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Abstract: A tunable quantum cascade laser (QCL) spectrometer was used to develop methods for
detecting and quantifying high explosives (HE) in soil based on multivariate analysis (MVA) and
artificial intelligence (AI). For quantification, mixes of 2,4-dinitrotoluene (DNT) of concentrations
from 0% to 20% w/w with soil samples were investigated. Three types of soils, bentonite, synthetic
soil, and natural soil, were used. A partial least squares (PLS) regression model was generated for
predicting DNT concentrations. To increase the selectivity, the model was trained and evaluated using
additional analytes as interferences, including other HEs such as pentaerythritol tetranitrate (PETN),
trinitrotoluene (TNT), cyclotrimethylenetrinitramine (RDX), and non-explosives such as benzoic acid
and ibuprofen. For the detection experiments, mixes of different explosives with soils were used to
implement two AI strategies. In the first strategy, the spectra of the samples were compared with
spectra of soils stored in a database to identify the most similar soils based on QCL spectroscopy.
Next, a preprocessing based on classical least squares (Pre-CLS) was applied to the spectra of soils
selected from the database. The parameter obtained based on the sum of the weights of Pre-CLS was
used to generate a simple binary discrimination model for distinguishing between contaminated and
uncontaminated soils, achieving an accuracy of 0.877. In the second AI strategy, the same parameter
was added to a principal component matrix obtained from spectral data of samples and used to
generate multi-classification models based on different machine learning algorithms. A random forest
model worked best with 0.996 accuracy and allowing to distinguish between soils contaminated with
DNT, TNT, or RDX and uncontaminated soils.

Keywords: quantum cascade laser; remote detection; partial least squares; high explosives; artificial
intelligence; machine learning
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1. Introduction

The intensive use of high explosives (HEs) in military operations and mining excavations
has contributed to soil contamination. Providing that HEs and their decomposition products that
are highly persistent, mutagenic, and classified as Group C human carcinogens threaten human
health [1,2], research on the timely detection of HEs has continued to receive considerable attention
over the past few years. The methods currently used to detect HEs include gas chromatography-mass
spectroscopy (GC-MS), gas chromatography-chemiluminescence (GC-CL), ion mobility spectrometry
(IMS) [3], immunosensors [4], electrophoresis [5], fluorescence [6], high-pressure liquid chromatography
(HPLC) [7,8], HPLC/mass spectrometry [7], and photo-assisted electrochemical detection [9]. However,
none of these methods provides the required speed or accuracy for in situ detection of HEs in the
presence of solid interfering materials.

Soil is considered to be a challenging matrix of organic compounds that interfere with HEs,
making the detection of HEs in soils a difficult task [10–12]. While remote sensing has been applied
to soils, the proposed system is complex [13]. Other studies conducted by the same research group
involved the characterization [14–16], interaction [17–19], and detection [20,21] of HEs using Raman
and Fourier-transform infrared (FT-IR) spectroscopy [22,23]. The detection of HEs was only marginally
possible in all these cases providing that crystalline samples of explosives must be found within the
solid matrix by microscopy to achieve the detection. The in situ detection of HEs in real soils with
high selectivity and sensitivity has not been reported yet. In this study, a small, portable, and easy to
handle system employing mid-infrared (MIR) quantum cascade laser (QCL) source [24] was used for
analyzing HEs in soils at a distance of 15 cm. Furthermore, multivariate analysis (MVA) and artificial
intelligence (AI) techniques were employed to quantify and detect the analytes of interest on the soil
samples studied dosed with complex matrices of organic compounds [25].

External cavity QCLs provide ample wavelength tunability, justifying studies on threat
chemicals [26–30] and biological compounds and microorganisms [31] with broad absorption features,
including solids. QCLs were first demonstrated in 1994 [32]. These devices offer multiple benefits
such as room-temperature operation, small sizes, long lifetimes, low energy consumption, long-term
power stability, and fine-tuning of the output frequency [33]. Moreover, they provide an opportunity
to devise portable systems for remote testing with excellent sensitivity, particularly on samples with
low reflectivity or high absorptivity in the MIR range, such as soils. Compared to the existing sources
in the MIR range, QCL sources have a higher output power that allows remote sensing and analysis.
The rapid detection of HEs on highly reflective substrates using this method was demonstrated and
reported by other investigators [34–38]. This spectroscopic analysis can be achieved without contact
and in a non-destructive way. A study conducted at Pacific Northwest National Lab [39] demonstrated
that the possibility of remote detection of many important HEs, including trinitrotoluene (TNT),
cyclotrimethylenetrinitramine (RDX), and Tetryl, occurs in the spectral fingerprint window from 800 to
1400 cm−1. This spectral window corresponds to the fingerprint region of the HE samples deposited
on painted metal car doors. Other studies have demonstrated diverse QCL approaches to the rapid
identification and characterization of HEs, given the routine requirements of security checks [40,41].

