EVALUACIÓN INTEGRAL DE LA CALIDAD SEMINAL, DAÑO EN EL ADN ESPERMÁTICO, EXPRESIÓN DEL GEN AKAP4 Y SU RELACION CON LA INFERTILIDAD MASCULINA YEIRA PAOLA LÓPEZ LORA Código estudiantil: 201021322470 Tesis Doctoral presentada como requisito para optar el título de: Doctorado en Genética y Biología Molecular Tutores: Tutor: Leonardo Carlos Pacheco Londoño, Ph. D Cotutor: Fabián Andrés Espitia Almeida, Ph. D RESUMEN La infertilidad globalmente afecta hasta un 17.5% de parejas, con causas variadas que incluyen factores genéticos y hormonales. Estas afectan la calidad espermática, crucial para la reproducción. Las tecnologías de reproducción asistida (TRA), como la fertilización in vitro (FIV), han avanzado la medicina reproductiva, permitiendo intervenciones directas en la fertilización y el desarrollo embrionario, pero aún existen brechas en la comprensión de la infertilidad, especialmente en áreas como la fecundación y el daño genético. El objetivo de esta tesis doctoral se centró en examinar la calidad seminal, el daño en el ADN espermático y la expresión del gen AKAP4 para comprender su influencia en la fecundación y la calidad embrionaria. Se estudiaron 45 pacientes de una clínica de fertilidad y 50 individuos fértiles control, analizando la calidad seminal según criterios de la OMS y la expresión de AKAP4 mediante espectroscopía Raman. Se evaluó también la capacidad de fecundación y desarrollo embrionario. Los resultados mostraron diferencias estadísticas significativas en movilidad, concentración, vitalidad y morfología espermática entre pacientes y controles, lo que puede indicar discrepancias en salud reproductiva. Diferencias en la metilación del ADN y expresión de AKAP4 sugieren impacto en la expresión génica y calidad espermática. La técnica SERS permitió identificar diferencias proteicas y de metilación del ADN, esenciales para desarrollar modelos PLS-DA para diferenciar técnicas de preparación espermática. Se encontró una correlación negativa entre la fragmentación del ADN espermático y el desarrollo embrionario, indicando que mayor fragmentación podría reducir la viabilidad embrionaria. La investigación revela una variabilidad significativa en la calidad espermática y genética entre pacientes y controles, con implicaciones importantes en la fertilidad y medicina reproductiva. La calidad seminal y la fragmentación del ADN espermático son indicadores clave de la fertilidad masculina. La espectrofotometría Raman y SERS se perfilan como técnicas no invasivas y prometedoras para el diagnóstico y la investigación de la infertilidad. Las TRA han mejorado las opciones de tratamiento para parejas infértiles, pero la eficacia de estas tecnologías depende de la comprensión profunda de la calidad espermática. La investigación avanzada en la genética espermática y la integridad del ADN es crucial para desarrollar tratamientos más efectivos. El daño en el ADN espermático ha emergido como un factor significativo, asociado con resultados adversos en la reproducción, lo que resalta la necesidad de más estudios detallados y precisos en esta área. Se destaca la complejidad de la fertilidad masculina y la importancia de considerar múltiples factores cuando se evalúa la infertilidad. Esta investigación subraya la importancia de una evaluación comprensiva de la calidad espermática, incluyendo la movilidad, morfología y la integridad del ADN, para mejorar los enfoques diagnósticos y terapéuticos en la infertilidad masculina. Además, se resalta el potencial de las técnicas de espectroscopía avanzada para enriquecer la investigación futura y el tratamiento de la infertilidad, apuntando hacia un futuro donde los tratamientos sean más efectivos y accesibles para todas las parejas que enfrentan este desafío. Palabras claves: Reproducción Asistida, Calidad Seminal, Espectroscopia Raman, Fragmentación del ADN, ICSI, AKAP4 ABSTRACT Infertility globally affects up to 17.5% of couples, with varied causes that include genetic and hormonal factors. This affect sperm quality, which is crucial for reproduction. Assisted reproductive technologies (ART), such as in vitro fertilization (IVF), have advanced reproductive medicine by allowing direct interventions in fertilization and embryonic development. However, there are still gaps in understanding infertility, especially in areas such as fertilization and genetic damage. The aim of this doctoral thesis was to examine seminal quality, sperm DNA damage, and AKAP4 gene expression to understand their influence on fertilization and embryo quality. 45 patients from a fertility clinic and 50 fertile control individuals were studied, analyzing seminal quality according to WHO criteria and AKAP4 expression using Raman spectroscopy. The capacity for fertilization and embryonic development was also assessed. Results showed significant statistical differences in sperm motility, concentration, vitality, and morphology between patients and controls, which may indicate discrepancies in reproductive health. Differences in DNA methylation and AKAP4 expression suggest an impact on gene expression and sperm quality. The SERS technique identified protein and DNA methylation differences, essential for developing PLS-DA models to differentiate sperm preparation techniques. A negative correlation was found between sperm DNA fragmentation and embryonic development, suggesting that increased fragmentation could reduce embryonic viability. The research reveals significant variability in sperm quality and genetics between patients and controls, with important implications for fertility and reproductive medicine. Seminal quality and sperm DNA fragmentation are key indicators of male fertility. Raman spectroscopy and SERS are emerging as non-invasive and promising techniques for infertility diagnosis and research. ART has improved treatment options for infertile couples, but the efficacy of these technologies depends on a deep understanding of sperm quality. Advanced research in sperm genetics and DNA integrity is crucial for developing more effective treatments. Sperm DNA damage has emerged as a significant factor associated with adverse reproductive outcomes, highlighting the need for more detailed and accurate studies in this area. The complexity of male fertility is emphasized, and the importance of considering multiple factors when assessing infertility is highlighted. This research underscores the importance of a comprehensive assessment of sperm quality, including motility, morphology, and DNA integrity, to improve diagnostic and therapeutic approaches in male infertility. Furthermore, the potential of advanced spectroscopy techniques to enrich future research and infertility treatment is highlighted, pointing towards a future where treatments are more effective and accessible to all couples facing this challenge. Keywords: Assisted Reproduction, Seminal Quality, Raman Spectroscopy, DNA Fragmentation, ICSI, AKAP4. REFERENCIAS BIBLIOGRÁFICAS 1. Cox CM, Thoma ME, Tchangalova N, Mburu G, Bornstein MJ, Johnson CL, Kiarie J. Infertility prevalence and the methods of estimation from 1990 to 2021: a systematic review and meta-analysis. Human Reproduction Open. 2022 Jan 1;2022(4): hoac051. https://doi.org/10.1093/hropen/hoac051 2. Njagi P, Groot W, Arsenijevic J, Dyer S, Mburu G, Kiarie J. Financial costs of assisted reproductive technology for patients in low-and middle-income countries: a systematic review. Human reproduction open. 2023 Jan 1;2023(2):hoad007. https://doi.org/10.1093/hropen/hoad007 3. Starrs AM, Ezeh AC, Barker G, Basu A, Bertrand JT, Blum R, Coll-Seck AM, Grover A, Laski L, Roa M, Sathar ZA. Accelerate progress—sexual and reproductive health and rights for all: report of the Guttmacher–Lancet Commission. The lancet. 