
499.99 0.0200 0.00 0.00 3.69 

 
499.99 0.0004 8.22 

 
7 

 
500.00 0.0500 0.00 0.00 3.06 

 
500.00 0.0260 0.00 0.00 3.09 

 
499.99 0.0220 0.00 0.00 3.11 

 
499.99 0.0160 0.00 0.00 3.13 

 
500.00 0.0003 6.70 

 
2 

 
499.82 2.8370 0.00 0.0032 9.00 

 
499.08 2.0257 0.00 0.00 13.66 

 
499.36 1.9585 0.00 0.00 17.48 

 
499.46 1.9141 0.00 0.00 24.14 

 
500.02 0.4122 892.98 

 
3 

 
499.96 0.3840 0.00 0.00 6.64 

 
499.98 0.1860 0.00 0.00 7.17 

 
500.00 0.1500 0.00 0.00 7.34 

 
500.00 0.1160 0.00 0.00 7.66 

 
500.00 0.0269 23.65 

 
4 

 
499.99 0.2400 0.00 0.00 5.11 

 
500.00 0.1280 0.00 0.00 5.27 

 
499.99 0.1020 0.00 0.00 5.35 

 
500.00 0.0780 0.00 0.00 5.45 

 
499.99 0.0056 14.23 

12.5 5 
 

499.99 0.1740 0.00 0.00 4.14 
 

499.99 0.1000 0.00 0.00 4.23 
 

500.00 0.0800 0.00 0.00 4.27 
 

500.00 0.0600 0.00 0.00 4.33 
 

500.00 0.0019 10.38 

 
6 

 
499.99 0.1360 0.00 0.00 3.45 

 
499.99 0.0800 0.00 0.00 3.58 

 
499.99 0.0660 0.00 0.00 3.63 

 
499.99 0.0500 0.00 0.00 3.69 

 
500.00 0.0010 8.12 

 
7 

 
500.00 0.1260 0.00 0.00 3.06 

 
499.99 0.0680 0.00 0.00 3.10 

 
499.99 0.0540 0.00 0.00 3.11 

 
500.00 0.0420 0.00 0.00 3.13 

 
500.00 0.0007 6.54 

 
2 

 
499.65 5.6760 0.00 0.0032 9.00 

 
498.17 4.0589 0.00 0.00 13.66 

 
498.72 3.9220 0.00 0.00 17.48 

 
498.92 3.8323 0.00 0.00 24.14 

 
500.06 0.8259 892.98 

 
3 

 
499.88 0.8002 0.00 0.00 6.64 

 
499.96 0.3720 0.00 0.00 7.15 

 
500.01 0.3020 0.00 0.00 7.33 

 
500.00 0.2320 0.00 0.00 7.68 

 
500.00 0.0543 23.27 

 
4 

 
499.98 0.4760 0.00 0.00 5.11 

 
500.01 0.2580 0.00 0.00 5.27 

 
500.01 0.2060 0.00 0.00 5.34 

 
500.00 0.1560 0.00 0.00 5.45 

 
500.00 0.0111 14.08 

25 5 
 

499.98 0.3540 0.00 0.00 4.14 
 

499.99 0.2020 0.00 0.00 4.22 
 

499.99 0.1600 0.00 0.00 4.26 
 

500.00 0.1220 0.00 0.00 4.33 
 

500.00 0.0040 10.30 

 
6 

 
500.01 0.2760 0.00 0.00 3.45 

 
500.00 0.1580 0.00 0.00 3.58 

 
499.99 0.1320 0.00 0.00 3.63 

 
499.99 0.1020 0.00 0.00 3.69 

 
499.99 0.0020 8.14 

 
7 

 
499.99 0.2580 0.00 0.00 3.06 

 
499.99 0.1400 0.00 0.00 3.09 

 
500.01 0.1120 0.00 0.00 3.11 

 
499.99 0.0860 0.00 0.00 3.13 

 
499.99 0.0014 6.67 
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It can also be observed that the average weight of the final package (μpackage) is not 

affected in any of cases studied. Additionally, note that the average maximum priority for 

each hopper (AMP) decreases as the 𝑘 values increases, and at the same time, it is kept 

constant at different levels of 𝐶𝑉 (represented by √kσ). 