QCLs can provide significant benefits for public safety, particularly in locations such as airports,
railways, bus stations, sports stadiums, and marathon sites. Therefore, this study is focused on the
quantification and detection of HEs in soils [25] using a QCL source to enable remote sensing [42–53].
The limit of detection (LOD) was calculated for QCL spectroscopy based on the calibration curves
of one HE in solid mixtures. The statistical figure of merit (FM) was achieved using the partial least
squares (PLS) multivariate algorithm. Other FMs were also calculated.

Furthermore, AI methods were employed to achieve HE detection. In the future, two main
applications can be developed based on the outcomes of this research. First, the proposed methods can
be used to detect explosives on ordinary, non-ideal, low-reflective, real-world solid matrices. Second,
the methods can be employed to detect HEs on natural solid matrices; for example, they can be used to
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locate landmines in sites affected by war and conflicts throughout the world, both for military purposes
and implementing humanitarian demining applications.

2. Materials and Methods

2.1. Reagents

The HEs used as analytes in this study were 2,4-dinitrotoluene (2,4-DNT or DNT for simplicity),
pentaerythritol tetranitrate (PETN), RDX, and 2,4,6-TNT (or TNT for simplicity). These materials
were synthesized in a laboratory, except DNT and TNT, which were purchased from Chem Service
(West Chester, PA, USA). Other studied analytes were potassium bromide (KBr), benzoic acid (BA),
and ibuprofen (IBP), which were purchased from Sigma-Aldrich (Millipore Sigma, Merck KGaA,
St. Louis, MO, USA). Bentonite clay (BC) was also obtained from Sigma-Aldrich. Synthetic soil
samples (SYN-S) were prepared from washed sea sand and alundum™ cement, purchased from
Thermo-Fisher Scientific (TFS) International, 75–300 mesh silica gel (TFS, Pittsburgh, PA, USA), as well
as montmorillonite, bentonite, and activated charcoal purchased from Sigma-Aldrich (Milwaukee, WI,
USA). A natural soil sample (NAT-S) was obtained from local sites located near the municipality of
Mayagüez, PR, USA, with the coordinates 18◦13′25.7” N and 67◦07′51.2” W. Finally, another natural
soil sample (NAT2-S) was obtained from the coordinates 18◦9′36” N, and 67◦6′40” W and used to
evaluate the model.

2.2. Sample Preparation

Samples containing from 0% to 20% DNT w/w and a total mixture mass of approximately 0.20 g
were prepared for the quantification analysis. The initial set of 10 samples and replicates entailed
mixtures of several matrices with DNT. The matrices consisted of KBr, BC, SYN-S, and NAT-S.
The SYN-S comprised 37% bentonite, 27% alundum™ cement, 16% montmorillonite, 10% silica gel,
8% washed sea sand, and 2% activated charcoal. The samples were prepared by grinding the HE into a
fine powder using a mortar and pestle, followed by mixing in a mini vortex mixer for approximately
10 s at 3000 rpm. The mixed samples were ground again and mixed in the mini vortex mixer for a
second time. Mixtures of KBr and NAT-S with lower concentrations of DNT, approximately from 0% to
3% by weight, were made and named KBr Low and NAT-S Low, respectively. Only these matrices were
prepared and tested for comparing the variation of the results with the change of the concentration
range. The preparation of these samples was similar to that of the others, except for using different
DNT concentrations.

Mixtures containing other highly intrusive compounds such as explosives (TNT, RDX, and PETN)
and non-explosives (BA and IBP) were prepared using the same preparation method with only one
concentration per interference analytes, namely, 10% w/w. These samples were tested using the PLS
model of DNT mixed with NAT-S. For the pattern recognition analysis based on AI, samples of mixtures
containing from 0% to 20% of DNT, TNT, and RDX by weight in three soil types (BC and two NAT-S
samples) were prepared.

2.3. Soil Characterization

Soil samples from Mayagüez, PR (USA) were characterized using thermogravimetric analysis
(TGA) to measure the water content, sand and clay percentages, and total organic matter (TOM) [54].
TOM values were determined by oxidation with hydrogen peroxide [55,56] and calcination [55].
The total dissolved solids levels were measured by dissolving soil in water, followed by its filtering and
drying. The percent distributions of components in the Mayagüez-PR NAT-S samples are illustrated in
the Supplementary Materials: Table S1.
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2.4. Data Acquisition and QCL System