2018 Jun 30;391(10140):2642-92. https://doi.org/10.1016/S0140-6736(18)30293-9 4. Zegers-Hochschild F, Crosby JA, Musri C, Souza MDCB, Martinez AG, Silva AA, Mojarra JM, Masoli D, Posada N, Reproduction LANOA. Assisted reproductive technologies in Latin America: the Latin American Registry, 2019. JBRA Assist Reprod. 2022 Nov 9;26(4):637-658. doi: 10.5935/1518- 0557.20220034. PMID: 36098475; PMCID: PMC9635608 5. Thoma ME, McLain AC, Louis JF, King RB, Trumble AC, Sundaram R, Louis GM. Prevalence of infertility in the United States as estimated by the current duration approach and a traditional constructed approach. Fertility and sterility. 2013 Apr 1;99(5):1324-3. https://doi.org/10.1016/j.fertnstert.2012.11.037 6. Yatsenko SA, Rajkovic A. Genetics of human female infertility. Biol Reprod. 2019 Sep 1;101(3):549-566. doi: 10.1093/biolre/ioz084. PMID: 31077289; PMCID: PMC8127036. 7. Agarwal, A., Mulgund, A., Hamada, A. et al. A unique view on male infertility around the globe. Reprod Biol Endocrinol 13, 37 (2015). https://doi.org/10.1186/s12958-015-0032-1. 8. Agarwal A, Majzoub A, Parekh N, Henkel R. A Schematic Overview of the Current Status of Male Infertility Practice. World J Mens Health. 2020 Jul;38(3):308-322. doi: 10.5534/wjmh.190068. Epub 2019 Jul 12. PMID: 31385475; PMCID: PMC7308239. 9. World Health Organization. WHO Laboratory Manual for the Examination and Processing of Human Semen. 6th ed. WHO Press; Geneva, Switzerland: 2021. online: https://www.who.int/publications/i/item/9789240030787. 10. Choi JW, Alkhoury L, Urbano LF, Masson P, VerMilyea M, Kam M. An assessment tool for computer-assisted semen analysis (CASA) algorithms. Scientific reports. 2022 Oct 7;12(1):16830. https://doi.org/10.1038/s41598- 022-20943-9 https://doi.org/10.1093/hropen/hoac051 https://doi.org/10.1093/hropen/hoad007 https://doi.org/10.1016/S0140-6736(18)30293-9 https://doi.org/10.1016/j.fertnstert.2012.11.037 https://doi.org/10.1186/s12958-015-0032-1 https://www.who.int/publications/i/item/9789240030787 11. Finelli R, Leisegang K, Tumallapalli S, Henkel R, Agarwal A. The validity and reliability of computer-aided semen analyzers in performing semen analysis: a systematic review. Translational Andrology and Urology. 2021 Jul;10(7):3069. doi: 10.21037/tau-21-276. PMID: 34430409; PMCID: PMC8350227. 12. Jungwirth A, Giwercman A, Tournaye H, Diemer T, Kopa Z, Dohle G, Krausz C; European Association of Urology Working Group on Male Infertility. European Association of Urology guidelines on Male Infertility: the 2012 update. Eur Urol. 2012 Aug;62(2):324-32. doi: 10.1016/j.eururo.2012.04.048. Epub 2012 May 3. PMID: 22591628. 13. Sakkas D, Manicardi GC, Tomlinson M, Mandrioli M, Bizzaro D, Bianchi PG, Bianchi U. The use of two density gradient centrifugation techniques and the swim-up method to separate spermatozoa with chromatin and nuclear DNA anomalies. Human Reproduction. 2000 May 1;15(5):1112-6. https://doi.org/10.1093/humrep/15.5.1112 14. Villani MT, Morini D, Spaggiari G, Falbo AI, Melli B, La Sala GB, Romeo M, Simoni M, Aguzzoli L, Santi D. Are sperm parameters able to predict the success of assisted reproductive technology? A retrospective analysis of over 22,000 assisted reproductive technology cycles. Andrology. 2022 Feb;10(2):310-321. doi: 10.1111/andr.13123. Epub 2021 Nov 12. PMID: 34723422; PMCID: PMC9298690. 15. Simon L, Aston KI, Emery BR, Hotaling J, Carrell DT. Sperm DNA damage output parameters measured by the alkaline Comet assay and their importance. Andrologia. 2017 Mar;49(2). doi: 10.1111/and.12608. Epub 2016 May 6. PMID: 27150821. 16. Pourasil RSM, Gilany K. Fast diagnosis of men's fertility using Raman spectroscopy combined with chemometric methods: An experimental study. Int J Reprod Biomed. 2021 Feb 21;19(2):121-128. doi: 10.18502/ijrm. v19i2.8470. PMID: 33718756; PMCID: PMC7922295. 17. Carracedo S, Briand-Amirat L, Dordas-Perpinyà M, Escuredo YR, Delcombel R, Sergeant N, Delehedde M. ProAKAP4 protein marker: Towards a functional approach to male fertility. Animal Reproduction Science. 2022 Dec 1;247:107074. https://doi.org/10.1016/j.anireprosci.2022.107074Get rights and content 18. Skakkebaek NE, Rajpert-De Meyts E, Buck Louis GM, Toppari J, Andersson AM, Eisenberg ML, Jensen TK, Jørgensen N, Swan SH, Sapra KJ, Ziebe S, Priskorn L, Juul A. Male Reproductive Disorders and Fertility Trends: Influences of Environment and Genetic Susceptibility. Physiol Rev. 2016 Jan;96(1):55-97. doi: 10.1152/physrev.00017.2015. PMID: 26582516; PMCID: PMC4698396. 19. Ministerio de Salud y Protección Social, Profamilia. Encuesta Nacional de Demografía y Salud 2015 Tomo II: Componente de salud sexual y salud https://doi.org/10.1093/humrep/15.5.1112 https://doi.org/10.1016/j.anireprosci.2022.107074 https://s100.copyright.com/AppDispatchServlet?publisherName=ELS&contentID=S0378432022001531&orderBeanReset=true https://s100.copyright.com/AppDispatchServlet?publisherName=ELS&contentID=S0378432022001531&orderBeanReset=true reproductiva.Pág.166.https://profamilia.org.co/wpcontent/uploads/2019/05/E NDS-2015-TOMO-II.pdf 20. Carson SA, Kallen AN. Diagnosis and management of infertility: a review. Jama. 2021 Jul 6;326(1):65-76. https://jamanetwork.com/journals/jama/article-abstract/2781637 21. Simon L, Liu L, Murphy K, Ge S, Hotaling J, Aston KI, Emery B, Carrell DT. Comparative analysis of three sperm DNA damage assays and sperm nuclear protein content in couples undergoing assisted reproduction treatment. Human Reproduction. 2014 May 1;29(5):904.17. https://doi.org/10.1093/humrep/deu040 22. Vander Borght M, Wyns C. Fertility and infertility: Definition and epidemiology. Clin Biochem. 2018 Dec;62:2-10. doi: 10.1016/j.clinbiochem.2018.03.012. Epub 2018 Mar 16. PMID: 29555319 23. Cooper TG, Noonan E, von Eckardstein S, Auger J, Baker HW, Behre HM, Haugen TB, Kruger T, Wang C, Mbizvo MT, Vogelsong KM. World Health Organization reference values for human semen characteristics. Hum Reprod Update. 2010 May-Jun;16(3):231-45. doi: 10.1093/humupd/dmp048. Epub 2009 Nov 24. PMID: 19934213. 24. Lalancette C, Platts AE, Johnson GD, Emery BR, Carrell DT, Krawetz SA. Identification of human sperm transcripts as candidate markers of male fertility. J Mol Med (Berl). 2009 Jul;87(7):735-48. doi: 10.1007/s00109-009- 0485-9. Epub 2009 May 24. PMID: 19466390. 25. Vander Borght M, Wyns C. Fertility and infertility: Definition and epidemiology. Clin Biochem. 2018 Dec;62:2-10. doi: 10.1016/j.clinbiochem.2018.03.012. Epub 2018 Mar 16. PMID: 29555319. 26. Katz DJ, Teloken P, Shoshany O. Male infertility-the other side of the equation. Australian family physician. 2017 Sep;46(9):641. https://search.informit.org/doi/10.3316/informit.074841403579652 27. Barratt CL, Anderson RA, De Jonge C. Male fertility: a window on the health of this generation and the next. Reprod Biomed Online. 2019 Nov;39(5):721- 723. doi: 10.1016/j.rbmo.2019.09.009. Epub 2019 Sep 24. PMID: 31585843. 