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Doxorubicin (Doxo) is the most effective chemotherapeutic agent for the treatment of breast cancer. However, resistance to Doxo is
common. Adjuvant compounds capable of modulating mechanisms involved in Doxo resistance may potentiate the effectiveness of
the drug. Resveratrol (Rsv) has been tested as an adjuvant in mammary malignancies. However, the cellular and molecular
mechanisms underlying the effects of cotreatment with Doxo and Rsv in breast cancer are poorly understood. Here, we
combined in vitro and in silico analysis to characterize these mechanisms. In vitro, we employed a clinically relevant
experimental design consisting of acute (24 h) treatment followed by 15 days of analysis. Acute Rsv potentiated the long-lasting
effect of Doxo through the induction of apoptosis and senescence. Cells that survived to the cotreatment triggered high levels of
autophagy. Autophagy inhibition during its peak of activation but not concomitant with Doxo+Rsv increased the long-term
toxicity of the cotreatment. To uncover key proteins potentially associated with in vitro effects, an in silico multistep strategy
was implemented. Chemical-protein networks were predicted based on constitutive gene expression of MCF7 cells and
interatomic data from breast cancer. Topological analysis, KM survival analysis, and a quantitative model based on the
connectivity between apoptosis, senescence, and autophagy were performed. We found seven putative genes predicted to be
modulated by Rsv in the context of Doxo treatment: CCND1, CDH1, ESR1, HSP90AA1, MAPK3, PTPN11, and RPS6KB1. Six
out of these seven genes have been experimentally proven to be modulated by Rsv in cancer cells, with 4 of the 6 genes in MCF7
cells. In conclusion, acute Rsv potentiated the long-term toxicity of Doxo in breast cancer potentially through the modulation of
genes and mechanisms involved in Doxo resistance. Rational autophagy inhibition potentiated the effects of Rsv+Doxo, a
strategy that should be further tested in animal models.

1. Introduction

Despite substantial progress over the last years in terms of
early diagnosis and treatment, breast cancer remains one of

the leading causes of cancer deaths among women globally
[1]. Around 20 to 30% of breast cancer patients develop stage
IV, metastatic cancers, for which the 5-year survival rate is
only 22%. Furthermore, 90% of the mortality among breast
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cancer patients is associated with metastatic diseases, which
are resistant to adjuvant therapy [2]. The main subtypes of
breast cancer are based on the expression status of estrogen
receptor (ER), progesterone receptor (PR), and human epi-
dermal growth factor 2-neu (HER2). Approximately 75% of
cases are classified as hormone receptor-positive (HR+, ER
+, and/or PR+) and HER2-negative [3]. HER2-positive cases
account for 20% of breast cancers and show more aggressive
clinical outcomes due to limited response to chemotherapy.
Triple-negative breast cancers (TNBC), which account for
10%–15% of all cases, are usually marked by aggressive
behaviour [4]. Underlying this aggressiveness, the cooccur-
rence of multiple alterations in typical cellular hallmarks of
cancer can make the treatment of breast cancer particularly
difficult [5].

Data from TCGA have revealed the significant molecular
heterogeneity of mammary malignancies, with four main
classes according to data from genomes, DNA methylation,
exome sequencing, microRNA sequencing, and protein
arrays [6, 7]. This large heterogeneity makes the employment
of advanced therapies difficult, so that classical chemothera-
peutics, along with surgery and radiotherapy, remain the pri-
mary choices for breast cancer therapy [8]. According to the
National Comprehensive Cancer Network Guidelines, the
naturally occurring anthracycline doxorubicin (Doxo) is the
preferred single agent for the treatment of breast cancer [9].
In the clinics, the first-choice regimens for Doxo involve
24-hour treatment, followed by a recovery period for the
patient. However, like healthy tissues, tumor cells can also
recover during this period. This can lead to cancer resistance
and relapse, which are common in Doxo-treated breast
cancer patients [10].

Indeed, resistance to Doxo is one of the major obstacles
to the effective treatment of breast cancer. Therefore, under-
standing the cellular mechanisms underlying the response
and resistance triggered after the treatment is fundamental
for planning rational strategies to increase Doxo efficacy
[5]. Given this context, the natural polyphenol resveratrol
(Rsv) has emerged in recent years as an alternative treatment,
which can be combined with Doxo in order to increase the
sensitivity of tumor cells to the anthracycline and overcome
tumor resistance [11–13]. The toxicity and possible mecha-
nisms of action of Rsv and its analogs in breast cancer cells
have been demonstrated in several preclinical studies [14,
15]. Multiple cellular and molecular mechanisms are
involved in the toxicity of Rsv, including the suppression of
oncogenic pathways and the activation of tumor suppressors.
As a consequence, Rsv is capable to suppress cell prolifera-
tion, trigger cell death activation, and attenuate cancer inva-
sion [16]. As an adjuvant to other drugs in mammary
malignancies, the effect of Rsv varies. The polyphenol
chemosensitizes breast cancer cells to docetaxel [17] but has
been shown to attenuate the efficacy of paclitaxel [18]. In
normal epithelial cells, in turn, Rsv has a protective, antioxi-
dant effect and attenuated the cardiotoxicity triggered by
Doxo, which is the main side effect limiting the use of this
drug [19, 20].

The first clinical report assessing the effect of Rsv in
breast cancer suggested that this compound is able to modu-

late some of the key components of breast carcinogenesis,
confirming its potential not only in preclinical studies but
also in patients [21]. In addition, new pharmacological for-
mulations of Rsv and Doxo can be used to increase the
amounts of these compounds delivered to tumor cells, with
consequent increases in effectiveness in vivo [13]. Thus, the
anticarcinogenic effects of Rsv need to be elucidated in the
context of Doxo treatment, especially considering the long-
term effects of acute treatment, the crosstalk between cellular
mechanisms involved in this response, and the putative
molecular players involved in the response to the cotreat-
ment. In the current study, we explored the effects of Rsv in
potentiating Doxo toxicity in breast cancer using a clinically
relevant experimental design addressing the crosstalk
between autophagy, apoptosis, and senescence, in combina-
tion with a system biology approach to uncover the molecu-
lar mechanisms involved in the response to this cotreatment.

2. Material and Methods

2.1. In Vitro

2.1.1. Cell Culture. Experiments were performed using the
MCF7 human breast cancer cell line using exponentially
growing cells never exceeding P25. Cells were kindly
provided by prof. Andréa Buffon (Faculty of Pharmacy,
Universidade Federal do Rio Grande do Sul). Cells were
maintained in a humidified incubator with Dulbecco’s Mod-
ified Eagle’s Medium (DMEM) supplemented with 10% fetal
bovine serum (FBS) (Gibco/Invitrogen, São Paulo, SP Brazil),
along with 1% of penicillin/streptomycin, and 0.1% of
amphotericin B (Sigma-Aldrich, St. Louis, MO, USA) at
37°C and 5% CO2.

2.1.2. Drugs and Treatments. Cells were treated with resvera-
trol (Rsv, 10, 30, 60, and 120μM; Sigma-Aldrich, MO) and
doxorubicin (Doxo, 100 and 200nM; Sigma-Aldrich, MO)
for 24h. Control cells were treated with DMSO (vehicle)
not exceeding 0.05%. After this, cells were washed twice with
PBS 1x and then replated and grown in a complete, Drug-
Free Medium (DFM) for 15 days. During cell growth in a
DFM, analyses were performed as indicated in the subsec-
tions below. To suppress autophagy, cells were treated with
3-methyladenine (3-MA, Sigma-Aldrich, MO) 2mM for 1 h
before treatments or after cells replating in a DFM.