The background spectrum of a KBr substrate was obtained before measuring the QCL spectra
of the samples. Providing the lack of MIR signals from the employed solid matrix, this background
spectrum provided an excellent and smooth reference trace. The first samples were then placed in
the wells of metal holders (1.1 cm in diameter and 3 mm deep). Duplicate spectra were collected at
10 different locations on the sample surfaces, resulting in a total of 20 spectra per sample. Sixteen ranges
were used for calibration and internal validation or cross-validation (CV), while the remaining four
spectra were used for testing or external validation. This process was repeated for each concentration.
The spectra were obtained in the reflectance mode at a distance of approximately 15 cm using a
LaserScan™MIR pre-dispersive spectrometer (Block Engineering, Marlborough, MA, USA) equipped
with three tunable MIR lasers diodes having a tuning range from 990 to 1111 cm−1, 1111 to 1178 cm−1,
and 1178 to 1600 cm−1 The spectral linewidth was < 2 cm−1 and the scan time was approximately 1.5 s
for each of the diodes. The average power typically varied between 0.5 and 10 mW across the entire
tuning range of ≈ 600 cm−1 with 100:1 Transverse Electromagnetic Mode (TEM00) polarization and a
beam divergence of < 2.5 mrad in the x-axis and < 5 mrad in the y-axis. The spectrometer had a 7.6-cm
diameter ZnSe lens, which was used to focus the MIR beam to collect the reflected light and focus the
light onto a thermoelectrically cooled mercury–cadmium–telluride (MCT) detector. The wavelength
accuracy and precision were 0.5 and 0.2 cm−1, respectively. The spectroscopic system worked best at a
distance to the target of 15 ± 3 cm, with each laser producing an elliptical spot with diameters of 4 and
2 mm in the same space at a distance of 15 cm due to the difference of beam divergence in the axes
(Galan-Freyle et al. [30]).

2.5. Data Quantification Analysis

The OPUS™ data acquisition and analysis software (v. 4.2 and v. 6.0, Bruker Optics, Billerica,
MA, USA) were used to perform the multivariate data analysis. Calibration curves were generated
from the PLS models of DNT in the studied solid mixtures, and the uncertainties and FM for this
model were estimated. The accuracies of the multivariate calibration curves were evaluated using the
root-mean-square error of estimation (RMSEE), the root-mean-square error of CV (RMSECV), and root-
mean-square error of prediction (RMSEP) for external validation. These parameters were used as
criteria for evaluating the quality of the proposed method.

The linearity of the calibration curves was evaluated using the values of the coefficient of
determination (R2), which indicates the percentage of variance present in the true component values
reproduced by the PLS regression model. In contrast, the sensitivity (SEN) of multivariate methods
can be estimated as the net analyte signal (NAS) [57] at a unit concentration as follows [58]:

SEN = 1/‖b‖, (1)

where b denotes the regression vector of the PLS model. The analytical sensitivity (γ) can be defined
similarly to univariate calibrations [59] as

γ = SEN/ε, (2)

where ε denotes instrumental noise. In the absence of interferences, the NAS would be equal to the
intensity of the total analyte signal. The noise level was measured by collecting 20 spectra of a blank
(KBr) and calculating the average of the standard deviations for all wavenumbers.

The LOD was estimated using Equation (3) [60,61]:

LOD = ∆(α,β)∗(RMSEE (1 + ho)1/2, (3)

where ho denotes the distance of the predicted sample to the mean of the calibration set at zero
concentration and ∆(α,β) is a statistical parameter correlated with the α and β probabilities of falsely
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stating the presence or absence of the analyte. ∆(α,β) = 3.3 was used to compute the LOD values
providing that the value for the degrees of freedom was >25.

The residual prediction deviation or relative predictive determinant (RPD) was used to represent
how the calibration model predicts a specific set. This value can also be used to evaluate the performance
of a model in absolute terms. The RPD values can be calculated as

RPD = SD/SEP, (4)

SEP = ((
∑

(Diff − Bias)2)/(N − 1))1/2, (5)

Bias = (
∑

Diff)/N, (6)

where SD denotes the standard deviation, SEP is the standard error of prediction, N stands for the
number of samples, and Diff indicates the difference in concentration values of the analytes between
the predicted and reference sets.

2.6. Pattern Recognition Analysis

An algorithm for comparing different machine learning (ML) methods for classification was
developed in Python 3 using the sklearn 3.2 library [62]. Ten ML methods for classification were
employed: K-neighbors classifier, support vector machine for classification (SVM), decision tree
classifier, random forest classifier (RFC), AdaBoost classifier (ABC), gradient boosting classifier, linear
discriminant analysis, and quadratic discriminant analysis. A basic description of each ML method
used in this study is included in Supplementary Materials: Table S2. Each classifier was trained using
53% of data, while the remaining 47% of data were reserved for testing. The method achieving the
highest accuracy value and lowest log-loss value on the test data was considered to be the most efficient.

2.7. Artificial Intelligence Scheme

The spectra were preprocessed before they were evaluated by the ML methods. The preprocessing
scheme employed in this study is shown in Figure 1. First, all spectra were normalized using vector
normalization (VN) preprocessing. Next, the spectral data were reduced using principal component
analysis (PCA) from 3057 points to 20 PCs. Separately, the preprocessed spectra were compared
with those in a database of soils. Subsequently, a classical least squares preprocessing (Pre-CLS) [36]
was applied to the original spectra to extract a parameter that was proportional to the percentage of
soil from the database spectra. Finally, PCA and the extracted parameter were used to generate the
ML models.
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Pre-CLS is based on a linear model of classical least squares represented as

f
(
ϕ j, β j,ωi

)
= β0 + β1ϕ(ωi)1 + · · ·+ β jϕ(ωi) j, (7)

where f
(
ϕ j, β j,ωi

)
denotes the normalized calculated spectrum (CS) of soil derived from a mixture of

several normalized spectra of soils ϕ(ωi) j recorded in the database of soils spectra (DBS); ωi denotes
the wavenumber and β j is a parameter indicating the fraction or proportion of ϕ(ωi) j of a particular
component in the CS. The model assumes that there are no binding interactions among the components
in the mixture, which implies that the intensity contributions are additive. The β j parameters can be
calculated by finding the minimum of the square difference of the normalized intensity between the
real spectrum and the CS. The minimum value of the sum of the squares of di(E) with respect to β j can
be found by equating the first-order partial derivatives with respect to β j to zero and finding the β j
values. Since the model contains n parameters, n partial derivative equations are generated as follows:

∂d2

∂β j
= −2

∑
i

di
∂ f

(
ϕ j, β j,ωi

)
∂β j

= 0, j = 1, 2, · · · , n (8)

The value ofϕ(ωi) j can be determined using a simple forward selection algorithm (FSA). According
to this algorithm, an empty model is generated first, and then variables (soils spectra from the database)
are added one by one. At each next step, the E value shows the improvement of the model. The process
is stopped when E cannot be further improved.

The criteria used to evaluate the performance of the classification models were recall, log-loss,
precision, f1-score, weighted average, support, and accuracy. For binary classification, the recall of the
positive class is also known as sensitivity, while the recall of the negative class is called specificity.

The log-loss function is used in (multinomial) logistic regression and its extensions, such as neural
networks. It is defined as the negative log-likelihood of the true labels given the predictions of a
probabilistic classifier. The log-loss is defined only for two or more labels. For a single sample with the
true label yt and estimated probability yp that yt = 1, the log-loss is

−log P(yt|yp) = −(yt log(yp) + (1 − yt) log(1 − yp)) (9)

Precision is often called the positive predicted value and calculated as the ratio TP/(TP + FP),
where TP denotes the number of true positives. FP denotes the number of false positives. Intuitively,
precision is the ability of a classifier to not label a negative sample as positive. The f1-score is also
known as the balanced f-score or the f-measure. The f1-score can be defined as a weighted average of
precision and recall, where the f1-score best value is 1, and the worst is 0. The relative contributions of
precision and recall to the f1-score are equal. The f1-score in the multi-class and multi-label cases is the
average of the f1-score for each class with weighting that depends on the average between precision
and recall. The f1-score can be calculated as

f1-score = 2 ∗ (precision ∗ recall)/(precision + recall) (10)

The support is the number of used records, i.e., the number of spectra for each class. The classification
accuracy score in multi-label classification computes the accuracy subset: the set of labels predicted for
a sample should exactly match the corresponding set of actual labels in an ideal case.

3. Results and Discussion

3.1. Quantification Analysis

All spectra were converted to the Kubelka–Munk function [63] because the reflectance values
for all samples were very low. This transformation is appropriate for the diffuse reflectance spectra
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of powders [64] with R values < 60% [65]. The models were generated using this transformation.
The graphs plotting the predicted versus true values for the samples used in CV and testing are shown
in Figure 2, where the CV data are represented with open diamonds. In contrast, the test data are
represented with open triangles. The solid black line represents the ideal case or perfect model (y = x),
where the predicted values are equal to the true values throughout the entire data range.
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concentration (NAT-S Low); (e) potassium bromide (KBr) and (f) KBr to low concentration (KBr Low).

The data set employed in CV was generated using the leave-one-out CV (LOO-CV). It can be
noticed from Figure 2 that the predicted values for the CV and test data sets closely follow the best
performance line (y = x). This alignment can also be confirmed by the low values of the RMSEE,
RMSECV, and RMSEP listed in Table 1.

Table 1. Accuracy, bias, and the number of latent variables (LV) for the studied models and matrices.

RMSEE RMSECV RMSEP Bias LV

BC 0.41 0.57 0.70 −0.0007 11
SYN-S 0.35 0.43 0.53 −0.0069 7
NAT-S 0.25 0.39 0.39 0.0010 10

NAT-S Low 0.08 0.10 0.34 0.0100 7
KBr 0.18 0.32 0.41 −0.0044 10

KBr Low 0.02 0.03 0.08 −0.0003 9
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All models were generated using the complete spectral window (1000–1600 cm−1). In this study,
VN was used as a preprocessing step as it proved to be better than the other tested preprocessing
steps except for KBr. Other preprocessing steps were tested, such as mean centering (MC), linear
offset subtraction, straight-line subtraction, minimum and maximum normalization, multiplicative
scatter correction, first derivative, second derivative, and no preprocessing step. When applying
VN, the average intensity is calculated first, and then this value is subtracted from the spectrum.
Next, the sum of the squared intensities is calculated, and the spectrum is divided by the square
root of this sum. Models for DNT in KBr were generated to evaluate the detection in the absence of
interferences: one at high concentrations (0–20%) and another at low concentrations (0–3%). The errors
for these models are listed in Table 1. The most effective preprocessing method for the KBr models
was MC. This result suggests that VN is a suitable preprocessing step only when interferences from
the matrix are present. In a model free from the interfering matrix (KBr), applying VN for generating
samples with low concentrations had the same signal intensity as samples with high concentrations.
This is reflected in the lousy prediction and high uncertainty for samples with low concentrations
(see Supplementary Materials: Figure S3).