28. Aitken RJ. Not every sperm is sacred; a perspective on male infertility. MHR: Basic science of reproductive medicine. 2018 Jun;24(6):287-98. https://doi.org/10.1093/molehr/gay010 29. Wang F, Yang W, Ouyang S, Yuan S. The Vehicle Determines the Destination: The Significance of Seminal Plasma Factors for Male Fertility. Int J Mol Sci. 2020 Nov 12;21(22):8499. doi: 10.3390/ijms21228499. PMID: 33198061; PMCID: PMC7696680. 30. Pourmasumi S, Nazari A, Fagheirelahee N, Sabeti P. Cytochemical tests to investigate sperm DNA damage: Assessment and review. J Family Med Prim Care. 2019 May;8(5):1533-1539. doi: 10.4103/jfmpc.jfmpc_35_19. PMID: 31198709; PMCID: PMC6559112. https://profamilia.org.co/wpcontent/uploads/2019/05/ENDS-2015-TOMO-II.pdf https://profamilia.org.co/wpcontent/uploads/2019/05/ENDS-2015-TOMO-II.pdf https://doi.org/10.1093/humrep/deu040 https://search.informit.org/doi/10.3316/informit.074841403579652 https://doi.org/10.1093/molehr/gay010 31. Delehedde M, Carracedo S, Selleslagh M, Eddarkaoui S, Amirat-Briand L, Sergeant N. ProAKAP4 polypeptide as a biomarker of sperm functionality and male fertility disorders. Int. J. Gynecol. Reprod. Sci. 2019;2:3-19. https://doi.org/10.1016/j.anireprosci.2022.10707 32. González Uribe C. Encuesta Nacional de Demografía y Salud 2015: nuevas oportunidades de investigación para la salud pública en Colombia. Tomo I, pág. 430 [citado: 2023, octubre].https://repositorio.uniandes.edu.co/flip/?pdf=https://repositorio.unia ndes.edu.co/server/api/core/bitstreams/7e2790f6-fe59-4a5c-8330- 208c87e6f83a/content 33. World Health Organization. International Classification of Diseases, 11th Revision (ICD-11). WHO: Geneva, 2018. Available from: https://icd.who.int/en (13 January 2022, date last accessed). 34. Yatsenko SA, Rajkovic A. Genetics of human female infertility. Biol Reprod. 2019 Sep 1;101(3):549-566. doi: 10.1093/biolre/ioz084. PMID: 31077289; PMCID: PMC8127036. 35. Maddirevula S, Coskun S, Alhassan S, Elnour A, Alsaif HS, Ibrahim N, Abdulwahab F, Arold ST, Alkuraya FS. Female Infertility Caused by Mutations in the Oocyte-Specific Translational Repressor PATL2. Am J Hum Genet. 2017 Oct 5;101(4):603-608. doi: 10.1016/j.ajhg.2017.08.009. Epub 2017 Sep 28. PMID: 28965844; PMCID: PMC5630161. 36. Raheem AA, Ralph D. (2011). Male infertility: causes and investigations. Trends Urol Mens Health, 2: 8-11. https://doi.org/10.1002/tre.216. 37. Sharma A. Infertilidad masculina; Evidencias, factores de riesgo, causas, diagnóstico y manejo en humanos. Ciencia del laboratorio Ann Clin. 2017; 5(3):188. doi: 10.21767/2386-5180.1000188. 38. Okonofua FE, Ntoimo LFC, Omonkhua A, Ayodeji O, Olafusi C, Unuabonah E, Ohenhen V. Causes and Risk Factors for Male Infertility: A Scoping Review of Published Studies. Int J Gen Med. 2022 Jul 4;15:5985-5997. doi: 10.2147/IJGM.S363959. PMID: 35811778; PMCID: PMC9268217. 39. Kumar N, Singh AK. Trends of male factor infertility, an important cause of infertility: A review of literature. J Hum Reprod Sci. 2015 Oct-Dec;8(4):191-6. doi: 10.4103/0974-1208.170370. PMID: 26752853; PMCID: PMC4691969 40. Harris ID, Fronczak C, Roth L, Meacham RB. Fertility and the aging male. Rev Urol. 2011;13(4):e184-90. PMID: 22232567; https://europepmc.org/article/med/22232567. 41. Udhakar DVS, Shah R, Gajbhiye RK. Genetics of male infertility - present and future: a narrative review. J Hum Reprod Sci. 2021;14(3):217-27. DOI: 10.4103/jhrs.jhrs_115_21 42. Cannarella R, Condorelli RA, Mongioì LM, La Vignera S, Calogero AE. Molecular biology of spermatogenesis: novel targets of apparently idiopathic male infertility. Int J Mol Sci. 2020;21(5):1728. https://doi.org/10.3390/ijms21051728 https://doi.org/10.1016/j.anireprosci.2022.107074 https://europepmc.org/article/med/22232567 https://doi.org/10.3390/ijms21051728 43. Krausz C. Editorial for the special issue on the molecular genetics of male infertility. Human Genetics. 2021 Jan;140(1):1-5. https://doi.org/10.1007/s00439-020-02245-0 44. Wu S, Yan M, Ge R, Cheng CY. Crosstalk between Sertoli and germ cells in male fertility. Trends in molecular medicine. 2020 Feb 1;26(2):215-31. https://doi.org/10.1016/j.molmed.2019.09.006 45. Chen SR, Liu YX. Regulation of spermatogonial stem cell self-renewal and spermatocyte meiosis by Sertoli cell signaling. https://doi.org/10.1530/rep-14- 0481 46. Linn E, Ghanem L, Bhakta H, Greer C, Avella M. Genes regulating spermatogenesis and sperm function associated with rare disorders. Frontiers in Cell and Developmental Biology. 2021 Feb 16;9:634536. https://doi.org/10.3389/fcell.2021.634536 47. Ward WS. Function of sperm chromatin structural elements in fertilization and development. MHR: Basic science of reproductive medicine. 2009 Sep 11;16(1):30-6. https://doi.org/10.1093/molehr/gap080 48. Okada Y. Sperm chromatin structure: Insights from in vitro to in situ experiments. Current Opinion in Cell Biology. 2022 Apr 1;75:102075. https://doi.org/10.1016/j.ceb.2022.102075 49. Andrabi SM. Mammalian sperm chromatin structure and assessment of DNA fragmentation. Journal of assisted reproduction and genetics. 2007 Dec;24(12):561-9. https://doi.org/10.1007/s10815-007-9177-y 50. Yoshida K, Muratani M, Araki H, Miura F, Suzuki T, Dohmae N, Katou Y, Shirahige K, Ito T, Ishii S. Mapping of histone-binding sites in histone replacement-completed spermatozoa. Nature communications. 2018 Sep 24;9(1):3885. https://doi.org/10.1038/s41467-018-06243-9 51. Dcunha R, Hussein RS, Ananda H, Kumari S, Adiga SK, Kannan N, Zhao Y, Kalthur G. Current insights and latest updates in sperm motility and associated applications in assisted reproduction. Reproductive Sciences. 2022 Jan 1:1-9. ttps://doi.org/10.1007/s43032-020-00408-y 52. Gaffney EA, Gadêlha H, Smith DJ, Blake JR, Kirkman-Brown JC. Mammalian sperm motility: observation and theory. Annual Review of Fluid Mechanics. 2011 Jan 21;43:501-28. https://doi.org/10.1146/annurev-fluid-121108- 145442 53. Freitas MJ, Vijayaraghavan S, Fardilha M. Signaling mechanisms in mammalian sperm motility. Biology of Reproduction. 2017 Jan 1;96(1):2-12. https://doi.org/10.1095/biolreprod.116.144337 54. Hekmatdoost A, Lakpour N, Sadeghi MR. Sperm chromatin integrity: etiologies and mechanisms of abnormality, assays, clinical importance, preventing and repairing damage. Avicenna J Med Biotechnol. 2009 Oct- Dec;1(3):147-60. https://europepmc.org/article/med/23408441 https://doi.org/10.1007/s00439-020-02245-0 https://doi.org/10.1016/j.molmed.2019.09.006 https://doi.org/10.1530/rep-14-0481 https://doi.org/10.1530/rep-14-0481 https://doi.org/10.3389/fcell.2021.634536 https://doi.org/10.1093/molehr/gap080 https://doi.org/10.1016/j.ceb.2022.102075 https://doi.org/10.1007/s10815-007-9177-y https://doi.org/10.1038/s41467-018-06243-9 https://doi.org/10.1146/annurev-fluid-121108-145442 https://doi.org/10.1146/annurev-fluid-121108-145442 https://doi.org/10.1095/biolreprod.116.144337 55. Wang T, Gao H, Li W, Liu C. Essential role of histone replacement and modifications in male fertility. Frontiers in genetics. 2019 Oct 8;10:470883. https://doi.org/10.3389/fgene.2019.00962 56. Kocak I, Dundar M, Hekimgil M, Okyay P. Assessment of germ cell apoptosis in cryptorchid rats. Asian journal of andrology. 2002 Sep 1;4(3):183-6. https://europepmc.org/article/med/12364973 57. Shafik A, Shafik AA, Shafik I, El Sibai O. Sperm DNA fragmentation. Arch Androl. 