2.1.3. Cell Viability Using Trypan Blue Exclusion Assay. Try-
pan blue is a vital dying that accumulates in cells losing
viability [22]. The dye exclusion test is used to determine
the number of viable cells present in a cell suspension. After
24 h of treatment, cells were harvested and suspended in PBS
containing trypan blue (1 : 1). Then, the percentage of trypan
blue-positive cells was determined using a hemocytometer.
We also evaluated the Combination Index using the Compu-
Syn Software (http://www.combosyn.com/).

2.1.4. Cumulative Population Doubling. After 24 h of treat-
ment with Rsv, Doxo, or the cotreatment, cells were washed
3 times with PBS 1x, harvested, and seeded in a DFM in a
24-well plate. After 5, 10, and 15 days, the number of cells
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and the Cumulative Population Doubling (CPD) were deter-
mined, as previously described [23], according to the formula
PD = ½log NðtÞ − log NðtoÞ�/log 2, where NðtÞ is the number
of cells per well at the time of the count (passage) and NðtoÞ
is the initial number of the cells. The sum of PDs was then
plotted against the time of culture. We measured CPD also
after autophagy inhibition using 3-MA.

2.1.5. Cell Death Assays

(1) Annexin V-FITC/Propidium Iodide. Cell death (apoptosis
and necrosis) was measured 5 days after cell replating in a
DFM. To do this, we costained cells with Annexin V-FITC
plus Propidium Iodide (PI) according to the manufacturer’s
protocol (BD Biosciences; CA, USA). Briefly, the supernatant
and trypsinized cells were transferred to an eppendorf, cen-
trifuged at 1400 rpm for 5min, washed with 1x PBS, and cen-
trifuged again at 1400 rpm for 5min. The supernatant was
discarded, and the annexin-binding buffer containing
annexin (2.5μL/sample) and PI (3μM/sample) was added
to the pellet. Cells were incubated at room temperature, in
the dark, for 15min. Stained cells were analyzed using the
Attune flow cytometer (Attune-AB Applied Biosystems).

(2) Active Caspase-3. To measure active caspase-3 in MCF7
cells, we used the PE Active Caspase-3 Apoptosis Kit (BD
Pharmingen), according to the manufacturer’s instructions.
Briefly, MCF7 cells were harvested and then centrifuged at
1200 rpm for 6min. Then, cells were washed twice with
PBS 1x and resuspended in BD Cytofix/Cytoperm™ solution
of 3 × 104 cells per 100μL and incubated for 20min at 4°C.
Afterwards, the cells were washed twice with BD Perm/-
Wash™ buffer (1x) at room temperature. Finally, the cells
were incubated in BD Perm/Wash™ buffer (1x) plus the anti-
body against active caspase-3 for 30min at room temperature
in the dark. Stained cells were analyzed by flow cytometry
(Attune Cytometry, BD Biosciences).

2.1.6. Autophagy Assays

(1) Acridine Orange. Acridine orange (AO) is a marker of
acidic vacuolar organelles that fluoresces green in the whole
cell (cytoplasm and nucleus), but in acidic compartments
(mainly autolysosomes), it suffers protonation and accumu-
lates and emits red fluorescence. Thus, AO has been used as
a marker of late autophagy [24]. To perform the AO experi-
ment, cells were trypsinized and incubated with 2.7μM of
AO for 15min, in DMEM, at room temperature. After this,
cells were analyzed by flow cytometry (Attune-AB applied
biosystems). Data are presented as the percentage of AO-
positive cells and red AO intensity.

(2) SQSTM1 Levels (Flow Cytometry). After the treatment,
cells were harvested, washed twice with ice-cold PBS (1x),
and fixed with 4% paraformaldehyde in ice-cold PBS (1x)
for 5min. Cells were centrifuged at 1200 rpm for 5min and
washed again in ice-cold PBS (1x). Then, cells were incubated
for 30min at 4°C with staining solution (mix per sample:
200μL ice-cold PBS (1x)+4μL FBS+1μL Mouse Anti-
SQSTM1 antibody (Abcam, ab56416)). Isotype-control

IgG1 (BD Biosciences; CA, USA) was used as control (mix
per sample: 200μL ice-cold PBS (1x)+4μL FBS+1μL
isotype-control IgG1). Next, cells were washed twice with
ice-cold PBS and incubated with the secondary goat anti-
mouse marked with Alexa 488 for 1 h. After, cells were centri-
fuged for 5min at 1200 rpm and resuspended in ice-cold PBS
(1x). Samples were analyzed by flow cytometry (Attune-AB
Applied Biosystems).

2.1.7. Senescence Assays–Chromogenic SA-β-Gal and C12-
FDG Staining. Senescence was assessed 15 days after
treatment. To this, cells were incubated with 33μM of 5-
dodecanoylaminofluorescein di-betaD-galactopiranoside
(C12-FDG, Life Technologies) for 2 h in the CO2 incubator.
C12-FDG is a substrate to the Senescence-Associated Acid
β-Galactosidase (SA-β-gal) that emits green fluorescence
when cleaved by the enzyme. Stained cells were trypsinized
and analyzed using the flow cytometer (Attune-AB Applied
Biosystems). Alternatively, the activity of SA-β-gal was also
evaluated through the chromogenic assay using the substrate
X-gal (Sigma-Aldrich), as described [25].

2.1.8. Nuclear Morphometric Analysis (NMA). Nuclear mor-
phometric analysis was performed as described by our group
to screen cell fate (i.e., apoptosis, senescence, or mitotic catas-
trophe) based on nuclear shape and size [26]. Briefly, treated
cells were fixed with 4% paraformaldehyde and stained with
DAPI 300 nM at room temperature in the dark. Images were
acquired in a fluorescence microscope, followed by analysis
in the Image-Pro Plus 6.0 software (IPP6, Media Cybernet-
ics). The nuclear contours were delimited using the magic
wand tool, followed by the acquisition of the following
variables: area, Radiusratio (Rr), Roundness (Rou), Aspect
(Asp), and Areabox (Arbx). After the acquisition, data were
transferred to a spreadsheet available at http://www.ufrgs.br/
labsinal/NMA, in which an analysis of the nuclear area versus
shape is performed. The nuclear shape is defined by the
Nuclear Irregularity Index (NII), which is calculated by the
following formula: NII = Asp −Arbx + Rr + Rou. Through
this analysis, nuclei are classified according to the size and
shape in the following populations: normal (N), small and reg-
ular (SR), small and irregular (SI), large and regular (LR), and
large and irregular (LIr). SR nuclei typically correspond to
apoptotic cells, while LR and LIr correspond to nuclei from
senescent cells.

2.1.9. Statistical Analysis. All experiments were performed at
least three times independently. Statistical analysis consisted
of t tests or ANOVA tests followed by the Tukey test. Analy-
ses were performed using the SPSS 18.0 software. “p” values <
0.05 were considered significant.

2.2. In Silico

2.2.1. Data Preprocessing and Network Design. Constitutive
gene expression of MCF7, BT483, and MDA-MD-231 breast
cancer cell lines was obtained by the rank product method.
This method is based on calculating rank products (RP) from
replicate experiments. We used sample replicates from the
GEO databases (GSE63427, GSE98265, GSE73526, and
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GSE24717). For each sample, the average of the signal
between the same probes was calculated and applied to the
normalized microarray data using the limma package in the
R/Bioconductor software [27]. The parameters used to run
the RP were based on a significance value of ≤0.01. After this,
the data were used to obtain a protein-protein interaction
(PPI) network using the metasearch engine stringApp of
the Cytoscape 3.8.0 platform [28, 29].

