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Abstract: Mathematical optimisation is widely used to find the optimal value 
for an objective function, subject to constraints that try to simulate reality, and 
is fundamental to improving industrial processes. In this paper, we compare 
different optimisation approaches to solve the packaging problem in multihead 
weighing machines. In this problem, each package is made up from the loads in 
a subset of the multihead weigher’s hoppers. The total weight of the packed 
product must be as close to a specified target weight as possible. We designed 
and evaluated a set of algorithms for this problem, considering both  
single-objective and bi-objective optimisation criteria. A new criterion for 
creating the packages is considered, and a different way of filling of the 
hoppers is studied with the aim of reducing process variability. Numerical 
experiments considering both a set of real data and the most important process 
performance parameters show the usefulness of our study. 
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1 Introduction 

Optimisation is a fundamental discipline in fields such as information technology, 
artificial intelligence, and operations research. Optimisation is the process of trying to 
find the best possible solution to a problem, usually in a limited amount of time (Cook  
et al., 1998; Nemhauser and Wolsey, 1988). In an optimisation problem, there are many 
possible solutions and some clear way of comparing them to find the best one. In fact, 
such problems can be defined by the presence of a set of different candidate solutions that 
can be compared (Duarte et al., 2007). Depending on their algorithmic complexity, these 
problems can be categorised as either P, NP, NP-complete, or NP-hard (Bierlaire, 2015; 
Blum et al., 2008; Erdogdu, 2009; Marler, 2009). 

For an important subset of optimisation problems, no exact algorithm is available that 
can find the optimal solution in a reasonable time. However, an alternative approach to 
solve these problems, is to design approximate algorithms that can find high-quality 
(though not necessarily optimal) solutions in a given time. Each problem is represented as 
a mathematical model comprising of an objective function and a set of constraints that 
somehow encode the optimisation problem (Bierlaire, 2015). 

In this paper, we design and evaluate a set of approximate algorithms to solve the 
packaging problem for multihead weighing machines (i.e., the multihead weighing 
process). The algorithms are executed based on data obtained from real studies, following 
a proposed strategy for the filling of hoppers (Pulido-Rojano and García-Díaz, 2016). 
Also, our proposal encompasses both single-objective and bi-objective optimisation 
approaches. 

From the point of view of improving the processes, to authors as Montgomery (2009), 
the improvement of the quality is the reduction of the variability in the processes and 
products. This definition implies that if the variability of the important characteristics of a 
product, process or service decreases, the quality of the product, process or service 
increases (Tejaskumar and Darshak, 2016; Sukrut and Mohammed, 2017). Therefore, 
increasing the competitiveness of a company is closely related to a continuous 
improvement of the quality in all its processes (Sasadhar and Indrajit, 2018; Selvam  
et al., 2018). In this sense, an important goal in this study is to analyse the performance of 
the proposed algorithms to improve the variability in the multihead weighing process. 

This paper is structured as follows. Section 2 presents the packaging problem for 
multihead weighing machines. In Section 3, the proposed optimisation approach is 
described. The results of the numerical experiments are then presented and analysed in 
Section 4, followed by our conclusions in Section 5. 
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2 Packaging problem 

2.1 Multihead weighing machines 

Multihead weighing machines are also known as combination weighing systems. They 
can be installed as part of an integrated weighing and packaging production line or 
interfaced with existing packaging equipment. They are ideally suited to precise and fast 
weighing of products, ranging in size from granulates to large and bulky products. 
Moreover, the machines can be used for almost all food products (dry, fresh, or deep 
frozen, such as snacks, crisps, sweets, fresh salad and vegetables), sea food, dog food, 
technical and pharmaceutical products. Multihead weighing machines use several 
different weighing techniques to obtain a total package weight (W) that is closer to the 
desired target weight (T) than can be achieved with conventional weighing techniques. 

These weighing systems comprise three elements: a (linear) vibratory feeder system 
to automatically feed the product to the weighing stations; a system to collect the 
products and feed them to the feed hoppers; and a set of weighing hoppers that statically 
weigh the products, calculate all possible weight combinations, and dispense the best 
combination (closest match to the target weight) to a packaging machine. A detailed 
description of the arrangement of feeders and hoppers in a typical multihead weighing 
system can be found in Pulido-Rojano et al. (2015), and Figure 1 shows the basic 
components of such a system. 