The spectra of the neat matrices, matrices with 20% DNT, and the corresponding standard reference
spectra of DNT in KBr for transmittance are shown in Figure 3a–c, respectively. Figure 3d shows the
resulting spectrum for the matrix with 2% DNT in NAT-S minus the spectrum of the neat matrix and
corresponding standard reference spectra of DNT in KBr for transmittance. For clarity, DNT reference
spectra are represented with the red, dotted lines. From these graphs, it is evident that DNT signals are
observed on the background matrix signals in all cases, including 2% DNT in NAT-S.
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Figures of Merit (FM)

The accuracies of the models were determined from the values of the RMSEE, RMSECV, and RMSEP.
The results for each model (labeled by matrix) are listed in Table 1. The precision was inferred through
the values of the relative standard deviation (RSD). The RSD values for the prediction of the same
sample in the same site were calculated for different concentrations and their average to measure the
repeatability (RSDr). The RSD values for the prediction of the same sample in various locations on the
sample surfaces were calculated for different concentrations and their average to measure the mixture
homogeneities (RSDh). The RSD values for different samples at the same concentration were calculated
for different concentrations and their average to measure the reproducibility (RSDrd). From these
values, which are listed in Table 2, it can be concluded that the technique has excellent repeatability,
while the samples have excellent homogeneity. However, only good reproducibility was determined
for the models.

Table 2. Relative standard deviation (RSD) and relative predictive determinant (RPD) values for the
models generated.

RSDr RSDh RSDrd RPD-CV RPD-Test

BC 2.4 5.5 12.7 9.7 11.3
SYN-S 1.5 5.3 9.1 9.2 16.2
NAT-S 2.2 4.2 4.8 16.1 27.6

NAT-S Low 3.2 13.8 32.9 9.1 12.6
KBr 3.4 3.6 4.1 19.8 36.5

KBr Low 5.7 6.2 11.9 27.5 50.1

Another FM used for measuring precision was the RPD. As previously mentioned, the RPD is
the ratio of the variation in the validation samples and the size of probable errors occurring during
predictions. The RPD values are also listed in Table 2.

The best models were the ones with the lowest RMSEP values and the highest RPD values.
The values obtained for the RPD were excellent. It has been suggested that models with RPD values
greater than 5 can be considered suitable for quality control. On the other hand, models with RPD
values greater than 6.5 can be used for process monitoring. Moreover, models with RPD values greater
than 8 can be used in any application [66]. All the models tested in this study had RPD values higher
than 8. This result indicates that the proposed technique can be used for the direct analysis of HE in
soils. At the same time, the detection of explosives and their respective effects over different soil types
have not been studied in detail so far. We plan to expand the present study to include reliable models
over various types of soils as part of our future work.

In the context of determining HEs, sensitivity refers to the ability of a method or instrument to
detect an analyte at a specified concentration. In contrast, the sensitivity of an analytical approach
as defined in this study, is the capability of the method to discriminate between small differences in
concentrations or masses of a target analyte. The sensitivity of each method studied was calculated
according to Equations (1) and (2), and the results of these calculations are presented in Table 3.
The SEN value calculated for a model with VN preprocessing should be interpreted differently from the
one without preprocessing or employing other preprocessing steps. Thus, the sensitivity values were
derived from two types of models: models with VN as the preprocessing step and models without
preprocessing steps. When using VN preprocessing, the spectra were normalized such that the sum of
squares of intensity is equal to one. In other words, the spectra are converted to unit vectors. The SEN
parameters were calculated from the magnitude of the vector calibration functions b, which, in turn,
were derived from the spectra and their respective concentrations of standards. VN directly affects the
magnitude ‖b‖ and value of SEN as a consequence. However, a better parameter for sensitivity can be
obtained by calculating γ because this parameter is only affected by instrumental noises. The noise level
was measured by collecting 20 spectra of a blank (target) and calculating an average of the standard
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deviations for all wavenumbers. The resulting noise for the models was different when considering
20 normalized spectra with VN (see Table 3). Otherwise, the γ-values calculated from the two types of
models were very similar, which is an indication that γ is not affected by VN preprocessing or any
other types of preprocessing.

Table 3. Sensitivity, analytical sensitivity, the limit of detection (LOD), and noise of the models, with and
without vector normalization (VN) preprocessing.