To obtain the PPI network of breast cancer, an automatic
extraction of gene-disease associations was performed based
on a DISEASES resource (http://diseases.jensenlab.org/),
where text mining with manually curated disease-gene asso-
ciations, cancer mutation data, and genome-wide association
studies were considered [30]. All associations predicted by
DISEASES are based on levels of confidence. In this study,
we applied a maximal confidence cut‐off = 1 to predict the
1000 most significant nodes related to “malignant breast
cancer.”

To predict the chemical-protein- (CP-) PPI network for
MCF7, BT483, and MDA-MD-231 cell lines and breast can-
cer, the metasearch engine STITCH 5 (http://stitch.embl.de/)
was used. It is important to note that stringApp and STITCH
are Bayesian models based on similar degrees of confidence
[31]. Here, a degree of confidence of 0.400 (medium) was
used for both platforms to predict networks. Finally, to
obtain a common CP-PPI network between MCF7 and
breast cancer, we used the Cytoscape plugin NetworkAnaly-
zer [32], function “intersection.”

Input data to predict a PPI network representative of
apoptosis (hsa04210), senescence (hsa04218), and autoph-
agy (hsa04140) was based on a curated network map from
KEGG [33].

For all predicted networks, GeneCards (http://www
.genecards.org/) and PubChem (https://pubchem.ncbi.nlm
.nih.gov/) databases were used to search for synonymous
names of genes and compounds recognizable by all meta-
search software used in this work.

2.2.2. Centrality Analysis. Degree and betweenness centrality
parameters were considered for analysis of CP-PPI networks
using the Cytoscape plugin, CentiScaPe 2.2 [34]. Centrality
degree indicates the number of adjacent nodes that are con-
nected to a unique node. In this study, the average of this
parameter was calculated as the sum of different node degree
scores divided by the total number of nodes in the network.
Another centrality parameter, betweenness was analyzed,
which is defined as the number of the shortest paths between
two nodes that pass through a targeted node [34, 35]. Similar
to the degree average parameter, the betweenness average is
defined as the ratio of the sum of different betweenness scores
and the total number of nodes in the study. The mathematics
of each parameter is detailed in the previous work of our
group [36].

Nodes with high degree and high betweenness scores,
when compared to the average for each parameter, are called
hubs (H) and bottlenecks (B), respectively. In addition, quar-
ters were defined based on the median of all H-B in the anal-
ysis. Quarters were used as cut-offs to discriminate those
nodes with the highest values of degree and betweenness.

To compare centrality patterns among CP-PPI network,
Venn diagrams were performed using an online Venn tool
(http://bioinformatics.psb.ugent.be/webtools/Venn/).

2.2.3. Functional Enrichment Analysis. Cytoscape ClueGO
2.5.7 plugin was utilized to perform KEGG and REACTOME
enrichment network analysis based on updated annotation
data from homo sapiens [37]. In this work, the enrichment
was calculated with the hypergeometric test, using a signifi-
cant FDR adjusted p value threshold of 0.0001. For process-
ing data, Cytoscape version 3.8.0 was used.

2.2.4. Gene Expression and Kaplan-Meier Survival Analysis of
Hub-Bottlenecks Predicted Genes from Tumor Samples. To
analyze the gene expression of H-B nodes from patients
with breast cancer, we used the UALCAN web resource
(http://ualcan.path.uab.edu). In this work, we compare
transcriptome data from TCGA across 1907 tumors and
144 normal samples [38].

Subsequently, the KM plotter (http://kmplot.com//) of
each H-B gene was performed. To this, expression data from
3.951 breast cancer patients was obtained from GEO, EGA,
and TCGA databases [39]. The median expression level of
each gene was used to divide patients into two groups (high
and low), and overall survival analysis was performed to
determine the association between the expression levels of
H-B genes and the overall survival time of patients with
breast cancer. The hazard ratio was provided, and the p value
was calculated using logrank tests.

An integrative workflow shows the logic strategy used in
this study, which combines in vitro and in silico methods
(Figure 1).

3. Results

3.1. Rsv Potentiates the Long-Term Toxicity of Acute Doxo
Treatment. We first assessed the acute toxicity of Rsv and
Doxo in MCF7 cells. For this analysis, we treated cells for
24 h with the following doses: Rsv 10, 30, 60, and 120μM;
Doxo 100 and 200 nM; Doxo100+Rsv 10μM; and Doxo 100
+Rsv 30μM. We then assessed cellular viability through the
trypan blue exclusion assay (Supplementary Figure 1A).
Analyzing the Combination Index (CI), we found a
synergistic effect (CI 0,8) in the combination of Rsv 30μM
and Doxo 100 nM. With these data in hand, we chose Rsv
30μM and Doxo 100nM as doses for the following steps.

An overview of the experimental design is shown in
Figure 2(a). We treated MCF7 breast cancer cells with either
Rsv 30μM, Doxo 100nM, or the cotreatment containing
both. DMSO not exceeding 0.05% was used as a control.
After 24 h, we determined cell viability and replated cells in
a Drug-Free Medium (DFM) for 15 days. During these 15
days, cell numbers were quantified and CPD was calculated.
At day 5, we assessed the levels of apoptosis and autophagy.
To Doxo, we also assessed acridine orange staining at days
10 and 15, and after 15 days, we measured cell senescence.
Autophagy was modulated in specific time points, as
depicted below.
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We did not observe any acute additive toxicity of Rsv to
Doxo after 24 h of treatment (Figure 2(b)). Considering the
long-term growth of MCF7-treated cells, Rsv alone did not
exert any lasting toxicity effects, while Doxo-treated cells
showed a stationary state until day 5 after the treatment.
From day 5 onward, regrowth in the population of Doxo-
treated cells had a rate similar to control. On the other
hand, Rsv did in fact potentiate the long-term toxicity of
Doxo (Figure 2(c)). In conclusion, these data suggest that
acute treatment with clinically relevant doses of Rsv and
Doxo is capable of affecting the long-term growth of breast
cancer cells.

3.2. Rsv Potentiates Doxo-Induced Apoptosis and Senescence
in Breast Cancer Cells. Next, we began to probe the mecha-
nisms underlying the additive effect of Rsv on Doxo. We ini-
tially assessed cell size and intracellular granularity through
flow cytometry. The forward scatter (FSC, i.e., cell size) ver-
sus side scatter (SSC, i.e., intracellular granularity) graph is
a straightforward, objective source of information to infer

the fate of subpopulations of cells. Particularly for examining
responses to therapy, FSC/SSC data are quite valuable since
cancer cell populations are molecularly heterogeneous and,
thus, may respond through various cellular outcomes [23].
Through this analysis, we observed that treatment with Rsv
increased the number of Doxo-induced shrunken cells
(Figure 2(d)), a typical morphologic feature of apoptosis.
Corroborating this, we also found that Rsv led to a reduction
in average cell size (FSC), an effect which can be observed in
the shift of the population of “viable” cells to the left in
Figure 2(d). Doxo also increased the number of cells with
high intracellular granularity (SSC) (Figure 2(d), gray area),
and this effect was also potentiated by Rsv. These data suggest
that Doxo and Doxo+Rsv triggered morphologic alterations
that resemble to apoptosis in a given subpopulation of cells,
while also promoting the increase in intracellular granularity
(which is found in cellular mechanisms such as autophagy).