2006;52:197-208.https://doi.org/10.1080/01485010500503561 58. Kobori Y. Home testing for male factor infertility: a review of current options. Fertil Steril. 2019;111(5):864-70. https://doi.org/10.1016/j.fertnstert.2019.01.032 59. Calogero A, Cannarella R, Agarwal A, Abdel-Meguid Hamoda T, Rambhatla A, Saleh R, Boitrelle F, Ziouziou I, Toprak T, Gül M, Avidor-Reiss T, Kavoussi P, Chung E, Birowo P, Ghayda R, Ko E, Colpi G, Dimitriadis F, Russo G, Shah R. The renaissance of male infertility management in the golden age of andrology. World J Mens Health. 2023;41. 10.5534/wjmh.220213 60. Chua SC, Yovich SJ, Hinchliffe PM, Yovich JL. How well do semen analysis parameters correlate with sperm DNA fragmentation? A retrospective study from 2567 semen samples analyzed by the Halosperm test. J Pers Med. 2023;13:518.https://doi.org/10.3390/jpm13030518 61. Lesani A, Kazemnejad S, Moghimi Zand M, Azadi M, Jafari H, Mofrad MRK, Nosrati R. Quantification of human sperm concentration using machine learning-based spectrophotometry. Comput Biol Med. 2020;127:104061. https://doi.org/10.1016/j.compbiomed.2020.104061 62. Turner RM. Moving to the beat: a review of mammalian sperm motility regulation. Reprod Fertil Dev. 2006;18(1-2):25-38. DOI: 10.1071/RD05120 63. Varghese AC, Bragais FM, Mukhopadhyay D, Kundu S, Pal M, Bhattacharyya AK, Agarwal A. Human sperm DNA integrity in normal and abnormal semen samples and its correlation with sperm characteristics. Andrologia. 2009 Aug;41(4):207-15. https://doi.org/10.1111/j.1439-0272.2009.00917.x 64. Chohan KR, Griffin JT, Carrell DT. Evaluation of chromatin integrity in human sperm using acridine orange staining with different fixatives and after cryopreservation. Andrologia. 2004;36(5):321-6 https://doi.org/10.1111/j.1439-0272.2004.00626.x 65. Varghese AC, Fischer-Hammadeh C, Hammadeh ME. Acridine orange test for assessment of human sperm DNA integrity. In: Sperm Chromatin: Biological and Clinical Applications in Male Infertility and Assisted Reproduction. 2011. p. 189-99. https://doi.org/10.1007/978-1-4419-6857- 9_13 66. Loren AW, Mangu PB, Beck LN, Brennan L, Magdalinski AJ, Partridge AH, et al. Fertility preservation for patients with cancer: American Society of Clinical https://doi.org/10.3389/fgene.2019.00962 https://europepmc.org/article/med/12364973 https://doi.org/10.1080/01485010500503561 https://doi.org/10.1016/j.fertnstert.2019.01.032 https://doi.org/10.5534/wjmh.220213 https://doi.org/10.3390/jpm13030518 https://doi.org/10.1016/j.compbiomed.2020.104061 https://doi.org/10.1071/RD05120 https://doi.org/10.1111/j.1439-0272.2009.00917.x https://doi.org/10.1111/j.1439-0272.2004.00626.x Oncology clinical practice guideline update. J Clin Oncol. 2013;31(19):2500- 10. doi: 10.1200/JCO.2013.49.2678 67. Li Z, Lin Q, Liu R, Xiao W, Liu W. Protective effects of ascorbate and catalase on human spermatozoa during cryopreservation. Journal of andrology. 2010 Sep 10;31(5):437- 44.https://doi.org/10.2164/jandrol.109.007849 68. Banihani SA, Alawneh RF. Human semen samples with high antioxidant reservoir may exhibit lower post-cryopreservation recovery of sperm motility. Biomolecules. 2019;9(3):111. https://doi.org/10.3390/biom9030111 69. Tamburrino L, Traini G, Marcellini A, Vignozzi L, Baldi E, Marchiani S. Cryopreservation of human spermatozoa: Functional, molecular and clinical aspects. Int J Mol Sci. 2023;24(5):4656. https://doi.org/10.3390/ijms24054656 70. Asuku SO, Alkali IM, Bukar MM, Waziri MA, Mustapha AR, Ribadu AY, Amin JD. Effects of egg yolk and coconut milk-based extenders on chilled and cryopreserved turkey (Meleagris gallopavo) semen qualities in Maiduguri, Nigeria. Sahel J Vet Sci. 2021;18(4):29-34. https://doi.org/10.54058/saheljvs.v18i4.258 71. Cho BS, Schuster TG, Zhu X, Chang D, Smith GD, Takayama S. Passively driven integrated microfluidic system for separation of motile sperm. Anal Chem. 2003;75(7):1671-5. https://doi.org/10.1021/ac020579e 72. Krafft C, Schmitt M, Schie IW, Cialla-May D, Matthäus C, Bocklitz T, Popp J. Label-free molecular imaging of biological cells and tissues by linear and nonlinear Raman spectroscopic approaches. Angew Chem Int Ed. 2017;56(16):4392-4430. https://doi.org/10.1002/anie.201607604 73. Hiremath G, Locke AK, Sivakumar AI, Thomas G, Mahadevan-Jansen A. Clinical translational application of Raman spectroscopy to advance benchside biochemical characterization to bedside diagnosis of esophageal diseases. J Gastroenterol Hepatol. 2019;34(11):1911-21. https://doi.org/10.1111/jgh.14738 74. Okagbare PI, Morris MD. Polymer-capped fiber-optic Raman probe for non- invasive Raman spectroscopy. Analyst. 2012;137(1):77-81. DOI: 10.1039/C1AN15847C 75. Bumbrah GS, Sharma RM. Raman spectroscopy – basic principle, instrumentation and selected applications for the characterization of drugs of abuse. Egypt J Forensic Sci. 2016;6(3):209-15. https://doi.org/10.1016/j.ejfs.2015.06.001 76. Wang X, Huang SC, Hu S, et al. Fundamental understanding and applications of plasmon-enhanced Raman spectroscopy. Nat Rev Phys. 2020;2:253-71. https://doi.org/10.1038/s42254-020-0171-y 77. Shipp DW, Sinjab F, Notingher I. Raman spectroscopy: techniques and applications in the life sciences. Adv Opt Photon. 2017;9:315-428. https://doi.org/10.1364/AOP.9.000315 https://doi.org/10.1200%2FJCO.2013.49.2678 https://doi.org/10.2164/jandrol.109.007849 https://doi.org/10.2164/jandrol.109.007849 https://doi.org/10.2164/jandrol.109.007849 https://doi.org/10.2164/jandrol.109.007849 https://doi.org/10.3390/biom9030111 https://doi.org/10.3390/ijms24054656 https://doi.org/10.1021/ac020579e https://doi.org/10.1002/anie.201607604 https://doi.org/10.1111/jgh.14738 https://doi.org/10.1039/C1AN15847C https://doi.org/10.1016/j.ejfs.2015.06.001 https://doi.org/10.1364/AOP.9.000315 78. Huser T, Wilson B, Matthews DL. Biophotonics and Regenerative Medicine– ideal partners for research in the 21st Century. Journal of Biophotonics. 2009 Nov;2(11):613-4. Huser T, Wilson B, Matthews DL. Biophotonics and Regenerative Medicine–ideal partners for research in the 21st Century. Journal of Biophotonics. 2009 Nov;2(11):613-4. 79. De Jong BW, De Gouveia Brazao CA, Stoop H, Wolffenbuttel KP, Oosterhuis JW, Puppels GJ, Weber RF, Looijenga LH, Kok DJ. Raman spectroscopic analysis identifies testicular microlithiasis as intratubular hydroxyapatite. J Urol. 2004;171:92-6. https://doi.org/10.1097/01.ju.0000101948.98175.94 80. Li N, Chen D, Xu Y, Liu S, Zhang H. Confocal Raman micro-spectroscopy for rapid and label-free detection of maleic acid-induced variations in human sperm. Biomed Opt Express. 2014;5:1690-9. https://doi.org/10.1364/BOE.5.001690 81. Jahmani MY, Hammadeh ME, Smadi MAA, Baller M. Label-free evaluation of chromatin condensation in human normal morphology sperm using Raman spectroscopy. Reprod Sci. 2021;28(9):2527-39. https://doi.org/10.1007/s43032-021-00494-6 82. Da Costa R, Amaral S, Redmann K, Kliesch S, Schlatt S. Spectral features of nuclear DNA in human sperm assessed by Raman Microspectroscopy: Effects of UV-irradiation and hydration. PLoS ONE. 2018;13:e0207786.https://doi.org/10.1371/journal.pone.0207786 83. Liu Y, Zhu Y, Di L, Osterberg EC, Liu F, He L, et al. Raman spectroscopy as an ex vivo noninvasive approach to distinguish complete and incomplete spermatogenesis within human seminiferous tubules. Fertil Steril. 