VN

LOD SEN γ γ−1

BC 1.4 0.013 43 0.023
SYN-S 1.2 0.016 53 0.019
NAT-S 0.8 0.010 32 0.031

NAT-S Low 0.3 0.087 289 0.003

Noise = 0.0003

No Preprocessing

LOD SEN γ γ−1

BC 2.3 1.48 39 0.025
SYN-S 1.4 2.25 60 0.017
NAT-S 1.0 1.36 36 0.028

NAT-S Low 0.6 20.63 552 0.002
KBr 0.6 0.51 14 0.072

KBr Low 0.07 1.26 34 0.029

Noise = 0.037

The inverse of γ (denoted as γ−1) provides an estimation of the minimum concentration difference
(resultant) discernible by the model considering the instrumental noise as the only source of error.
In the case of NAT-S Low, γ was 0.003% for the model with VN preprocessing and 0.002% for the
model without preprocessing, with the difference being statistically insignificant. It is not possible
to make a comparison of the sensitivities between the modes with matrix and without matrix
because the magnitude of ‖b‖ depends on the number of signals and number of latent variables
(LV) (see Supplementary Materials: Figure S5). For the models of spectra with many signals (BC,
SYN-S, and NAT-S), the magnitude of ‖b‖ is higher than that for the models with low-intensity signals
(KBr models). A better FM for this comparison is the LOD. For the models with the matrix (BC, SYN-S,
and NAT-S), the LOD values are close to that of the model without the matrix (KBr models). Curves
for the samples of low concentrations of DNT in NAT-S were generated to determine whether the
employed concentration range influenced the LOD values of the curves. In these cases, the LOD
decreased from 0.8% to 0.3%. DNT concentrations between 0.3% and 0.8% in the NAT-S Low model
can be quantified with higher uncertainties and higher probabilities of false positives and missed
detections because RSD should be between 10% and 33%.

To test the NAT-S model, a map of three new types of samples was analyzed, and a map of
10 × 10 mm2 (100 points) for each sample was generated. Two samples comprised the same soil as that
used in the NAT-S models and were contaminated with 10% of DNT. The first sample consisted of
a simple mixture (NAT-S-M). The second sample involved mixing and macerating the components
(NAT-S-MM). The concentrations were predicted using the NAT-S model with three preprocessing
methods: VN, MC, and no preprocessing. The map for the NAT-S model with VN is included in
Supplementary Materials: Figures S6–S9, while the predictions for the 100 points for each map using
different preprocessing methods are shown in Figure 4a,b. VN preprocessing applied to both samples
(NAT-S-M and NAT-S-MM) resulted in better results, with the predicted values being close to the
true value on average (10% DNT, see Figure 4c). MC preprocessing worked better in NAT-S-MM
than NAT-S-M. This indicates that while the macerated process homogenized the size of the particles,
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MC was not able to compensate for the difference in the particle size. In contrast, the VN preprocessing
method was able to compensate for these differences. The prediction of DNT in NAT-S-M shows peaks
of high DNT concentrations (>10% DNT). This is because the particles of DNT were not homogenized.
The models with no preprocessing provided bad predictions due to the difference in the baseline of the
spectra. The above discussion demonstrates that VN preprocessing corrects the spectral variation due
to changes in the particle size. To demonstrate the change in spectrum with the particle size, the tested
soil was sieving for three particle sizes (d): d > 0.85 mm, 0.85 mm > d > 0.25 mm, and d < 0.25 mm.
One hundred spectra were acquired at various locations on the sample surface for each value of d,
and the average and standard deviation of the spectra were determined (see Supplementary Materials:
Figures S10 and S11). The background offset spectral decreases with d, whereas the standard deviation
increases with d; however, this pattern is not consistent throughout the spectra. It is higher in the
1000–1200-cm−1 and 1400–1600-cm−1 regions. This can be explained by the fact that MC is not able to
correct the background offset spectral completely in contrast to VN; VN is better because it scales the
spectrum to unit vectors, whereas MC only changes the baseline.
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In the third sample, another type of natural soil (NAT2-S) was used to evaluate the NAT-S model.
Two samples of NAT2-S were contaminated with 10% of DNT and mixed. Mappings of 10 × 10 mm2

(100 points) were generated with the %DNT predicted from the NAT-S model using VN preprocessing.
The mappings are present in Supplementary Materials: Figure S12, while predictions for each point are
illustrated in Figure 4d. It can be noticed from the figure that the predictions were lower than the true
values. This indicates that the NAT-S model quantifies below the true value of 10% DNT; however, it is
capable of predicting the existence of an explosive in a soil. This indicates that the technique should be
used in known soil to have good quantification.
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To challenge the NAT-S model with other interferences, mixtures of other analytes in soil were
prepared with a concentration of 10% (median of the model). The analytes used as interferences were
BA, IBP, PETN, RDX, and TNT. BA and IBP do not have nitro groups but have aromatic rings and
thus many common signals with DNT in the range of 1000–1600 cm−1. PETN and RDX are nitro
aliphatic explosives. TNT is very similar to DNT but considered to be a more challenging interference.
Predictions for these samples were generated using the calibration curves for DNT/NAT-S. While the
predicted values should have been zero or close to zero because the samples did not contain DNT,
the average predicted concentrations were 8.8% (BA), 3.1% (IBP), -8.0% (PETN), 2.3% (RDX), and 25.8%
(TNT) (see Table 4). The objective was to measure the model’s capability of discriminating against
these interferences.

Table 4. Prediction of %DNT from the NAT-S models.