We then examined these mechanisms through specific
assays. Regarding apoptosis, we observed an increase in both
the percentage of cells with active caspase-3 (Figure 2(e)) and

MCF7 cell line
Doxorubicin (Doxo)

Resveratrol (Rsv)

To predict a CP-PPI network
commom for MCF7 and breast
cancer
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To select H-B nodes directly modulated
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by Rsv and Doxo 

Cell response
Cellular mechanisms

Literature 
curation 

In silico

Figure 1: In silico strategy to identify putative genes/proteins modulated by Rsv and Doxo with therapeutic potential for breast cancer. This
workflow shows the logical steps of the in silico analyses. On the top is shown an overview of the in vitro step, which involves a set of acute and
long-term analyses after the treatment of MCF7 breast cancer cells with Rsv and Doxo (details are shown in Figure 2(a)). A translational
strategy was performed to predict the putative genes and mechanisms modulated by Rsv and Doxo. To this, constitutive gene expression
of MCF7 and metadata of breast cancer were used to predict interactomic networks. Topological analyses were prospected to predict hub-
bottleneck (H-B) nodes and biological function associated. Gene expression, KM survival, and additional pathway analyses of these H-B
nodes were also performed. Black boxes correspond to databases, algorithms, or metasearch software used.
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annexin-positive cells (Figure 2(f)) after Doxo treatment and
found that this increase was potentiated by Rsv to both
markers (Figures 2(e) and 2(f)). This result corroborates
the FSC data and likely also underlies (at least partially) the
reduction in CPD observed from the Doxo+Rsv cotreatment,
compared to Doxo alone.

Clinically, patients are usually treated for 24 h with Doxo
and then recover for 2 weeks or more. Thus, evaluating the
long-term senescence after acute Doxo treatment is clinically
relevant. Here, we measured the activity of senescence-
associated beta-galactosidase (SA-β-gal) by measuring C12-
FDG cleavage (Figure 2(g)) and the cleavage of chromogenic
SA-β-gal substrate (Supplementary Figure 1B). We found
that 24h of Doxo treatment increased the activity of SA-β-
gal in MCF7 cells after 15 days. While Rsv alone did not
increase these markers, it did potentiate Doxo-induced
senescence. We then assessed nuclear morphometry also 15
days after the treatment, since nuclear enlargement is a
typical alteration of senescent cells. We found an increase
in nuclear size after Doxo treatment, which was potentiated
by Rsv in the cotreatment (Figure 2(h), top, DAPI images;
Supplementary Figure 1C). Through the NMA technique,
we observed an increase in the percentage of large and
regular nuclei (Figure 2(h), bottom, pie charts;
Supplementary Figure 1C), which suggests senescence
entering, after Doxo treatment. Also, we found an increase
in irregular, mainly elliptic nuclei. However, it is important
to note that near to 35% of nuclei from Doxo-treated cells
appeared with normal morphometry, which could represent

resistant cells. Rsv potentiated Doxo-induced nuclear
enlargement, since the cotreatment increased the
percentage of large and regular nuclei while reducing the
percentage of normal nuclei. Rsv+Doxo also led to a
reduction in irregular nuclei (Figure 2(h), bottom, pie
charts; Supplementary Figure 1C).

Altogether, these results show that Rsv potentiated the
long-term effect of acute Doxo in MCF7 breast cancer cells.
It is important to highlight that this addictive effect was not
evident immediately after the end of treatment. In addition,
the effect may be due to the long-term increase of apoptosis
and senescence by Rsv in Doxo-treated breast cancer cells.

3.3. Rational Inhibition of Autophagy Induced by Doxo+Rsv
Sensitizes Breast Cancer Cells. After treatment with chemo-
therapy, cancer cells usually activate a set of mechanisms
involved in the stress response in order to adapt and survive.
Among these mechanisms is autophagy, which is involved in
the resistance of cancer cells to death [40, 41]. Here, we
assessed autophagy induction by Rsv, Doxo, and cotreatment
as shown in Figure 3(a) and Supplementary Figure 2B. We
also tested the role of autophagy by treating cells with 3-
methyladenine 2 mM for 1 h before treatments or after cells
replating in DFM (Figure 3(a)). We found that Doxo-treated
cells reduced the levels of autophagy adapter SQSTM1,
suggesting increased autophagic flux (Figure 3(b)). Doxo also
induced a long-lasting increase in both the intensity of
acridine orange (AO) red staining (Figure 3(c), top) and the
percentage of AO-positive cells (Figure 3(d)). Important to
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SmallRregular

SmallIrregular
LargeRegular
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⁎⁎
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Figure 2: Rsv potentiated long-term apoptosis and senescence induced by acute Doxo treatment. (a) Experimental design. Cells were treated
with resveratrol (Rsv) 30μM, doxorubicin (Doxo) 100 nM, or Rsv30+Doxo100 for 24 h. Dimethyl Sulfoxide (DMSO) not exceeding 0.05%
was used as control. After this, cell viability was assessed. Then, cells were replated in a Drug-Free Medium (DFM) and grown for 15 days.
During this period, several analyses were performed as indicated. CPD: Cumulative Population Doubling; FSC × SSC: forward scatter ×
side scatter; Annex/PI: Annexin V-FITC/Propidium Iodide staining; Casp-3: active caspase-3-positive cells; (b) cell viability after 24 h,
measured through the trypan blue exclusion assay. (c) Cumulative Population Doubling along the 15 days. (d) Cell morphology measured
at day 5. FSC × SSC plots (left) and averaged FSC and SSC (right, bar graph). (e) Active caspase-3-positive cells measured at day 5.
Representative flow cytometry plots are shown. Numbers represent the percentage of positive cells (average ± standard deviation). (f)
Annexin V-FITC/Propidium Iodide staining measured at day 5. (g) C12-FDG staining measured at day 15. Representative plots are
shown. Numbers represent the average of green fluorescence (average ± standard deviation). (h) Nuclear morphometric analysis (NMA)
measured at day 5. Representative images are shown on top (magnification: 200x); pie charts represent the percentage of nuclei in each
population. Details are shown in Supplementary Figure 1C; ∗p < 0:05, ∗∗p < 0:01, and ∗∗∗p < 0:001 in relation to control; #p < 0:05,
##p < 0:01, and ###p < 0:001 in relation to Doxo.
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mention, after the 24h of treatment, despite the percentage of
AO-positive cells increased, the increase in the intensity of AO
staining was still not significant, suggesting that autophagy is,
in fact, increased only after drug withdrawal (Supplementary
Figure 2A). Meanwhile, treatment with Rsv alone did not
alter SQSTM1 levels (Figure 3(b)) and slightly increased the
intensity and the percentage of AO-positive cells
(Figures 3(a) and 3(b)). When combined with Doxo, Rsv
increased the intensity of AO red fluorescence (Figure 3(c),
top) and the percentage of AO-positive cells (Figure 3(d)),

while reducing the levels of SQSTM1 (Figure 3(b)).
Importantly, adding Rsv to Doxo led to a strong reduction
in a subpopulation of nonautophagic cells, which could be
intrinsically insensitive to Doxo (Figure 3(c), top, black
arrows).