2014;102:54-60.e2. https://doi.org/10.1016/j.fertnstert.2014.03.035 84. Huang Z, Chen X, Chen Y, Chen J, Dou M, Feng S, et al. Raman spectroscopic characterization and differentiation of seminal plasma. J Biomed Opt. 2011;16:110501. 84. Huang Z, Chen X, Chen Y, Chen J, Dou M, Feng S, et al. Raman spectroscopic characterization and differentiation of seminal plasma. J Biomed Opt. 2011;16:110501 85. Mallidis C, Wistuba J, Bleisteiner B, Damm OS, Gross P, Wübbeling et al. In situ visualization of damaged DNA in human sperm by Raman microspectroscopy. Hum Reprod. 2011;26:1641-9. https://doi.org/10.1093/humrep/der122 86. Krausz C, Riera-Escamilla A. Genetics of male infertility. Nat Rev Urol. 2018;15:369-84. https://doi.org/10.1016/B978-0-12-815236-2.00010-2 87. Ferlin A, Dipresa S, Delbarba A, Maffezzoni F, Porcelli T, Cappelli C, Foresta C. Contemporary genetics-based diagnostics of male infertility. Expert Rev Mol Diagn. 2019;19:623-33. https://doi.org/10.1080/14737159.2019.1633917 88. Nixon B, Bernstein I, Cafe S, Delehedde M, Sergeant N, Anderson A, Trigg N, Eamens A, Lord T, Dun M, Iuliis GD, Bromfield E. A Kinase Anchor Protein https://doi.org/10.1097/01.ju.0000101948.98175.94 https://doi.org/10.1364/BOE.5.001690 https://doi.org/10.1371/journal.pone.0207786 https://doi.org/10.1016/j.fertnstert.2014.03.035 https://doi.org/10.1093/humrep/der122 https://doi.org/10.1016/B978-0-12-815236-2.00010-2 https://doi.org/10.1080/14737159.2019.1633917 4 Is Vulnerable to Oxidative Adduction in Male Germ Cells. Front Cell Dev Biol. 2019;7:319. https://doi.org/10.1080/14737159.2019.1633917 89. Miki K, Willis WD, Brown PR, Goulding EH, Fulcher KD, Eddy EM. Targeted disruption of the Akap4 gene causes defects in sperm flagellum and motility. Dev Biol. 2002;248(2):331-42. https://doi.org/10.1006/dbio.2002.0728 90. Zhang G, Li D, Tu C, Meng L, Tan Y, Ji Z, Cheng J, Lu G, Lin G, Zhang H, Sun J, Wang M, Du J, Xu W. Loss-of-function missense variant of AKAP4 induced male infertility through reduced interaction with QRICH2 during sperm flagella development. Hum Mol Genet. 2021. https://doi.org/10.1093/hmg/ddab234 91. Greither T, Schumacher J, Dejung M, Behre H, Zischler H, Butter F, Herlyn H. Fertility relevance probability analysis shortlists genetic markers for male fertility impairment. Cytogenet Genome Res. 2020;160:506-22. https://doi.org/10.1159/000511117 92. Maheshwari A, Hamilton M, Bhattacharya S. Effect of female age on the diagnostic categories of infertility. Hum Reprod. 2008;23(3):538-42. https://doi.org/10.1093/humrep/dem431 93. Huang J, Rosenwaks Z. Assisted reproductive techniques. Methods Mol Biol. 2014;1154:171-231. https://doi.org/10.1007/978-1-4939-0659-8_8 94. Zegers-Hochschild F, Adamson GD, de Mouzon J, Ishihara O, Mansour R, Nygren K, Sullivan E, van der Poel S; ICMART and WHO. The International Committee for Monitoring Assisted Reproductive Technology (ICMART) and the World. https://doi.org/10.1093/hmg/ddab234 95. Fang YY, Wu QJ, Zhang TN, Wang TR, Shen ZQ, Jiao J, Shao XG, Xu P, Guo SS, Zhou YM, Wang XX, Li D. Assessment of the development of assisted reproductive technology in Liaoning province of China, from 2012 to 2016. BMC Health Serv Res. 2018;18:873. https://doi.org/10.1186/s12913- 018-3585-9 96. Lestari SW, Lestari SH, Pujianto DA. Sperm quality after swim up and density gradient centrifugation sperm preparation with supplementation of alpha lipoic acid (ALA): A preliminary study. AIP Conf Proc. 2018;1933:030015. https://doi.org/10.1063/1.5023962 97. Rossant J, Tam PPL. Early human embryonic development: formation to gastrulation. Dev Cell. 2022;57(2):152- 65.https://doi.org/10.1016/j.devcel.2021.12.022 98. Greenblatt EM, Meriano JS, Casper RF. Type of stimulation protocol affects oocyte maturity, fertilization rate, and cleavage rate after intracytoplasmic sperm injection. Fertil Steril. 1995;64(3):557-63. https://doi.org/10.1016/S0015-0282(16)57792-9 99. Alpha Scientists in Reproductive Medicine and ESHRE Special Interest Group of Embryology. The Istanbul consensus workshop on embryo assessment: proceedings of an expert meeting. Hum Reprod. 2011;26(6):1270-83. http://hdl.handle.net/1854/LU-2912127 https://doi.org/10.1080/14737159.2019.1633917 https://doi.org/10.1006/dbio.2002.0728 https://doi.org/10.1093/hmg/ddab234 https://doi.org/10.1159/000511117 https://doi.org/10.1093/humrep/dem431 https://doi.org/10.1093/hmg/ddab234 https://doi.org/10.1186/s12913-018-3585-9 https://doi.org/10.1186/s12913-018-3585-9 https://doi.org/10.1063/1.5023962 https://doi.org/10.1016/S0015-0282(16)57792-9 http://hdl.handle.net/1854/LU-2912127 100. Scott L, Alvero R, Leondires M, Miller B. The morphology of human pronuclear embryos is positively related to blastocyst development and implantation. Hum Reprod. 2000;15(11):2394-403. 101. Gardner DK, Schoolcraft WB. Culture and transfer of human blastocysts. Curr Opin Obstet Gynecol. 1999;11(3):307-11. DOI: 10.1097/00001703- 199906000-00013 102. Grizard G, Chevalier S, Griveau JF, Lannou DL, Boucher D. Influence of seminal plasma on cryopreservation of human spermatozoa in a biological material-free medium: study of normal and low-quality semen. Int J Androl. 1999;22(3):190-6. https://doi.org/10.1046/j.1365-2605.1999.00170.x 103. Tomov SN, Stoyanova RS, Atanasova PK, Dechev IY. Changes in the level of DNA fragmentation in sperm cells detected by Acridine Orange test in men with sub/infertility treated with nutritional supplement PAPA. Folia Med (Plovdiv). 2020;62(1):112-6. https://doi.org/10.3897/folmed.62.e48001 104. Hermanson GT. Bioconjugate Techniques. 2nd ed. San Diego: Academic Press; 2010. https://books.google.com.co/books?hl=en&lr=&id=6aO- 207lhdgC&oi=fnd&pg=PP1&dq=Hermanson+GT.+Bioconjugate+Techniques. +2nd+ed.+San+Diego:+Academic+Press%3B+2010.&ots=aM- JA3MnQY&sig=KCW6qldIwXmUZDue4KBPrkXA3Hk&redir_esc=y#v=onepag e&q=Hermanson%20GT.%20Bioconjugate%20Techniques.%202nd%20ed.% 20San%20Diego%3A%20Academic%20Press%3B%202010.&f=false 105. Sutriyo MA, Ristaniah AE, Radji M, Pujiyanto A, Purnamasari P, Joshita D, et al. Synthesis of Gold Nanoparticles with Polyamidoamine (Pamam) Generation 4 Dendrimer as Stabilizing Agent for CT Scan Contrast Agent. Macromol Symp. 2015;353:96–101. 10.1002/masy.201550312 106. Grisanti E, Totska M, Huber S, Calderon KC, Hohmann M, Lingenfelser D,. Dynamic Localized SNV, Peak SNV, and Partial Peak SNV: Novel Standardization Methods for Preprocessing of Spectroscopic Data Used in Predictive Modeling. J Spectrosc. 2018;2018:e5037572. 107. Greither T, Schumacher J, Dejung M, Behre HM, Zischler H, Butter F, Herlyn H. Fertility relevance probability analysis shortlists genetic markers for male fertility impairment. Cytogenet Genome Res. 2020;160(9):506-22. https://doi.org/10.1159/000511117 108. Jagadish N, Parashar D, Gupta N, Agarwal S, Purohit S, Kumar V, Sharma A, Fatima R, Topno AP, Shaha C, Suri A. A-kinase anchor protein 4 (AKAP4) a promising therapeutic target of colorectal cancer. J Exp Clin Cancer Res. 2015;34:142. http://hdl.handle.net/123456789/853 109. Sheikh-Hosseini M, Salimi M, Mozdarani H. A-Kinase anchor protein 4 (AKAP4) may be considered as a potential early diagnostic breast cancer marker detectable in blood. Gene Rep. 2022;29:101663. https://doi.org/10.1016/j.genrep.2022.101663 110. Jagadish N, Parashar D, Gupta N, et al. A novel cancer testis antigen target A-kinase anchor protein (AKAP4) for the early diagnosis and immunotherapy https://doi.org/10.1097/00001703-199906000-00013 https://doi.org/10.1097/00001703-199906000-00013 https://doi.org/10.1046/j.1365-2605.1999.00170.x https://books.google.com.co/books?hl=en&lr&id=6aO-207lhdgC&oi=fnd&pg=PP1&dq=Hermanson%2BGT.