NAT-S NAT-S OPT-Val

BA 8.8 0.02
IBP 3.8 −0.02

PENT −8.0 0.00
RDX 2.3 0.02
TNT 25.8 0.11

To improve the model with respect to the recognition of interferences, an optimization procedure
was applied. This procedure involved implementing the optimization of the most significant regions
of the spectra after using various preprocessing steps. During optimization, the spectral region
was divided into equal spectral sub-regions. Then, the optimum combination of sub-regions was
determined by starting with 10 sub-regions and successively excluding one sub-region. This procedure
continued until the values of the cross-validation errors did not improve further. The RMSECV values
were calculated for each combination of the preprocessing steps, and the models with the lowest
values of errors were selected. Twenty spectra of each interference were introduced together with the
validation spectra set off with 0% of DNT true value. Then, optimization was performed by minimizing
the RMSECV value. This was labeled as an optimization of the validation set (OPT-Val).

In OPT-Val, all interferences were stabilized with the correct rejections. The parameters for the
NAT-S OPT-Val model were approximately similar to those of the NAT-S model except for the LV.
In particular, nine LV were added to the NAT-S OPT-Val model to stabilize the interferences (Table 5).
In the optimization process, the entire region was selected, and the best pretreatment was found to be
VN. Therefore, the only difference between the two models was that the optimized model had more
LVs. This procedure was optimum for the elimination of the interferences; however, it assumed that
the interferences do not interact with the analyte or the matrix. As part of our future work, samples
of DNT in soil with interferences interacting with DNT can be added to the model to remove these
potential errors.

Table 5. Performance indicators parameters for the NAT-S models.

NAT-S NAT-S OPT-Val

R2 cal 99.87 99.65
R2 val 99.61 98.92
R2 test 99.63 98.07

RMSEE 0.245% 0.425%
RMSECV 0.39% 0.72%
RMSEP 0.39% 0.88%

Bias 0.001 −0.0016
LV 10 19
ho 0.06 0.021

LOD 0.80% 1.4%
RPD 16.1 9.61
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For the NAT-S OPT-Val model, 19 LV were required to obtain a good RMSECV value. Figure 5
shows the dependence of the RMSECV values for the prediction of each interference as a function
of the LV. The NAT-S OPT-Val and NAT-S models were generated to determine how the RMSECV
values decrease with the LV and compare the two models. The NAT-S model showed the minimum
RMSECV at L = 10. Adding more LV resulted in worse RMSECV values. For the NAT-S OPT-Val
model, the minimum RMSECV was achieved with 19 LV. Nevertheless, at 10 LV, the RMSECV values
for other interferences were also sufficiently close to the RMSECV value for the model. For that reason,
TNT and IBP interferences did not allow the RMSECV value of the NAT-S OPT-Val model to approach
the RMSECV value of the NAT-S model.
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Figure 5. Dependence of the root-mean-square error of cross-validation (RMSECV) on LV for the
considered interferences: the NAT-S optimization of the validation set (OPT-Val) and NAT-S models.

3.2. Pattern Recognition Analysis

All sample spectra were normalized using VN preprocessing. Then, they were evaluated using
Pre-CLS. The soil database used for the evaluation initially contained QCL reflectance spectra of
four different natural soils, sand, and clay standards. It was expanded using linear combinations
of sand and clay by applying the concept of Self-Simulated Learning Artificial Intelligence (SSLAI).
SSLAI consists of an Artificial Intelligence method that uses minimal information to develop the
Machine Learning models. In this case, other types of soils are simulated using those that are available,
and these new simulated soils are used for the analysis. FSA algorithm for Pre-CLS was applied for
spectra of the samples, and one spectrum of the database was added to the model (see Equation (7))
for most spectra. Next, the sum of β j (SUM(β)) parameters was calculated without including the bias
(β0), and a simple binary discrimination model was generated and evaluated (see Table 6) using this
parameter to distinguish between contaminated and clean soils.

Table 6. Confusion matrix and evaluation criteria for the binary discrimination model using SUM
(β) parameters.

Precision Recall F1-Score Support Accuracy Matrix of Confusion

Model EXP NONE

EXP 0.768 1.000 0.869 1126 0.877 865 261
NONE 1.000 0.793 0.884 997 0 997



Appl. Sci. 2020, 10, 4178 14 of 19

Figure 6a shows the probability distribution of SUM (β) for the two classes of the binary model.
In this figure was observed a broad distribution of SUM (β) for the samples contaminated by explosives
(EXP), it is due to the range of concentrations. Additionally, when samples EXP has the highest
concentration of HEs, the value SUM (β) approaches 0 because it has the lowest proportion of soil.
On the other hand, in the NONE sample, the distribution is sharpest, and the SUM (β) is highest.Appl. Sci. 2020, 10, x 19 of 19 
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The evaluation criteria (precision, recall, f1-score, and accuracy) and the confusion matrix for
the model are shown in Table 6. This model has high precision in predicting clean soils (NONE),
whereas it is moderate in predicting contaminated soils (EXP). This is because soils with low explosive
concentrations are predicted as clean, increasing the number of false negatives. This happens at low
concentrations (<2%), where the model does not work well.