Data from autophagy analysis suggest that most cells that
resisted to Doxo+Rsv have high levels of autophagy. Since
autophagy acts as a cytoprotective mechanism in breast cancer
cells [40], we then assessed the consequence of its inhibition in
apoptosis and long-term cell growth. To this, we next inhibited
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Figure 3: Rsv potentiated cytoprotective autophagy induced by Doxo in MCF7 cells. (a) Experimental design. Cells were treated with Rsv
30μM, Doxo 100 nM, or Rsv30+Doxo100 for 24 h. Dimethyl Sulfoxide (DMSO) not exceeding 0.05% was used as control. After this, cell
viability was assessed. Then, cells were replated in a Drug-Free Medium and grown for 15 days. Cells were treated with 2mM of 3-
methyladenine (3-MA) for 1 h at days 3 and 4. (b) SQSTM1 levels measured by immunocytochemistry at day 5
(average ± standard deviation). (c) Acridine orange (AO) staining. Numbers represent the intensity of AO red fluorescence in relation to
control, considered as 100 (average ± standard deviation). Black arrow points to the AO-negative population of cells in Doxo and Doxo
+Rsv treatment. (d) Percentage of AO-positive cells. (e) Active caspase-3-positive cells measured by flow cytometry. Numbers correspond
to the percentage of positive cells (average ± standard deviation). (f) Cumulative Population Doubling measured at day 15. Abbreviations:
AO: acridine orange; SQSTM1: sequestosome 1; 3-MA: 3-methyladenine; Casp-3: active caspase-3-positive cells; CPD: Cumulative
Population Doubling. ∗p < 0:05, ∗∗p < 0:01, and ∗∗∗p < 0:001 in relation to control; #p < 0:05, ##p < 0:01, and ###p < 0:001 in relation to
Doxo; †p < 0:05, ††p < 0:01, and †††p < 0:001, comparing 3-MA to control using PBS.
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autophagy with 3-methyladenine (3-MA) for 1h just before
the treatments (Supplementary Figure 2B, left scheme).
However, this strategy did not alter the toxicity of Rsv, Doxo,
or cotreatment in the long-term (Supplementary Figure 2B,
right graph). We then decided to treat cells at days 3 and 4
(Figure 3(a)), since day 5 corresponded to the peak of Doxo-
induced autophagy (Supplementary Figure 2A). The
confirmation of autophagy inhibition is shown in
Figures 3(c) and 3(d). As shown in Figure 3(e), adding 3-MA
at days 3 and 4 for 1h each led to an increase in the
percentage of cells with active caspase-3 in response to Doxo
and, to a greater extent, to Doxo+Rsv. Consequently, we
found a reduction in final CPD at day 15 after 3-MA
treatment to both Doxo and Doxo+Rsv (Figure 3(f)). Indeed,
adding 3-MA to Doxo+Rsv was the more effective treatment.
This suggests that the inhibition of autophagy during its
activation is the most effective treatment to sensitize breast
cancer cells to Doxo and Doxo+Rsv cotreatment.

3.4. A CP-PPI Network Composed of 24 Nodes and Edges Is a
Robust Modeling to Predict Molecular Targets Modulated by
Doxo and/or Rsv. To expand upon our in vitro findings and
provide molecular insights regarding the cellular mechanisms
involved in the response of breast cancer cells to Rsv+Doxo,
we developed a translational in silico strategy based on interac-
tomic data available for MCF7 and breast cancer. A total of
3.502 genes constitutively expressed in the MCF7 cell line
(Supplementary Table 1) were used as the input for STRING
software (see details in Material and Methods). As a result, a
PPI network called MCF7, composed of 2097 nodes and
46524 edges, was obtained (Figure 4(a)). Following this
analysis, potential targets of Rsv and Doxo were predicted
using the STITCH platform. In this context, a new network
named MCF7 CP-PPI composed of 2103 nodes, including
Rsv and Doxo, and 46681 edges was prospected
(Figure 4(b)). Complementarily, interactomic data from
DISEASES resource were used to extract gene-disease
associations to predict a network for breast cancer (for
details, see Material and Methods). This network, denoted as
the breast cancer PPI network, was composed of 835 nodes
and 35790 edges (Figure 4(c)). To predict the targets of Rsv
and Doxo in this network, STITCH was also applied. A new
network entitled breast cancer CP-PPI network was obtained
(Figure 4(d)), which revealed 834 nodes including Rsv and
Doxo and 35785 edges. To obtain a common network for the
MCF7 and breast cancer CP-PPI networks, a merger based
on intersection was performed. The network remaining after
this operation possessed 154 nodes and 1428 edges and was
designed as the intersection CP-PPI network (Figure 4(e)).
Functional analysis of this network was also performed using
the ClueGo plugin (Supplementary Figure 3 A, B, and C). In
this analysis, four discrete pathways, as overexpressed terms,
were identified (Supplementary Figure 3C). The predicted
terms were ESR-mediated signaling (73.3%), viral
carcinogenesis (13.3%), HIF-1 signaling pathway (6.7%), and
PI3K-Akt signaling pathway (6.7%).

In addition, network topological features can also predict
potential targets and mechanisms of action modulated by
Rsv and Doxo. Furthermore, these properties can also

provide measures of representativeness of the intersection
CP-PPI network into the MCF7 CP-PPI network and breast
cancer CP-PPI network based on structural attributes. To
do this, the best ranking of compound-target (high impact
on the network) was calculated based on network connectiv-
ity analysis. Accordingly, degree and betweenness parameters
were calculated for the intersection network; 31 H-B nodes
were identified, including Rsv and Doxo (Figure 5(a),
Supplementary Table 2). Through this, we found that Rsv
and Doxo, by itself, are nodes highly connected, which
control high information flow in the network.

Subsequently, these H-B nodes were used to construct a
new network, named the H-B intersection CP-PPI network,
with 31 nodes and 247 edges (Figure 5(b)). Subsequently,
the representativeness of all nodes comprising the intersec-
tion CP-PPI network, such as their H-B nodes, were evaluated
into the MCF7 CP-PPI network and breast cancer CP-PPI
network, respectively. To accomplish this, it was necessary
to quantify whether commonH-B nodes were included when
the intersection operation was performed (Figure 4(e)). H-B
nodes were also predicted for theMCF7 CP-PPI network and
breast cancer CP-PPI networks, and new networks were pros-
pected based on centrality analysis (see Supplementary
Figure 4). These networks were named the H-B breast
cancer CP-PPI network and the H-B MCF7 CP-PPI network
composed of 144 nodes and 418 nodes, respectively.
Comparing networks, only 26 nodes, including Rsv and
Doxo, were common to the Intersection CP-PPI network,
H-B MCF7 CP-PPI network, and H-B Breast cancer CP-PPI
network (Figure 5(c)). Notwithstanding, 24 of these 26
nodes are shared by all H-B CP-PPI networks (Figure 5(d)).
According to this, the H-B intersection CP-PPI network is
majoritarian constituted by common H-B (24/31). It is
important to note that only these 24 H-B connected by 178
edges were considered for posterior analysis (Figure 5(e)).
Interestingly, 18 of these 24 H-B appeared in overexpressed
terms, after functional analysis, as detailed below (see
Supplementary Figure 3C).

3.5. Hub-Bottlenecks Directly Modulated by Doxo and/or Rsv
Suggest That Seven Putative Genes Have a Central Role in the
Response of Breast Cancer Cotreatment.Of these 24 intercon-
nected H-Bs obtained from previous network strategy, 5 H-
Bs (ANXA5, AURKA, HSP90AA1, STAT1, and RHOA) are
directly modulated by Doxo, 1 H-B (CDK4) is directly mod-
ulated by Rsv, and 8 H-Bs (CCND1, CDH1, DNMT1, ESR1,
MAPK3, PARP1, PTPN11, and RPS6KB1) are directly
modulated by the combination of these compounds. It is
important to note that the term “modulation” refers to
drug-target interaction at the network level.

