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Abstract. The extreme learning machine for neural networks of feedforward of a single hidden
layer randomly assigns the weights of entry and analytically determines the weights the output
by means the Moore-Penrose inverse, this algorithm tends to provide an extremely fast learning
speed preserving the adjustment levels achieved by classifiers such as multilayer perception and
support vector machine. However, the Moore-Penrose inverse loses precision when using data
with additive noise in training. That is why in this paper a method to robustness of extreme
learning machine to additive noise proposed. The method consists in computing the weights
of the output layer using non-linear optimization algorithms without restrictions. Tests are
performed with the gradient descent optimization algorithm and with the Levenberg-Marquardt
algorithm. From the implementation it is observed that through the use of these algorithms,
smaller errors are achieved than those obtained with the Moore-Penrose inverse.

1. Introduction
Artificial neural networks have been widely used to solve problems of medical diagnosis [1], voice
recognition [2], image processing [3], facial recognition [4], between many other applications [1,
2, 5–8]. Despite this, they present clear inconveniences as the high time in the training and
the convergence to local minimums. Many works have been developed with the finality of solve
these problems and one of the most recent is the method known as extreme learning machine
(ELM).

In general, the supervised learning algorithms of the neural networks (multilayer perceptron,
convolutional neural networks) are based on non-linear optimization algorithms without
restrictions, such as gradient escent or higher speed variants. Extreme learning machine was
initially proposed for single-hidden layer feedforward neural networks in [9], and in its training
algorithm the input weights and biases of the hidden layer can be chosen randomly, and the
weights of the output layer is calculated using a least squares method based on the application
of the generalized Moore-Penrose inverse. Unlike other learning algorithms based on gradient
descent, the ELM algorithm does not require iterative techniques to adjust the weights and biases
of the hidden layer during the training process, so it becomes in a simple learning method, and
with an extremely fast learning speed.

Recently, it has been shown in [10] that ELM with weights and biases in the hidden layer
assigned arbitrarily and with almost any nonzero activation function correspond to a universal
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approximator of functions. This result makes that ELM networks compete with the well known
multilayer perceptron and suport vector machine.

Noisy data is a common factor in the processing of data that comes of the real-world. Sources
of noise include physical measurement limitations, the use of stochastic simulation models,
incomplete sampling of large spaces, and human-computer interaction. Many of the search
methods in use nowadays for data with noise can be traced back to the least squares methodology
approach, which consists in determine a curve that best is fits to the data set [11–13]. A known
fact is that in this type of methods the approximation error is degrades as the Noisy data
increases. This paper proposes the use of nonlinear optimization algorithms without restrictions
to improve the robustness of the estimate that provided the ELM network in presence of highly
noisy data. The algorithms considered are the gradient descent and the Levenberg-Marquardt
method, which allow to estimate the model parameters optimally in the sense of the mean square
error. The results obtained show that the optimization methods improve the estimation of the
parameters of the ELM network than the provided by the Pseudo-Inverse in a acceptable search
time.

In section 2, presents the Moore-Penrose generalized inverse solution, the least squares
solution for a general linear system, two optimization algorithms that allow to determine the
minimum value of a function and a brief introduction to the ELM algorithm. Section 3 explains
the materials and methods to address the proposed approaches. Performance evaluation is
presented in section 4, while the conclusions are given in section 5.

2. Preliminaries
This section gives a brief introduction to the Moore-Penrose generalized inverse, the least squares
solution, the gradient descent, the Levenberg-Marquardt method and the extreme learning
machine algorithm.

2.1. Moore-Penrose generalized inverse
The solution of a linear system Ax = y can be calculated very simply by using the generalized
inverse of Moore-Penrose [14], where the matrix A can be singular and even rectangular.

A matrix G of order n ×m is the Moore-Penrose generalized inverse of matrix A of order
m× n, if it satisfies the conditions of Equation (1).

AGA = A, GAG = G, (AG)T = AG y (GA)T = GA. (1)

The Moore-Penrose generalized inverse of matrix A will be denoted by G = A†.

2.2. Least squares solution
We say that x0 is a least squares solution for a linear system Ax = y, if for any y ∈ Rm satisfies
the Equation (2).

‖x0‖ ≤ ‖x‖, ∀ x ∈ {x : ‖Ax− y‖ ≤ ‖Az − y‖, ∀ z ∈ Rn} , (2)

that is, a solution x0 is said to be a minimum norm least squares solution of a linear system
Ax = y if it has the smallest norm among all the least squares solutions.