%2BBioconjugate%2BTechniques.%2B2nd%2Bed.%2BSan%2BDiego%3A%2BAcademic%2BPress%3B%2B2010.&ots=aM-JA3MnQY&sig=KCW6qldIwXmUZDue4KBPrkXA3Hk&redir_esc=y%23v%3Donepage&q=Hermanson%20GT.%20Bioconjugate%20Techniques.%202nd%20ed.%20San%20Diego%3A%20Academic%20Press%3B%202010.&f=false https://books.google.com.co/books?hl=en&lr&id=6aO-207lhdgC&oi=fnd&pg=PP1&dq=Hermanson%2BGT.%2BBioconjugate%2BTechniques.%2B2nd%2Bed.%2BSan%2BDiego%3A%2BAcademic%2BPress%3B%2B2010.&ots=aM-JA3MnQY&sig=KCW6qldIwXmUZDue4KBPrkXA3Hk&redir_esc=y%23v%3Donepage&q=Hermanson%20GT.%20Bioconjugate%20Techniques.%202nd%20ed.%20San%20Diego%3A%20Academic%20Press%3B%202010.&f=false https://books.google.com.co/books?hl=en&lr&id=6aO-207lhdgC&oi=fnd&pg=PP1&dq=Hermanson%2BGT.%2BBioconjugate%2BTechniques.%2B2nd%2Bed.%2BSan%2BDiego%3A%2BAcademic%2BPress%3B%2B2010.&ots=aM-JA3MnQY&sig=KCW6qldIwXmUZDue4KBPrkXA3Hk&redir_esc=y%23v%3Donepage&q=Hermanson%20GT.%20Bioconjugate%20Techniques.%202nd%20ed.%20San%20Diego%3A%20Academic%20Press%3B%202010.&f=false https://books.google.com.co/books?hl=en&lr&id=6aO-207lhdgC&oi=fnd&pg=PP1&dq=Hermanson%2BGT.%2BBioconjugate%2BTechniques.%2B2nd%2Bed.%2BSan%2BDiego%3A%2BAcademic%2BPress%3B%2B2010.&ots=aM-JA3MnQY&sig=KCW6qldIwXmUZDue4KBPrkXA3Hk&redir_esc=y%23v%3Donepage&q=Hermanson%20GT.%20Bioconjugate%20Techniques.%202nd%20ed.%20San%20Diego%3A%20Academic%20Press%3B%202010.&f=false https://books.google.com.co/books?hl=en&lr&id=6aO-207lhdgC&oi=fnd&pg=PP1&dq=Hermanson%2BGT.%2BBioconjugate%2BTechniques.%2B2nd%2Bed.%2BSan%2BDiego%3A%2BAcademic%2BPress%3B%2B2010.&ots=aM-JA3MnQY&sig=KCW6qldIwXmUZDue4KBPrkXA3Hk&redir_esc=y%23v%3Donepage&q=Hermanson%20GT.%20Bioconjugate%20Techniques.%202nd%20ed.%20San%20Diego%3A%20Academic%20Press%3B%202010.&f=false https://books.google.com.co/books?hl=en&lr&id=6aO-207lhdgC&oi=fnd&pg=PP1&dq=Hermanson%2BGT.%2BBioconjugate%2BTechniques.%2B2nd%2Bed.%2BSan%2BDiego%3A%2BAcademic%2BPress%3B%2B2010.&ots=aM-JA3MnQY&sig=KCW6qldIwXmUZDue4KBPrkXA3Hk&redir_esc=y%23v%3Donepage&q=Hermanson%20GT.%20Bioconjugate%20Techniques.%202nd%20ed.%20San%20Diego%3A%20Academic%20Press%3B%202010.&f=false https://doi.org/10.1002/masy.201550312 https://doi.org/10.1159/000511117 http://hdl.handle.net/123456789/853 https://doi.org/10.1016/j.genrep.2022.101663 of colon cancer. Oncoimmunology. 2016 Feb. https://doi.org/10.1080/2162402X.2015.1078965 111. Wang Z, Ding Z, Guan Y, Liu C, Wang L, Shan W, Yang J. Altered gene expression in the testis of infertile patients with nonobstructive azoospermia. Comput Math Methods Med. 2021;2021:5533483. https://doi.org/10.1155/2021/5533483 112. Surmacki JM, Woodhams BJ, Haslehurst A, Ponder BA. Bohndiek SE. Raman micro-spectroscopy for accurate identification of primary human bronchial epithelial cells. Sci Rep 2018;8:12604. doi.org/10.1038/s41598- 018-30407-8. https://doi.org/10.1038/s41598-018-30407-8 113. M. Punab, O. Poolamets, P. Paju, V. Vihljajev, K. Pomm, R. Ladva, P. Korrovits, M. Laan, Causes of male infertility: a 9-year prospective monocentre study on 1737 patients with reduced total sperm counts, Human Reproduction, Volume 32, Issue 1, 1 January 2017, Pages 18–31, https://doi.org/10.1093/humrep/dew284 114. Wang N, Gu H, Gao Y, Li X, Yu G, Lv F, Shi C, Wang S, Song M, Zhang S. Study on influencing factors of semen quality in fertile men. Frontiers in Physiology. 2022 Feb 22;13:813591. https://doi.org/10.3389/fphys.2022.813591 115. Xiu, R. J., Zhao, L., Dong, Y., Zhao, L., Dong, Y., and Gu, X. Y. (2012). The semen quality analysis of 120 fertile men in Tianjin [in Chinese]. J. Int. Reprod. Health Fam. Plan. 31, 105-107, 118. https://doi.org/10.1111/and.12765 116. Ajina, T., Ammar, O., Haouas, Z., Sallem, A., Ezzi, L., Grissa, I., Sakly, W., Jlali, A., & Mehdi, M. Assessment of human sperm DNA integrity using two cytochemical tests: Acridine orange test and toluidine blue assay. Andrologia, (2017). https://doi.org/10.1111/and.12765 117. Robbins WA, Xun L, FitzGerald LZ, Esguerra S, Henning SM, Carpenter CL. Walnuts improve semen quality in men consuming a Western-style diet: randomized control dietary intervention trial. Biol Reprod. 2012;87(4):101. https://doi.org/10.1095/biolreprod.112.101634. 118. Sharma R, Harlev A, Agarwal A, Esteves SC. Cigarette smoking and semen quality: a new meta-analysis examining the effect of the 2010 World Health Organization laboratory methods for the examination of human semen. Eur Urol. 2016;70(4):635-645. https://doi.org/10.1016/j.eururo.2016.04.010 119. Setti AS, Braga DPAF, Provenza RR, Iaconelli A Jr, Borges E Jr. Oocyte ability to repair sperm DNA fragmentation: the impact of maternal age on intracytoplasmic sperm injection outcomes. Fertil Steril. 2021 Jul;116(1):123- 129. doi: 10.1016/j.fertnstert.2020.10.045. Epub 2021 Feb 13. PMID: 33589137. https://doi.org/10.1016/j.fertnstert.2020.10.045 120. Robinson L, Gallos ID, Conner SJ, Rajkhowa M, Miller D, Lewis S, et al. The effect of sperm DNA fragmentation on miscarriage rates: a systematic review and meta-analysis. Hum Reprod. 2012;27(10):2908-2917. https://doi.org/10.1080/2162402X.2015.1078965 https://doi.org/10.1038/s41598-018-30407-8 https://doi.org/10.3389/fphys.2022.813591 https://doi.org/10.1111/and.12765 121. Simon L, Zini A, Dyachenko A, Ciampi A, Carrell DT. A systematic review and meta-analysis to determine the effect of sperm DNA damage on in vitro fertilization and intracytoplasmic sperm injection outcome. Asian J Androl. 2014;16(1):80-90. https://doi.org/10.1093/humrep/des261 122. Movasaghi Z, Rehman S, Rehman IU. Raman spectroscopy of biological tissues. Appl Spectrosc Rev [Internet]. 2007 Sep [cited 2024 Jan 23];42(5):493-541. Available from: https://doi.org/10.1080/05704920701551530 123. Fikiet MA, Lednev IK. Raman spectroscopic method for semen identification: Azoospermia. Talanta [Internet]. 2019 Mar 1 [cited 2024 Feb 7];194:385-9. Available from: https://doi.org/10.1016/j.talanta.2018.10.034 124. Huang Z, Chen G, Chen X, Wang J, Chen J, Lu P, et al. Rapid and label- free identification of normal spermatozoa based on image analysis and micro- Raman spectroscopy. J Biophotonics [Internet]. 2014 Sep 1 [cited 2024 Feb 7];7(9):671-5. Available from: https://doi.org/10.1002/JBIO.201300003 125. Chen DL, Li N, Lin L, Long HM, Lin H, Chen J, et al. Confocal mirco-Raman spectroscopic analysis of the antioxidant protection mechanism of the oligosaccharides extracted from Morinda officinalis on human sperm DNA. Ethnopharmacol [Internet]. 2014 Apr 11 [cited 2024 Feb 7];153(1):119-24. Available from: https://doi.org/10.1016/J.JEP.2014.01.021 126. Du S, Zhang Q, Guan H, Chen G, Wang S, Sun Y, et al. Micro-Raman Analysis of Sperm Cells on Glass Slide: Potential Label-Free Assessment of Sperm DNA toward Clinical Applications. Biosensors (Basel) [Internet]. 2022 Nov 21 [cited 2024 Feb 7];12(11). Available from: https://doi.org/10.3390/bios12111051 127. Yen CA, Curran SP. Incomplete proline catabolism drives premature sperm aging. Aging Cell [Internet]. 