Subsequently, genes differentially expressed between
MCF7 and breast cancer in relation to normal mammary tis-
sue were highlighted, see details about gene expression data
in Material and Methods. Nodes that were shown to be
upregulated and downregulated in cancer are in red and blue,
respectively; nodes without differential expression are in
white (Figure 6(a)). All the nodes modulated by Doxo and/or
Rsv appeared as upregulated in the MCF7 cell line based on
microarray analysis (Supplementary Table 1). In breast
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cancer, according to the transcriptome data from TCGA,
nine out of them appeared as being upregulated while four
of them are downregulated. Subsequently, Kaplan-Meier
survival analysis of each H-B gene was performed. To do
this, expression data from 3.951 breast cancer patients were
analyzed. Only nine H-Bs (AURKA, HSP90AA1, CDK4,
CCND1, CDH1, ESR1, MAPK3, PTPN11, and RPS6KB1)
showed a significant association between expression levels
and the overall survival time of patients with breast cancer
(Figure 6(b)).

To predict the involvement of these nine genes with apo-
ptosis, senescence, and autophagy, data of curated pathways
were extracted from the KEGG database (see Material and
Methods). Initially, a Venn diagram was constructed, includ-
ing all genes/proteins associated with each process and the
nine predicted genes (Figure 7(a)). MAPK3 was common
for all cellular processes; CCDN1 and CDK4 were shared
with senescence and RPS6KB1 with the autophagic process.
Next, the involvement of these nine genes was analyzed at
the network level. All proteins registered by KEGG for each
cellular process together with the nine predicted genes were

integrated into a unique PPI network, using STRING. A
strongly connected network composed of 350 nodes and
8924 edges was prospected (Figure 7(b)). Subsequently,
centrality analysis was performed to predict H-B, and 83
H-Bs were detected. Interestingly, seven (CCND1, CDH1,
ESR1, HSP90AA1, MAPK3, PTPN11, and RPS6KB1) out
of nine initial predicted genes/proteins are H-B
(Figure 7(c)). To determine if these H-Bs have high degree
and betweenness values in the network, an additional anal-
ysis was performed. Based on the median of degree
(x~ = 772:3) and betweenness (x~ = 96), four quarters were
defined (Figure 7(d)). In the fourth quarter, 5 H-Bs
(CDH1, ESR1, HSP90AA1, MAPK3, and RPS6KB1)
showed high connectivity. These top 5 H-Bs were analyzed
in the other two breast cancer cell lines (BT483 and MDA-
MD-231), which are ESR1-negative (Supplementary
Figure 5). Interestingly, CDH1 and RPS6KB1 are common
H-Bs in all CP-PPI networks. Since centrality is a key
property of complex networks that influences the
dynamics of processes, any pharmacological modulation
on H-B can induce pathway-network perturbations.

Breast cancer PPI network
835 nodes

35790 edges

Breast cancer CP-PPI network
834 nodes

35785 edges

MCF7 CP-PPI network
2103 nodes
46681 edges
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Doxo
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Figure 4: Strategy to predict a translational chemical-protein (CP) and protein-protein interacting (PPI) networks between MCF7 cell line
and breast cancer. (a) MCF7 PPI network: based on the constitutive gene expression of MCF7, a PPI network was predicted using the
STRING software. (b) MCF7 CP-PPI network: targets of Rsv and Doxo were predicted using the STITCH platform. (c) Breast cancer PPI
network: the 1000 most significant genes associated with the term “malignant breast cancer” from DISEASES resource were used to
perform a PPI network based on interacting data available from stringApp. (d) Breast cancer CP-PPI network: to predict targets of Rsv
and Doxo, interactions were prospected using the STITCH platform. (e) Intersection CP-PPI network: an “intersection” operation,
available in the NetworkAnalyzer, was performed to obtain common nodes and edges between the MCF7 CP-PPI network and the breast
cancer CP-PPI network.
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4. Discussion

The frequent resistance of breast cancer cells to Doxo, along
with its cardiotoxicity limits its utility as a treatment in breast
cancer therapy. Adjuvant drugs, the redesign of clinical regi-
mens, or the modulation of cellular mechanisms could sensi-
tize resistant cells. Translationally, it is of fundamental
importance to study the response of cancer cells over the long
term. In the current study, using a clinically relevant protocol,
here, we found that 24h of treatment with Rsv was sufficient to
potentiate the effects of Doxo for 15 days via the induction of
apoptosis and senescence. Autophagy was detected in high
levels in cells that survived at least 5 days to Doxo and Doxo
+Rsv, and the rational inhibition of this mechanism triggered
apoptosis and increased the long-term toxicity of cotreatment.
This is in agreement with recent evidences suggesting autoph-
agy inhibition as a strategy to overcome the resistance of breast
cancer, including resistance to Doxo [42, 43]. Indeed, seven
clinical trials combining autophagy inhibitors with endocrine
or cytotoxic therapies for breast cancer treatment are currently
being conducted. Our in silico analysis identified seven puta-
tive genes potentially involved in the additive effects of Rsv
to Doxo. In support of this, a literature search revealed that
Rsv is in fact capable of modulating these genes, which may
underlie its additive effects with Doxo on breast cancer cells.

Despite being, to our knowledge, the first study that
assessed the long-term effects of acute treatment with Rsv
+Doxo, previous studies have tested the acute effects of Rsv

as an adjuvant therapy in breast cancer treatment, which is
of great therapeutic interest because Rsv attenuates Doxo-
induced cardiotoxicity [20, 44] and it is not toxic to normal
cells [45, 46]. In MCF7 cells, it has been shown that Rsv trig-
gers G1/S cycle arrest and apoptosis only after 48 h to 72h of
treatment, or after 24 h of treatment with at least twice the
dose used here. This effect occurs via the reduction of CDKs
and/or cyclin D1 levels, accompanied by the suppression of
prosurvival pathways, like Bcl-2 and NF-κB [47–50]. Indeed,
Venkatadri et al. found an IC50 of 162μM to 24h of Rsv in
MCF7 cells [49]. Rsv was also found to reduce the migration,
invasion, and stemness of MCF7 cells [51]. Our study also
found that Doxo-induced autophagy was potentiated by
Rsv, which, in MCF7 cells, play its proautophagic effect by
the direct inhibition of mTOR [52]. This, in turn, may also
lead to the suppression of S6K1, a direct target of mTOR
and one of the genes suggested to be modulated by Rsv in
our in silico analysis. Rsv has also been described as modulat-
ing key pathways involved in breast cancer progression, such
as MAPK, PI3K-AKT, cell cycle checkpoints, and ER signal-
ing [53]. Here, we observed that Rsv was not effective as a
treatment on its own in controlling the long-term growth of
MCF7 cells, but that similar doses potentiated Doxo toxicity.
Thus, understanding the molecular mechanisms underlying
this additive effect is critical for further progress in overcom-
ing Doxo resistance. Here, we present a list of seven putative
genes that are modulated by Rsv in breast cancer in the con-
text of cotreatment with Doxo: HSP90AA1, CCND1, CDH1,
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Figure 5: A network core composed of 24 hub-bottleneck (H-B) nodes is common between theMCF7 CP-PPI network, breast cancer CP-PPI
network, and intersection CP-PPI network. (a) Centrality analysis of the intersection CP-PPI network. Dashed lines represent the thresholds
calculated for each centrality, degree, and betweenness. Proteins/genes are represented by black dots, while compounds are marked in blue
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Figure 6: Fourteen H-B genes are directly modulated by Rsv, Doxo, or the combination, and nine out of these genes affect the survival of
breast cancer patients. (a) Networks show only nodes directly modulated by Rsv or Doxo in MCF7 and breast cancer. Overlapping gene
expression data with each network was performed. Red and blue nodes represent genes that are up- or downregulated, respectively, in
cancer in comparison to normal mammary tissue. (b) Kaplan-Meier survival curves of nine H-B genes in breast cancer patients.
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ESR1, MAPK3, PTPN11, and RPS6KB1. We found experi-
mental evidence in support of Rsv modulating the expression
of CCDN1/cyclin D1, CDH1/E-cadherin, ESR1/ER-α, and
MAPK3/ERK1 in MCF7 cells. Rsv also modulates
PTPN11/SHP2 and RPS6KB1/S6K1 in other cancer cells,
while the modulation of HSP90AA1 by Rsv has not been
assessed in cancer cells (Supp. Table 3).