2.2 Multihead weighing process 

In the multihead packaging process, a subset H ′  is chosen from the set H of products in 
the n current weighing hoppers to make up package. A quantity xi of food is placed in 
each weighing hopper i (i = 1, 2, …, n), and the weight signals from each hopper are 
transmitted to the built-in computer in the system’s control unit. The computer then 
calculates all possible weights combinations, and the products in the subset that exceeds 
the desired weight T by the minimum possible amount are ejected from their 
corresponding hoppers. The resulting empty hoppers are then supplied with new 
quantities of food. The computer repeats this process until it has produced the number 
required of packages (Q). The number of different possible hopper subsets H ′  depends 
on the number k of hoppers that are selected for each packaging operation. This is 
equivalent to the NP-complete subset-sum combinatorial problem (Garey and Johnson, 
1979) when k is neither predetermined nor constant. 

The weights xi (i = 1, 2, …, n) in the hoppers follow a normal probability distribution. 
Based on a study that analysed real data, several authors (Beretta and Semeraro, 2012; 
Beretta et al., 2016; del Castillo et al., 2017) have noted that the weights xi were normally 
distributed xi ∼ N(μ, σ), where μ is the average weight of product supplied to the hoppers 
and σ is its standard deviation. When using a vibratory feeder, these quantities are 
correlated, in a way that depends on the form and weight of the product concerned. Some 
authors (Beretta and Semeraro, 2012; Beretta et al., 2016; del Castillo et al., 2017) have 
investigated these correlations and found that σ depends linearly on the mean weight μ, 
according to σ = γμ, where γ (0 < γ < 1) is the proportionality coefficient for μ and σ, and 
depends on the product being packaged. 
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Figure 1 Basic components of a multihead weighing system 

 

Source: García-Díaz and Pulido-Rojano (2017) 

Note that if all the hoppers are filled independently according to the same distribution 
N(μ, σ = γμ), and the k hoppers used for each packaging operation are randomly selected 
(to make up a total weight around T), then the packages weights will also follow a normal 
distribution ( , ),N kμ kσ  where the mean package weight kμ is expected to equal the 
target T. 

An additional point to consider is that a given quantity of product can remain in its 
corresponding hopper for a long time before being chosen for packaging. This can be a 
problem when handling products that can deteriorate quickly, such as, frozen goods. One 
possible way to tackle this problem is to monitor and control the time products spend in 
each hopper, which can be done by assigning a priority coefficient Pi to each hopper 
(Karuno et al., 2007). The priority Pi measures the time the current load has spent in 
hopper i and can be calculated as follows. Let ℓ denote the current iteration number of the 
packaging process, and let ℓi denote the iteration at which the current load was sent to the 
ith hopper (i.e., the last time it was empty). Then, Pi = ℓ – ℓi + 1 represents the time 
(number of packaging operations) the load has spent in hopper i. Note that 1 ≤ ℓ ≤ Q. In 
this context, we now require the packaging process to meet two objectives: make W as 
close to T as possible and minimise the total time the food in each package has spent in 
the packaging system. 

This paper proposes to solve this problem by implementing approximate algorithms 
for cases where k is constant and predetermined. This means the average weight of 
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product μ supplied to the n hoppers must be μ = T / k. In particular, we consider two 
problems: minimising the absolute difference between W and T and minimising this value 
while also considering the residence time Pi. These problems are handled using a  
single-objective and bi-objective approaches, respectively, and evaluated considering a 
set of real data. Multihead weighing system manufacturers can then select and configure 
the approach that best fits their needs. Our goal is to demonstrate the usefulness of this 
approach for minimising excess weight in the packages produced. The packaging 
problem will be formulated in terms of an allocation model, using binary variables to 
select the hoppers to use for each package (see Section 3.4). 

The approach of minimising of the absolute difference between W and T, and the idea 
of evaluating a fixed number of combined k-hoppers have already been studied by 
Pulido-Rojano and García-Díaz (2016) and García-Díaz et al. (2017), however, the 
authors assumed that the variability of the weights in the hoppers does not depend on the 
coefficient of proportionality γ, which would not be in line with industry practice. In 
addition, the authors presented this problem assuming the σ values to each hopper. 