2021 Feb 1 [cited 2024 Feb 7];20(2). Available from: https://doi.org/10.1111/ACEL.13308 128. Kaur R, Kaur J, Mahajan J, Kumar R, Arora S. Oxidative stress— implications, source and its prevention. Environmental science and pollution research. 2014 Feb;21:1599-613.https://doi.org/10.1007/s11356-013-2251- 3 129. Kasman AM, Li S, Zhao Q, Behr B, Eisenberg ML. Relationship between male age, semen parameters and assisted reproductive technology outcomes. Andrology. 2021 Jan;9(1):245-52. https://doi.org/10.1111/andr.12908 130. Irgens Å, Ulstein M, Irgens LM. Reproductive outcome according to semen quality in couples with infertility problems. Fertility and sterility. 2001 Jul 1;76(1):209-11.https://doi.org/10.1016/S0015-0282(01)01837-4 131. Delgado NM, Reyes R, Huacuja L, Merchant H, Rosado A (1982) Heparin binding sites in the human spermatozoa membrane. Archives of Andrology 8: 87-95. ttps://doi.org/10.3109/01485018208987024 https://doi.org/10.1093/humrep/des261 https://doi.org/10.1007/s11356-013-2251-3 https://doi.org/10.1007/s11356-013-2251-3 132. Zirkin BR, Soucek DA, Chang TJK, Perreault SD (1985) in vitro and in vivo studies of mammalian sperm nuclear decondensation Gamete Researh 11: 349-365. https://doi.org/10.1002/mrd.1120110403 133. Onikubo T,Nicklay JJ, Xing L, Warren C, Anson B, Wang WL, Burgos ES, Ruff SE, Shabanowitz J, Cheng RH, Hunt DF, Shechter D (2015). Developmentally Regulated Post-translational Modification of Nucleoplasmin Controls Histone Sequestration and Deposition Cell Reports 10: 1735-1748. 10.1016/j.celrep.2015.02.038 134. Cambi M, Tamburrino L, Marchiani S, et al. Development of a specific method to evaluate 8-hydroxy, 2-deoxyguanosine in sperm nuclei: relationship with semen quality in a cohort of 94 subjects. Reproduction 2013;145:227-35. 227.full.pdf 135. Menezo Y, Clement P, Amar E. Evaluation of sperm DNA structure, fragmentation and decondensation: an essential tool in the assessment of male infertility. Translational andrology and urology. 2017 Sep;6(Suppl 4):S553. doi: 10.21037/tau.2017.03.11 136. Rashki Ghaleno L, Alizadeh A, Drevet JR, Shahverdi A, Valojerdi MR. Oxidation of Sperm DNA and Male Infertility. Antioxidants (Basel). 2021 Jan 12;10(1):97. doi: 10.3390/antiox10010097. PMID: 33445539; PMCID: PMC7827380. 137. Güne? S, Kulaç T. The role of epigenetics in spermatogenesis. Turk J Urol. 2013 Sep;39(3):181-7. doi: 10.5152/tud.2013.037. PMID: 26328105; PMCID: PMC4548616. 138. Güne? S, Kulaç T. The role of epigenetics in spermatogenesis. Turk J Urol. 2013 Sep;39(3):181-7. doi: 10.5152/tud.2013.037. PMID: 26328105; PMCID: PMC4548616. doi: 10.5152/tud.2013.037 139. Kimmins S, Sassone-Corsi P. Chromatin remodelling and epigenetic features of germ cells. Nature. 2005;434:583-9. DOI: 10.1038/nature03368 140. Yi SV, Goodisman MA. Computational approaches for understanding the evolution of DNA methylation in animals. Epigenetics. 2009;4:551–6. https://doi:10.4161/epi.4.8.10345 141. Talbert PB, Henikoff S. Spreading of silent chromatin: inaction at a distance. Nat Rev Genet. 2006;7:793–803. https://doi.org/10.1038/nrg1920 142. Santos F, Hendrich B, Reik W, Dean W. Dynamic reprogramming of DNA methylation in the early mouse embryo. Dev Biol. 2002;241:172–182. https://doi.org/10.1006/dbio.2001.0501 143. Oliva R. Protamines and male infertility. Hum Reprod Update. 2006;12:417– 35. https://doi.org/10.1093/humupd/dml009 144. Da Costa R, Amaral S, Redmann K, Kliesch S, Schlatt S Spectral features of nuclear DNA in human sperm assessed by Raman Microspectroscopy: Effects of UV-irradiation and hydration. PLoS ONE. 2018;13:e0207786. https://doi.org/10.1371/journal.pone.0207786 https://doi.org/10.5152%2Ftud.2013.037 https://doi.org/10.1038/nrg1920 https://doi.org/10.1006/dbio.2001.0501 https://doi.org/10.1093/humupd/dml009 https://doi.org/10.1371/journal.pone.0207786 145. Thomas Huser, Christine A. Orme, Christopher W. Hollars, Michele H. Corzett, and Rod Balhorn. Raman spectroscopy of DNA packaging in individual human sperm cells distinguishes normal from abnormal cells. J. Biophoton. 2009. 2: 322–332. https://doi:10.1002/jbio.200910012 146. Amaral S, Da Costa R, Wübbeling F, Redmann K, Schlatt S. Raman micro- spectroscopy analysis of different sperm regions: a species comparison. Mol Hum Reprod. 2018 Apr 1;24(4):185-202. https://doi.org/10.1093/molehr/gax071 147. Li M, Ji Y, Wang D, Zhang Y, Zhang H, Tang Y, Lin G, Hu L. Evaluation of Laser Confocal Raman Spectroscopy as a Non-Invasive Method for Detecting Sperm DNA Contents. Front Physiol. 2022 Feb 8;13:827941. https://doi:10.3389/fphys.2022.827941 148. Sánchez V, Redmann K, Wistuba J, Wübbeling F, Burger M, Oldenhof H, Wolkers WF, Kliesch S, Schlatt S, Mallidis C. Oxidative DNA damage in human sperm can be detected by Raman microspectroscopy. Fertil Steril. 2012;98:1124–9.e1-3. https://doi:10.1016/j.fertnstert.2012.07.1059 149. De Angelis A, Ferrara MA, Coppola G, Di Matteo L, Siani L, Dale B, et al. Combined Raman and polarization sensitive holographic imaging for a multimodal label-free assessment of human sperm function. Sci Rep. 2019;9:4823. https://doi.org/10.1038/s41598-019-41400-0 150. Virkler K, Lednev IK. Raman spectroscopic signature of semen and its potential application to forensic body fluid identification. Forensic Sci Int. 2009;193:56–62. https://doi:10.1016/j.forsciint.2009.09.005 151. Huang Z, Chen X, Chen Y, Chen J, Dou M, Feng S, et al. Raman spectroscopic characterization and differentiation of seminal plasma. J Biomed Opt. 2011;16:110501. https://doi:10.1117/1.3650310 152. Sakkas, G.C. Manicardi, M. Tomlinson, M. Mandrioli, D. Bizzaro, P.G. Bianchi, U. Bianchi. The use of two density gradient centrifugation techniques and the swim-up method to separate spermatozoa with chromatin and nuclear DNA anomalies, Human Reproduction, Volume 15, Issue 5, May 2000, Pages 1112–1116. https://doi.org/10.1093/humrep/15.5.1112 153. De Martin, H., Miranda, E.P., Cocuzza, M.S. et al. Density gradient centrifugation and swim-up for ICSI: useful, unsafe, or just unsuitable?. J Assist Reprod Genet 36, 2421–2423 (2019). 10.1007/s10815-019-01602-x 154. Pourasil RSM, Gilany K. Fast diagnosis of men's fertility using Raman spectroscopy combined with chemometric methods: An experimental study. Int J Reprod Biomed. 2021 Feb 21;19(2):121-128. https://doi:10.18502/ijrm.v19i2.8470 155. Jeyendran RS, Holmgren WJ, Bielfeld P, Wentz AC. Fertilizing capacity of various populations of spermatozoa within an ejaculate. Journal of assisted reproduction and genetics. 1992 Feb; 9:32-5. 10.1007/BF01204111 156. Turner, R.M., Foster, J.A., Gerton, G.L., Moss, S.B., & Patrizio, P. Protein kinases and sperm motility. Biol Reprod, (1998). 58(2), 302-308. https://doi.org/10.1093/molehr/gax071 https://doi.org/10.1038/s41598-019-41400-0 https://doi.org/10.1093/humrep/15.5.1112 157. Carr, D.W., Stofko-Hahn, R.E., Fraser, I.D., Cone, R.D., & Scott, J.D. (1991). Localization of the cAMP-dependent protein kinase to the postsynaptic densities by A-kinase anchoring proteins. Characterization of AKAP 79. J Biol Chem, 266(36), 24236-24242. https://doi.org/10.1016/S0021- 9258(18)41856-X 158. Moss SB, Gerton GL. A-kinase anchor proteins in endocrine systems and reproduction. Trends in Endocrinology & Metabolism. 