Of these genes and proteins, three are classically upregu-
lated in breast cancer, and these are associated with poor
prognosis in breast cancer: CCDN1/cyclin D1 [54],
PTPN11/SHP2 [55], and RPS6KB1/S6K1 [56]. Rsv acts as a
negative regulator of these pathways in breast cancer and
other cancer types. On the other hand, high levels of

CDH1/E-cadherin [57] and MAPK3/ERK1 [58] have been
associated with favorable prognoses in breast cancer, and
Rsv increases their levels and/or activity in MCF7 cells.
Importantly, modulation of these genes may attenuate sev-
eral mechanisms associated with Doxo resistance in MCF7
including (a) increased drug efflux [59], (b) cell death resis-
tance (through alterations in ER-α and/or NF-κB pathways)
[60, 61], (c) epithelial-to-mesenchymal transition [62], (d)
the enrichment of cancer stem cell-like phenotype [60, 63],
and (e) autophagy [43]. Indeed, here, we observed the
regrowth of Doxo-treated MCF7 cells from day 5 after treat-
ment onward, and we found that Rsv strongly attenuated this
regrowth. This could be achieved through the modulation of
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Figure 7: Seven H-B genes interplay between apoptosis, senescence, and autophagy. (a) Venn diagram between the nine predicted genes and
KEGG pathways of apoptosis, senescence, and autophagy. (b) Apoptosis, senescence, and autophagy network. Network connectivity of these
nine genes is highlighted in red; common nodes between molecular processes are also highlighted. (c) Venn diagram between nine predicted
genes and H-B of apoptosis, senescence, and autophagy network. (d) Centrality analysis of apoptosis, senescence, and autophagy network;
only H-Bs were considered. Dashed lines represent thresholds based on medians (degree and betweenness) used to define the quarters.
Fourth-quarter (Q4) corresponds to H-Bs with higher degree and betweenness values from the network.
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those genes obtained in our in silico analysis, as detailed in
the following paragraphs.

InMCF7 cells, achieving resistance to Doxo by increasing
drug efflux involves the upregulation of MDR1 [64]. It has
been demonstrated that Rsv can revert multidrug resistance
in breast cancer cells, leading to the intracellular accumula-
tion of Doxo and increased toxicity [12]. A similar result
was found by Zhao et al. [46] using nanocapsules containing
Rsv and Doxo. Molecularly, such an increase of MDR1 may
be mediated by ER-α, the product of the ESR1 gene [64,
65]. ER-α is directly involved in breast carcinogenesis and
is associated with unfavorable prognoses as well as Doxo
resistance in breast cancer [66]. Rsv is considered a phytoes-
trogen due to its ability to compete with 17β-estradiol (E2)
for binding to and modulating the activity of ER-α [67],
and our in silico analysis suggested ER-α as a potential target
of Rsv. Experimentally, the inhibition or downregulation of
ER-α by Rsv has already been demonstrated in MCF7 cells
[68]. Downstream of ER-α, the PI3K/Akt signaling pathway
is activated, which drives cell survival and proliferation in
breast cancer [69]. The upregulation of this pathway is also
known to be in Doxo resistance [70]. Thus, PI3K/AKT inhi-
bition, as triggered by Rsv in breast cancer [71], may sensitize
cancer cells to Doxo [72]. A key effector of PI3K/Akt, S6K1,
also activates ERα and promotes the proliferation and inva-
siveness of ER-positive breast cancer cells [73, 74]. The endo-
crine resistance of breast cancer cells can be achieved through
direct phosphorylation of ER-α by S6K1, leading to ligand-
independent activation of ER-α. This, in turn, upregulates
S6K1 expression, leading to a positive regulatory loop that
maintains cell proliferation [73, 75]. Our in silico analysis
suggested S6K1 as another potential target modulated by
Rsv. Experimentally, it is known that Rsv strongly suppressed
the activity of S6K1 in MCF7 cells [76], which may interrupt
the abovementioned loop and sensitize breast cancer cells.
This result is even more relevant in this model since MCF7
cells have high levels of S6K1 expression and activity [73].

In addition to the ER-α/PI3k/Akt/S6K1 pathway, our in
silico analysis suggested that Rsv may suppress other prosurvi-
val pathways to sensitize MCF7 cells to Doxo-induced apopto-
sis or senescence [77]. One of the classic targets of Rsv in cancer
cells is the cyclin D1/CDK4 complex. High levels of cyclin D1,
for example, have been associated with increased mortality in
breast cancer [78], and apoptosis resistance to tamoxifen [79]
and Doxo [80]. Several studies have shown that Rsv reduces
expression levels of CCDN1/cyclin D1 along with the activity
of cyclin D1/CDK4, leading to G1/S-phase cell cycle arrest in
MCF7 cells [51, 81, 82]. Cyclin D1 also modulates the response
to chemotherapy in these cells, including Doxo [83, 84].
Another pathway potentially involved in our model is NF-κB.
NF-κB overactivation may also be directly involved in Doxo
resistance in MCF7 cells [85], as NF-κB inhibition sensitized
MCF7-resistant cells to Doxo [60]. Rsv is also capable of inhi-
biting NF-κB in these cells [48]. Indeed, Rsv could potentially
overcome Doxo resistance by inducing apoptosis through
downregulating the expression of NF-κB and BCL-2 [13]. This
mechanism may involve the increase of E-cadherin levels by
Rsv, since E-cadherin intracellular signaling attenuates NF-κB
signaling [86]. Our in silico analysis also indicates SHP2 as a

target of Rsv. SHP2 is an oncoprotein that favors tumor
growth, cell invasion, and resistance to apoptosis inMCF7 cells,
as has been shown both in vitro and in vivo [87]. Inhibition of
SHP2 was also found to reactivate senescence in breast cancer
in mice [88]. Finally, our in silico analysis suggested ERK1 as
a putative target of Rsv. In MCF7 cells, ERK1 inhibits cell pro-
liferation via the downregulation of YAP1, a transcriptional
coactivator involved in breast carcinogenesis [58]. Indeed, in
breast cancer patients, high levels of ERK1 are associated with
good prognoses, positive responses to therapy, and controlled
cancer progression [58, 89]. Rsv has been previously described
as increasing ERK1 in MCF7 cells [90, 91].