2.3. Optimization algorithms gradient descent and Levenberg-Marquardt
The gradient descent algorithm is described by the Equation (3), this is most intuitive technique
to find minim of a function [15, 16]. The search process of the minimum is carried out through
an iterative process following the opposite direction to the gradient of a function E with a
convergence rate α.
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W k+1 = W k − α∇E. (3)

It can be observe of [15–17] that the gradient descent method and the of Gauss-Newton
are two complementary methods in the advantages they provide. In order to make sure that
the approximated Hessian matrix H ≈ JTJ is invertible [16], Levenberg-Marquardt algorithm
introduces another approximation to Hessian matrix by the Equation (4).

H ≈ JTJ + µI, (4)

where µ is the combination coefficient, I is the identity matrix and J is the Jacobian matrix.
Levenberg and Marquardt proposed a new algorithm based on these observations, whose update
rule is a combination of the algorithms mentioned above, such as be shown in Equation (5).

W k+1 = W k −
(
JT

k Jk + µI
)−1

Jk. (5)

The combination coefficient µ in the previous equation is a parameter that be adjusted in
each cycle of according a the evolution of the error. If µ is very small, the JT

k Jk matrix becomes
an approximation to the Hessian and Gauss-Newton algorithm is used. If µ � 1, the method
becomes analogous to gradient descent.

2.4. Extreme learning machine
For N arbitrary training samples {(xi, ti)}Ni=1, where xi = [xi1, xi2, . . . , xin]T ∈ Rn and
ti = [ti1, ti2, . . . , tim]T ∈ Rm. The ELM learning algorithm for single hidden layer neural
networks with L hidden neurons and activation function g(x) are mathematically modeled by
Equation (6).

L∑
i=1

βig(wi · xj + bi) = oj , j = 1, . . . , N, (6)

where wi = [wi1, wi2, . . . , win]T is the weight vector connecting the ith hidden neuron and the
input neurons, βi = [βi1, βi2, . . . , βim]T is the weight vector connecting the ith hidden neuron
and the output neurons, bi is the threshold of the ith hidden neuron and wi · xj denotes the
inner product of wi and xj [9].

The standard ELM algorithm with L hidden neurons and activation function g(x) can

approximate these N samples with zero error means that
∑N

j=1 ‖oj − tj‖ = 0, that is, there

exist βi, wi and bi such as Equation (7).

L∑
i=1

βig(wi · xj + bi) = tj , j = 1, . . . , N. (7)

The Equation (7) can be written in matrix form of Equation (8).

Hβ = T , (8)

where the elements of Equation (8) are given by Equation (9).

H =

 g(w1 · x1 + b1) · · · g(wL · x1 + bL)
...

. . .
...

g(w1 · xN + b1) · · · g(wL · xN + bL)

 , β =

 β
T
1
...

βT
L

 and T =

 tT1
...
tTN

 . (9)
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As mentioned in [18, 19], the matrix H defined in Equation (9) is called the hidden layer
output matrix of the neural network; the ith column of H is the ith hidden neuron’s output
vector with respect to inputs x1,x2, . . . ,xN .

If the number of hidden neurons is equal to the number of training samples L = N ,
matrix H is square and invertible, and SLFNs can approximate these training samples with
zero error [18–20]. However, in most cases the number of hidden neurons is much less than
the number of training samples L � N , H is a nonsquare matrix and there may not exist
wi, bi, βi (i = 1, . . . , L) such that Hβ = T . Thus, instead one may need to find specific ŵi, b̂i, β̂
(i = 1, . . . , L) such that Equation (10).

‖H(ŵ1, . . . , ŵL, b̂1, . . . , b̂L)β̂ − T ‖ = min
wi,bi,β

‖H(w1, . . . ,wL, b1, . . . , bL)β − T ‖. (10)

The Equation (10) is equivalent to minimizing the cost function.
The unknown W in Equations (3) and Equation (5) corresponds to the set of weights and

biases {wi,βi, bi} of the ELM algorithm. In addition, the comparison of results will be carried
out minimizing the objective function E defined in Equation (11) using the Levenberg-Marquardt
algorithm and the gradient descent.

E =
1

N

N∑
j=1

(
L∑
i=1

βig(wi · xj + bi)− tj

)2

. (11)

3. Materials and methods
The training and testing data for the ELM algorithm have been generated around of a n grade
polynomial function through additive noise, that is Equation (12).

data = f(x) + r × rand(N, 1), (12)

where f(x) = a0×ones(N, 1)+a1x+a2x
2+· · ·+anxn, N is the set of training samples, x is a

vector of dimension N and r is the amplitude of the noise. The analysis was done taking different
scenarios with respect to the degree of the polynomial and the number of hidden neurons in the
neural network.