2001 Dec 1;12(10):434- 40. https://doi.org/10.1016/S1043-2760(01)00493-3 159. Carnegie GK, Means CK, Scott JD. A‐kinase anchoring proteins: from protein complexes to physiology and disease. IUBMB life. 2009 Apr;61(4):394-406. https://doi.org/10.1002/iub.168 160. Baccetti B, Collodel G, Estenoz M, Manca D, Moretti E, Piomboni P. Gene deletions in an infertile man with sperm fibrous sheath dysplasia. Human Reproduction. 2005 Oct 1;20(10):2790-4. https://doi.org/10.1093/humrep/dei126 161. Zhang G, Li D, Tu C, Meng L, Tan Y, Ji Z, Cheng J, Lu G, Lin G, Zhang H, Sun J. Loss-of-function missense variant of AKAP4 induced male infertility through reduced interaction with QRICH2 during sperm flagella development. Human Molecular Genetics. 2022 Jan 15;31(2):219-31. https://doi.org/10.1093/hmg/ddab234 162. Malcher A, Rozwadowska N, Stokowy T, et al. Potential biomarkers of non- obstructive azoospermia identified in microarray gene expression analysis. Fertil Steril. 2013;100(6):1686–1694. https://10.3389/fendo.2023.1108616 163. Delehedde M, Carracedo S, Selleslagh M, Eddarkaoui S, Amirat-Briand L, Sergeant N. ProAKAP4 polypeptide as a biomarker of sperm functionality and male fertility disorders. Int. J. Gynecol. Reprod. Sci. 2019 ;2:3-19. https://doi.org/10.1016/j.anireprosci.2022.107074 164. Schimenti KJ, Feuer SK, Griffin LB, Graham NR, Bovet CA, Hartford S, Pendola J, Lessard C, Schimenti JC, Ward JO. AKAP9 is essential for spermatogenesis and sertoli cell maturation in mice. Genetics. 2013 Jun 1;194(2):447-57. https://doi.org/10.1534/genetics.113.150789 165. Moss SB, Gerton GL. A-kinase anchor proteins in endocrine systems and reproduction. Trends in Endocrinology & Metabolism. 2001 Dec 1;12(10):434- 40. https://doi.org/10.1016/S1043-2760(01)00493-3 166. Turner, R.M. et al. (1998) An X-linked gene encodes a major human sperm fibrous sheath protein, hAKAP82. Genomic organization, protein kinase A-RII binding, and distribution of the precursor in the sperm tail. J. Biol. Chem. 273, 32135–3214. https://doi.org/10.1074/jbc.273.48.32135 167. Fang X, Huang LL, Xu J, Ma CQ, Chen ZH, Zhang Z, Liao CH, Zheng SX, Huang P, Xu WM, Li N. Proteomics and single-cell RNA analysis of Akap4- knockout mice model confirm indispensable role of Akap4 in spermatogenesis. Developmental biology. 2019 Oct 15;454(2):118-27. https://doi.org/10.1016/j.ydbio.2019.06.017 https://doi.org/10.1016/S0021-9258(18)41856-X https://doi.org/10.1016/S0021-9258(18)41856-X https://doi.org/10.1016/S1043-2760(01)00493-3 https://doi.org/10.1002/iub.168 https://doi.org/10.1093/humrep/dei126 https://doi.org/10.1093/hmg/ddab234 https://10.0.13.61/fendo.2023.1108616 https://doi.org/10.1016/j.anireprosci.2022.107074 https://doi.org/10.1534/genetics.113.150789 https://doi.org/10.1016/S1043-2760(01)00493-3 https://doi.org/10.1074/jbc.273.48.32135 https://doi.org/10.1016/j.ydbio.2019.06.017 168. Samir, A., Kamel, M., Elfeky, B. Comparison between PICSI and ICSI and its effect on blastocyst formation, a prospective randomized trial. Journal of Productivity and Development, 2022; 27(3): 399-415. https://doi:10.21608/jpd.2022.265490 169. Sakkas, D., Urner, F., Bizzaro, D., & Manicardi, G. (2005). Sperm nuclear DNA damage and altered chromatin structure: effect on fertilization and embryo development. Human Reproduction Update, 11(4), 333-343. https://doi.org/10.1093/humrep/13.suppl_4.11 170. Palermo, G., Joris, H., Devroey, P., & Van Steirteghem, A. C. (1992). Pregnancies after intracytoplasmic injection of single spermatozoon into an oocyte. The Lancet, 340(8810), 17-18. https://doi.org/10.1016/0140- 6736(92)92425-F 171. Alpha Scientists in Reproductive Medicine and ESHRE Special Interest Group of Embryology the Istanbul Consensus Workshop on Embryo Assessment: Proceedings of an Expert Meeting. Hum. Reprod. 2011;26:1270–1283. https://doi:10.1093/humrep/der037 172. Sfakianoudis K, Maziotis E, Karantzali E, Kokkini G, Grigoriadis S, Pantou A, Giannelou P, Petroutsou K, Markomichali C, Fakiridou M, Koutsilieris M, Asimakopoulos B, Pantos K, Simopoulou M. Molecular Drivers of Developmental Arrest in the Human Preimplantation Embryo: A Systematic Review and Critical Analysis Leading to Mapping Future Research. Int J Mol Sci. 2021 Aug 3;22(15):8353. https://doi:10.3390/ijms22158353 173. McCollin A., Swann R.L., Summers M.C., Handyside A.H., Ottolini C.S. Abnormal Cleavage and Developmental Arrest of Human Preimplantation Embryos in vitro. Eur. J. Med. Genet. 2020;63:103651. https://doi:10.1016/j.ejmg.2019.04.008 174. Daughtry B.L., Chavez S.L. Chromosomal Instability in Mammalian Pre- Implantation Embryos: Potential Causes, Detection Methods, and Clinical Consequences. Cell Tissue Res. 2016;363:201–225. https://doi:10.1007/s00441-015-2305-6 175. Maurer M., Ebner T., Puchner M., Mayer R.B., Shebl O., Oppelt P., Duba H.-C. Chromosomal Aneuploidies and Early Embryonic Developmental Arrest. Int. J. Fertil. Steril. 2015;9:346–353. https://doi:10.22074/ijfs.2015.4550 176. Te Velde, E. R., & Pearson, P. L. The variability of female reproductive ageing. Human Reproduction Update, (2002). 8(2), 141-154. https://doi.org/10.1093/humupd/8.2.141 177. Simon, L., Proutski, I., Stevenson, M., Jennings, D., McManus, J., Lutton, D., & Lewis, S. E. M. Sperm DNA damage has a negative association with live-birth rates after IVF. (2008). Reproductive BioMedicine Online, 16(1), 84- 90. https://doi.org/10.1016/j.rbmo.2012.09.019 178. Penzias A, Bendikson K, Butts S, Coutifaris C, Fossum G, Falcone T et al. Guidance on the limits to the number of embryos to transfer: a committee https://doi.org/10.1093/humrep/13.suppl_4.11 https://doi.org/10.1016/0140-6736(92)92425-F https://doi.org/10.1016/0140-6736(92)92425-F https://doi.org/10.1093/humupd/8.2.141 https://doi.org/10.1016/j.rbmo.2012.09.019 opinion. Fertility and sterility. 2017 Apr 1;107(4):901-903. https://doi:10.1016/j.fertnstert.2017.02.107 179. Cobo, A., García-Velasco, J. A., Coello, A., Domingo, J., Pellicer, A., & Remohí, J. Oocyte vitrification as an efficient option for elective fertility preservation. (2016). Fertility and Sterility, 105(3), 755-764.e8. https://doi:10.1016/j.fertnstert.2015.11.027 180. Alvarez Sedó C, Bilinski M, Lorenzi D, Uriondo H, Noblía F, Longobucco V, Lagar EV, Nodar F. Effect of sperm DNA fragmentation on embryo development: clinical and biological aspects. JBRA Assist Reprod. 2017 Dec 1;21(4):343-350. https://doi:10.5935/1518-0557.20170061 181. Simon, L.; Proutski, I.; Stevenson, M.; Jennings, D.; McManus, J.; Lutton, D.; Lewis, S.E. Sperm DNA damage has a negative association with live-birth rates after IVF. Reprod. Biomed. Online 2013, 26, 68–78. https://doi.org/10.1016/j.rbmo.2012.09.019 182. Zollner U, Schleyer M, Steck T., Andrology: Evaluation of a cut-off value for normal sperm morphology using strict criteria to predict fertilization after conventional in vitro fertilization and embryo transfer in asthenozoospermia, Human Reproduction, Volume 11, Issue 10, 1 October 1996, Pages 2155– 2161, https://doi.org/10.1093/oxfordjournals.humrep.a019068 183. Oleszczuk, K.; Augustinsson, L.; Bayat, N.; Giwercman, A.; Bungum, M. Prevalence of high DNA fragmentation index in male partners of unexplained infertile couples. Andrology 2013, 1, 357–360. https://doi.org/10.1111/j.2047- 2927.2012.00041.x https://doi.org/10.1016/j.rbmo.2012.09.019 https://doi.org/10.1093/oxfordjournals.humrep.a019068 https://doi.org/10.1111/j.2047-2927.2012.00041.x https://doi.org/10.1111/j.2047-2927.2012.00041.x