The epithelial-to-mesenchymal transition (EMT) also
plays a role in the resistance of breast cancer to Doxo. This
mechanism involves the reduction of epithelial markers,
especially E-cadherin, in parallel with an increase in mesen-
chymal markers. In breast cancer, suppression of SHP2 was
found to lead to an increase of E-cadherin, reversing the
EMT. Here, we observed an increase in nuclei with elliptic,
elongated shape 15 days after Doxo treatment, which is a typ-
ical alteration of EMT [92]. Adding Rsv to Doxo reduced this
nuclear population. At a molecular level, our in silico analysis
suggested that Rsv can modulate two key players of the EMT
in breast cancer, Chd1/E-cadherin, and PTPN11/SHP2 [93].
Indeed, treatment with Rsv has been shown to reverse the
EMT in breast cancer, sensitizing cells to Doxo [11, 90, 94].
The loss of E-cadherin can lead to disease progression,
metastasis, apoptosis, and drug resistance in breast cancer
[95–97]. Likewise, CDH1 promoter methylation correlates
with decreased gene expression and poor prognosis in
patients [98]. CDH1 drives proper cell cycle progression,
and its depletion accelerates breast cancer cell proliferation
and cooperates with PTEN loss to promote breast cancer
progression in rodents [99]. On the other hand, the activa-
tion or increase of E-cadherin can sensitize breast cancer cells
and also suppress cancer progression [96, 100]. A reduction
in E-cadherin triggered by miR-106b~25 also promoted a
bypass of Doxo-induced senescence and increased cell motil-
ity and invasion [101]. Rsv increases E-cadherin and reduces
EMT in MCF7 cells [102]. Epigenetic mechanisms are also
involved in EMT-mediated resistance to Doxo. miR-25 tar-
gets EP300, a transcriptional activator of E-cadherin, result-
ing in EMT with increased cell motility and Doxo
resistance [101]. Rsv downregulates miR-25 in cancer cells,
which restores E-cadherin levels and may sensitize cells to
Doxo [103]. Complementarily, Rsv decreased other genes
associated with the EMT, such MMP9 and MMP2, which
are involved in the aggressiveness and invasiveness of
Doxo-resistant breast cancer [94]. Another gene potentially
modulated by Rsv in our model is PTPN11. Its upregulation
in breast cancer is associated with EMT, cell motility, and
high tumor grade [104]. Inhibition of the PTPN11-encoded
protein SHP2 also led to EMT associated with the upregula-
tion of E-cadherin and downregulation of mesenchymal
markers [93]. Likewise, SHP2 depletion or knockdown has
been shown to prevent invasion and metastasis in vivo
[105]. With this in mind, SHP2 inhibitors may help in breast
cancer management [106], as has already been demonstrated
in animal models [88].
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Finally, cancer stem cells (CSC) are also important for
resistance to Doxo in breast cancer. Rsv has been shown
to reduce breast CSCs in MCF7 cultures [45, 107].
Autophagy contributes to the survival of CSCs in breast
cancer [108], and its inhibition can lead to the elimination
of subpopulations of CRCs [109]. Thus, we can infer that
the elimination of CSCs after autophagy inhibition may
potentiate the efficacy of Doxo and Rsv+Doxo treatments.
Molecularly, two genes suggested by our in silico analysis
as potential targets of Rsv actually modulate the stemness
of breast CSCs: HSP90AA1 and SHP2. HSP90 is the most
important molecular chaperone involved in the response
to stress, enabling cancer cells to survive under adverse
conditions [110] and resist therapy [111]. HSP90AA1 is
a NANOG transcriptional target that contributes to the
maintenance of cancer cell stemness, and its overexpres-
sion of HSP90AA1 was associated with unfavorable
prognosis in breast cancer [112], while the inhibition of
HSP90 reduces tumor stemness and promotes antitumor
immunity. In lung cancer, HSP90 inhibitors have been
found to synergize with Doxo in vitro and in vivo [113].
The reduction of heat shock proteins by Rsv increases
the sensitivity of breast cancer cells to Doxo [114], but this
effect has not been tested in MCF7 cells. Notwithstanding,
Rsv has been shown to reduce HSP90 in other cell types
[115, 116]. The other gene involved in the maintenance
of tumor-initiating cells that may be modulated by Rsv is
SHP2 [55, 93, 105].

In conclusion, here, we found that Rsv potentiated the
long-term response of MCF7 breast cancer cells to Doxo.
Our model showed that acute treatment with these drugs
led to long-term sensitivity, which was even higher when
autophagy was rationally suppressed. Indeed, we believe
experimental designs that resemble and reflect the clinics
may improve the translationality of in vitro data. Our in silico
analysis shed light at the molecular level on potential players
modulated by Rsv in the context of Doxo treatment. Our
results suggest that alternative regimens of treatment, includ-
ing those that employ the rational modulation of cellular
mechanisms, are promising for the development of new
research and therapies on overcoming Doxo resistance in
breast cancer.
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Supplementary Materials

Supplementary 1. Supplementary Figure 1 Dose-response
curve to Rsv and Doxo. (A) Cells were treated with the
following doses: Rsv 10, 30, 60, or 120μM; Doxo 100 or
200 nM. After 24 h, cell viability was assessed using a
trypan blue exclusion assay. (B) SA-β-gal chromogenic
staining. (C) Nuclear morphometric analysis. Each dot
represents a single nucleus. Nuclear populations are
defined by objective thresholds set based on the control.
The percentage of nuclei in each population is shown on
the right. ∗p < 0:05, ∗∗p < 0:01, and ∗∗∗p < 0:001 in relation
to control; #p < 0:05, ##p < 0:01, and ###p < 0:001 in rela-
tion to Doxo.

Supplementary 2. Supplementary Figure 2 Kinetics of acridine
orange staining after Doxo treatment and cell growth after
early autophagy inhibition. (A) Cells were treated with Doxo
100nM for 24h, followed by cell replating in a Drug-Free
Medium. The percentage of AO-positive cells and the inten-
sity of red fluorescence in AO-positive cells were determined
5, 10, and 15 days after treatment. (B) Autophagy was inhib-
ited with 2mMof 3-MA for 1h before treatments. Cumulative
Population Doubling was performed after 15 days. ∗p < 0:05,
∗∗p < 0:01, and ∗∗∗p < 0:001 in relation to control; #p < 0:05,
##p < 0:01, and ###p < 0:001 in relation to Doxo.

Supplementary 3. Supplementary Figure 3 Functional analy-
sis of the intersection CP-PPI network showing well-
described pathways for breast cancer. (A) Intersection KEG-
G/REACTOME pathway network analysis of related terms
(sharing similar associated genes from ClueGO). (B) Most
significant pathways based on REACTOME and KEGG were
analyzed with ClueGO algorithms. (C) ClueGO pie chart
showing overexpressed terms after prediction.

Supplementary 4. Supplementary Figure 4 H-B networks for
MCF7 and breast cancer. (A) H-B breast cancer CP-PPI net-
work. (B) H-B MCF7 CP-PPI network.

Supplementary 5. Supplementary Figure 5 H-B comparison
between MCF7/breast cancer and BT483 and MDA-MD-
231. (A) BT483 CP-PPI network and MDA-MD-231
CP-PPI network. (B) Venn diagram comparing the top
five H-Bs obtained from Figure 7(d) and H-Bs of the
BT483 CP-PPI network and H-B MDA-MD-231 CP-PPI
network.

Supplementary 6. Supplementary Table 1 Gene expression of
MCF7 cells. Constitutive gene expression analysis of three
sample replicates obtained from GSE63427, microarray
experiment.

Supplementary 7. Supplementary Table 2 CentiScape analysis
of the intersection CP-PPI network. (A) Degree and
betweenness centrality scores of each node. (B) Hub and bot-
tleneck nodes.

Supplementary 8. Supplementary Table 3 Experimental evi-
dences assessing the modulation of putative genes by Rsv in
breast cancer cells. We search for studies assessing the effect
of Rsv in the 7 putative genes found through the in silico
strategy.
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