 

Table 5 Trade-off values for maximum allowed priority (𝑃MAX) of  10, 30, 50 and 100 

Trade-off 

 √kσ 𝑘  𝑃MAX = 10  𝑃MAX = 30  𝑃MAX = 50  𝑃MAX = 100 

 2 0.00557 0.00375 0.00373 0.00365 
 3 0.04548 0.01890 0.01492 0.01092 

 4 0.05117 0.02713 0.02162 0.01611 

5 5 0.05325 0.03141 0.02520 0.01895 
 6 0.05617 0.03404 0.02788 0.02162 

 7 0.06830 0.03562 0.03025 0.02202 

 2 0.01371 0.00915 0.00882 0.00863 

 3 0.10497 0.04828 0.03774 0.02787 
 4 0.12848 0.06828 0.05425 0.04120 

12.5 5 0.13786 0.07972 0.06387 0.04798 

 6 0.14452 0.08698 0.07236 0.05528 

 7 0.18003 0.09782 0.07769 0.06055 

 2 0.02741 0.01830 0.01762 0.01725 
 3 0.22420 0.09854 0.07769 0.05699 

 4 0.25915 0.14013 0.11151 0.08396 

25 5 0.28413 0.16287 0.12918 0.09887 

 6 0.29207 0.17101 0.14408 0.11231 

  7 0.35543 0.19361 0.15537 0.11953 

 

In table 5, the Trade-off values show that the largest increase in variability for each 

reduced unit of the priority occurs when 𝑃MAX = 10, and they are the largest when we want 

to combine the greatest number of weights, i.e., when k = 7 (In the latter case, regardless 

of the value of 𝑃MAX). In addition, the values for the Trade-off progressively decrease as 

the 𝑃MAX value increases and they also progressively increase as the 𝑘 value increases. 

Additionally, it is clear that the increases in the coefficient of variation (𝐶𝑉) cause 

increments in the Trade-off values. 

5 Conclusions 

A multihead weighing process is a packaging technology that can be of strategic importance 

to a company, as it can be a key to competitive advantage in the modern food industry. The 

improvement of the process quality and sensory quality of food packaged in a multihead 

weighers process investigated in this paper is relevant to industrial engineering. A bi-

objective algorithm for the packaging processes in multihead weighers with an unequal 

supply is developed, and numerical experiments are provided to illustrate the performance 

of the proposed algorithm. 
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Our algorithm simultaneously deals with the objective of minimizing the difference 

between the target and the real package weight and the objective of maximizing the total 

priority of the chosen combination of hoppers. We propose using a single weighted 

performance or utility function that combines information about the two objectives or 

criteria being considered in this study (weight and priority), where the relative weight or 

importance of each objective is dynamically adjusted in each iteration or packing operation. 

Pareto-optimal solutions were obtained for both problems for the conflicting relationships 

between the objectives. To the best of our knowledge, no prior research has considered both 

objectives (weight and priority) to be potentially equally important. 

The numerical experiments show that our algorithm succeeds in managing both 

objectives in a reasonable and efficient way. More precisely, the average highest observed 

priority (AMP) is significantly reduced compared to the mono-objective approach (in 

which weight is the only selection criterion), especially when the number 𝑘 of hoppers to 

be combined is small, with average distance to target weight still remaining acceptable in 

general.  

Nevertheless, it should be mentioned that the ratio between the increase in package 

dispersion and the improvement in terms of priority reduction (trade-off) remains within 

reasonable levels in all the tested cases. In relative (trade-off) terms, the largest effort in 

reducing priority occurs for higher values of 𝑘 (which means more possible combinations) 

and smaller values of PMAX (that is, as the priority objective becomes more important). Our 

proposal goes in a similar direction to the one by Karuno et al. (2007), but it offers a 

different insight into the packaging problem, as has been highlighted previously in the text. 

In conclusion, the effectiveness and efficiency of our approach has been shown.  

Finally, the proposed method provides Pareto optimal sets of solutions to the problem 

of bi-objective optimization that can be analysed to obtain optimal configurations. The 

model will be useful to engineers concerned with the optimal configuration of a multihead 

weigher. 
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