Following the scheme illustrated in Figure 1, PCA was applied to the normalized data providing
20 principal components accounting for 99.99% of the variance. These components were normalized
using an auto-scale preprocessing, and the SUM (β) was added as an additional principal component.
Then, various ML methods were used to generate multi-classification models to discriminate between
soils contaminated with three types of explosives (DNT, TNT, and RDX) and clean soil (NONE).
These models were evaluated using accuracy and log-loss calculated over the test data (Figure 6b).
The best method was RFC. This method constructs a multitude of decision trees during the training
process and outputs the class that is the mode of the classes of the individual trees. The evaluation
criteria (precision, recall, f1-score, and accuracy) and the confusion matrix calculated for the RFC model
over the test data are listed in Table 7. The test data were classified almost entirely. Other strategies
such as the generation of models without SUM (β) were also evaluated (data not shown); however,
these provided poor results with a high number of false positives, i.e., many samples of clean soil were
classified as containing explosives. This was resolved by adding the SUM (β) parameter.

Table 7. Confusion matrix and evaluation criteria for the random forest classification model.

Precision Recall f1-Score Support Accuracy Confusion Matrix

Model DNT NONE RDX TNT

DNT 0.997 0.997 0.997 347 0.997 346 1 0 0
NONE 1.000 0.996 0.998 564 0 564 0 0
RDX 0.993 1.000 0.997 149 1 0 148 0
TNT 0.990 1.000 0.995 100 0 1 0 99

Test DNT NONE RDX TNT

DNT 1.000 0.997 0.998 289 0.996 289 0 0 0
NONE 0.993 1.000 0.997 433 0 430 1 2
RDX 0.993 0.993 0.993 139 1 0 138 0
TNT 1.000 0.981 0.990 102 0 0 0 102
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4. Conclusions

This paper presented methods for quantifying DNT and detecting HEs in natural and synthetic
soil matrices. The remote detection of HEs at a distance of 15 cm was achieved using multiple benefits of
QCL spectroscopy, providing the evidence that it can be used in direct field applications. The obtained
LOD values were adequate for the intended application. This study demonstrated that it is possible to
get proper detection in the MIR range using diffuse reflection in the back-reflection mode for matrices
containing components with low reflectivity such as soils. The remote detection of HEs in soils is now
much more viable due to the high-power QCLs that are commercially available.

In the presented experiments, DNT signals could be observed in the spectra of solid mixtures with
complex matrices, enabling the detection of explosives and quantification of DNT. For quantifying
DNT in soil matrices, PLS models were useful for generating calibration curves. The best-performing
models were obtained using VN preprocessing for all spectra. This preprocessing procedure proved to
be suitable for samples, in which signals from analytes spectra overlapped with signals from matrices
(natural soil, synthetic soil, and bentonite) spectra and relative intensity differences between spectra
were small. In models that involved mixtures of explosives with KBr, VN preprocessing is not suitable
because the KBr matrix does not have interfering signals in the spectroscopic window of interest.
Therefore, this preprocessing step was not required. Hence, it can be concluded that VN is a useful
preprocessing step for soil samples that have highly interfering matrices such as other explosives (TNT,
RDX, and PETN) and non-explosives (BA and IBP). The strategy of adding samples of other analytes as
possible interferences produced more selective models, making them more robust. The interferences
used were organic compounds with many signals in the studied region. The interferences included
explosives such as TNT, PETN, and RDX, as well as organic compounds such as BA and IBP. The NAT-S
model was able to evade all interferences when it was trained with samples contaminated with these
compounds. For the model to be accurate for other soils and possible interferences, it should be
re-trained with corresponding samples.

Furthermore, an AI-based on an ML pipeline scheme (see Figure 1) was applied to obtain an
RFC model for HEs detection in soil matrices. This scheme included Pre-CLS assisted by SSLAI and
ML methods.

The expansion of the soil database generated by the linear combinations of QCL reflectance spectra
of four different soils (natural soils, sand, and clay standards) allowed the application of Self-Simulated
Learning Artificial Intelligence (SSLAI) concept. At the same time, it was possible to couple a simple
forward selection algorithm (FSA) that facilitated the compression of the model when using simple
multivariate analyses; CLS as additional preprocessing and PCA to reduce the number of spectral
variables. Therefore, the combination of PCA, Pre-CLS, and SSLAI is an innovative ML pipeline
that allows enriching the prediction of the model. Almost all tested samples of the studied soils and
explosives (DNT, RDX, and TNT) were correctly classified by the model (see Table 7), providing an
accuracy score of 0.996.
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2076-3417/10/12/4178/s1: Table S1: Composition percent of soil (NAT-S) samples; Figure S1: KM Spectra of 20%-
and 3%-DNT from the NAT-S sample; Figure S2: Vector Normalization of KM Spectra of 20%- and 3%-DNT from
the NAT-S sample; Figure S3: PLS models for DNT in KBr using VN prepossessing; Figure S4: (a) b regression
vector for models without preprocessing and with one Latent variable (LV), (b) b regression vector for models with
vector normalization preprocessing and with one LV, (c) b regression vector for models without preprocessing
and with eight LV, (d) b regression vector for models with vector normalization preprocessing and with eight LV;
Figure S5: Plot of # Latent variable (LV) vs. analytical sensitivity for PLS models for DNT in KBr and Soil with
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