In this paper be proposes the gradient descent method (GD-ELM) and the of Levenberg-
Marquardt (LM-ELM) for determine the output weights of the ELM algorithm through iterative
processes defined in the Equation (3) and Equation (5). The procedure consists in estimate
the model parameters optimally in the sense of the mean square error adjusting the noise r
of the data obtained from Equation (12). In addition, we choose the sigmoid function (i.e.
g(w,x, b) = 1/(1 + exp(−(wx + b)))) as the activation function of GD-ELM, LM-ELM and
ELM.

The input weightsw are randomly generated from the range of (−1, 1) and the hidden biases b
are generated randomly from the range of (0, 1) using a uniform distribution. For each regression
problem, the average results over 50 trials are obtained for each algorithm. In this study, the
algorithms have been implemented through the MATLAB R2014a environment.

4. Experimental results and analysis
In this section, a series of experiments are carried out to demonstrate the effectiveness of the
proposed GD-ELM and LM-ELM approaches. To illustrate the good behavior of GD-ELM and
LM-ELM, are compared with the basic ELM. The training problem that serves as example is to
reconstruct a polynomial through the network. The results obtained are compared via the root
mean square error (RMSE), such as is shown in the following Equation (13).
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RMSE =

√√√√ 1

N

N∑
i=1

(yi − ŷi), (13)

where ŷi is the estimated value and yi is the true value.
The experiments are conducted on three sets (S1, S2 and S3) specified in Table 1. The

coefficients of the polynomials are random constants between -1 and 1. Training and testing
samples were taken, where the input are distributed evenly in [0, 1]. Furthermore, the number
of maximum iterations for gradient descent and the Levenberg-Marquardt algorithm are set in
15000 and 70, respectively.

Table 1. Specification of three datasets.
Polynomial degree (PD) Training data Testing data Noise amplitude

Set 1 (S1) 90 322 178 r =0.5
Set 2 (S2) 50 254 146 r =0.4
Set 3 (S3) 20 189 111 r =0.3

The testing error, the training error, the standard deviation (SD) and learning time are
selected as the indicators for performance testing. The smaller testing RMSE denotes the better
generalization performance of the algorithm and the smaller SD indicates the better stability of
the algorithm. The comparison of the three algorithms is shown in Table 2.

Table 2. Performance comparison of the GD-ELM, LM-ELM and ELM.
Datasets Algorithms Testing RMSE Testing SD Time Hidden nodes

ELM 0.4857 0.2334 0.0092 30
S1 GD-ELM 0.0886 0.0192 3.2729 30

LM-ELM 0.2096 0.0897 0.9012 30
ELM 0.2803 0.2803 0.0018 15

S3 GD-ELM 0.0843 0.0251 2.4390 15
LM-ELM 0.1907 0.1128 0.0874 15

ELM 0.1096 0.0396 0.0030 20
S3 GD-ELM 0.0331 0.0023 2.6522 20

LM-ELM 0.0366 0.0019 0.0585 20

From Table 2, we observe that the proposed GD-ELM and LM-ELM algorithms has the
RMSE and the SD of testing smallest for the three data sets, which means that GD-ELM and
LM-ELM can achieve better generalization performance and stability than ELM.

Figure 1 shows the behavior of the exact and approximate curves obtained by the optimization
algorithms for the set S1. Then, testing samples were used to see the stability of the proposed
algorithms compared with the basic ELM. Figure 2 shows the test results obtained to the
executing the code 50 times maintaining the same number of hidden neurons. It is observed
that GD-ELM and LM-ELM always behave better compared with ELM.
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(a) Pseudoinverse
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(b) Gradient descent
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(c) Levenberg-Marquardt

Figure 1. Comparison of the actual curve and the output predicted by ELM, GD-ELM and
LM-ELM for a noise of radius 0.2. The GD-ELM and LM-ELM algorithms present good
approximations to the real model as shown in (b) and (c), however the ELM algorithm begins
to oscillate as shown in (a) obtaining bad models.

Figure 2. Comparison of the RMSE of ELM, GD-ELM and LM-ELM considering 50
initializations of the weights.

5. Conclusion
In this study, two optimization algorithms were presented for the calculation of ELM parameters
for regression problems.Experimental results show that the GD-ELM and LM-ELM algorithms
can achieve better test results in compared with the pseudoinverse to determine the output
weights of the neural network when working with for highly noisy data. Such as literature
indicates, the LM-ELM algorithm is faster than the GD-ELM algorithm, which allows the
solution of the problem in a reasonable time.
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