2.3 Related work 

Several researchers have studied the possibility of improving multihead weighing and 
packaging processes through mathematical optimisation or approximate methods. For 
example, a percentage variability reduction index has been proposed (Barreiro et al., 
1998; Salicrú et al., 1996) to reduce and control production process variability. The 
optimal scheme for determining the operation time of line feeders in automatic 
combination weighers has also been investigated (Keraita and Kim, 2006). A weighing 
algorithm for multihead weighers has been proposed (Keraita and Kim, 2007) that is 
based on bitwise operations. An additional objective, known as ‘priority’ has also been 
introduced (Karuno et al., 2007). Here the problem was formulated as a bi-objective 
optimisation problem, and a dynamic programming algorithm was proposed for its 
solution. This algorithm aimed to minimise the maximum time items spent in the system 
heuristically, while also keeping the total weight of each package as close to the target 
weight as possible. Some authors (Imahori et al., 2011, 2012; Karuno et al., 2013; Karuno 
and Tateishi, 2014; Karuno and Saito, 2017) have studied the possibility of improving 
this bi-objective optimisation model. Other authors, such as Imahori et al. (2012) and 
Karuno et al. (2010), have investigated different types of packaging operations, 
developing several algorithms for double-layered and duplex packaging systems. Several 
optimisation algorithms have been proposed (Beretta et al., 2016) for determining the 
optimal flow rates for a set of radial feeders, with the objective of minimising the 
expected production cost per ‘conforming’ package over a fixed time period. The way the 
hoppers are filled has also been studied (Pulido-Rojano and García-Díaz, 2016) with the 
aim of reducing variability in the packaging process. An heuristic optimisation model has 
been developed (del Castillo et al., 2017), on the basis of a detailed characterisation of 
what constitutes a near optimal solution to the multihead weigher setup problem. The 
idea was to find the set points for the hoppers that minimised the mean squared error of 
the package weight. The optimal operational conditions for the packaging process have 
also been obtained (García-Díaz et al., 2017) using a bi-objective algorithm. Finally, a 
modified control chart has been proposed (García-Díaz and Pulido-Rojano, 2017) for 
monitoring and controlling the multihead weighing process. 
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3 Optimisation approach 

This section discusses the objectives considered for optimising the packaging process, the 
proposed method for determining the way the products are supplied to the weighing 
hoppers, the proposed algorithms for the packaging process itself, and the designed 
mathematical optimisation models. 

3.1 Packaging process objectives 

We use two optimisation approaches to address the packaging problem. The first, a 
single-objective approach, aims to minimise the absolute difference between the real 
package weight ii H

W x
′∈

=∑  and its target weight T. This can be expressed as: 

1 min ,ii H
z T x

′∈
= −∑  where z1 is the first objective. 

In order to make this approach more realistic, we also include the following constraint 
proposed by Pulido-Rojano and García-Díaz (2016): 2 ,ii H

T x Z kσ
′∈

− ≤∑ α  where 

Zα/2 represents the critical value of the standard normal probability distribution N(0, 1) for 
a significance of α. This constraint (known as the confidence level constraint) avoids  
k-hopper subsets that would produce a package too far from the target T. In our case, the 
W value selected for each package must be within a confidence level of 99.73% of T, i.e., 

2
3.0.Z =α  

In the second (bi-objective) approach, we aim to minimise the difference between W 
and T as before ( )1 min ,ii H

z T x
′∈

= −∑  while also maximising the residence time Pi, 

as follows: 2 max .ii H
z P

′∈
= ∑  The goal of the second objective z2 is to encourage the 

selection of hoppers that have not been emptied for a long time (i.e., with long residence 
times). To control how long the loads stay in the hoppers, we use Pmax as the maximum 
number of packaging operations (i.e., the maximum allowed priority) for which any load 
is allowed to remain in its hopper (García-Díaz et al., 2017). For instance, if Pmax = 100, 
the maximum time a load could remain in a multihead weigher with a capacity of  
50 packages per minute can be calculated as follows: 50 packages / 60 s is equivalent to 
1.2 s/package; thus, 1.2 s/package × 100 packages = 120 s. Based on this, a k-hopper 
subset is said to be valid if it does not involve any hoppers whose priorities are greater 
than the maximum allowed priority Pmax and the total weight is in the range 

2
.T Z kσ± α  

For the bi-objective approach, we propose to use a single weighted performance 
function that combines information about the two objectives being considered, and 
dynamically adjust the relative weight or importance of each objective at each iteration of 
the packaging process, as suggested by García-Díaz et al. (2017). So, for each package 
we look for the k-hopper subset that minimises the distance to the so-called utopia or 
ideal point min max

1 2( , )z z  in criterion space, where min
1z  is the minimum possible 

(absolute) difference between T and W, and max
2z  is the maximum possible aggregate 

(total) priority. 
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Essentially, min
1z  and max

2z  are the optimal values for the two objectives being 
considered for the current hopper’s contents optimised separately. Prior to calculating the 
Euclidean distance (D) from a given solution to the ideal point, both values are 
normalised and then assigned relative weights of (1 – θ) and θ, respectively, so that the 
final form of the function to be minimised is: 

2 2min max
1 21 2

max min max min
1 1 2 2

(1 ) z z z zD θ θ
z z z z

− −⎛ ⎞ ⎛ ⎞
= − +⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠

 (1) 

Here max
1z  and min

2z  are the maximum difference from the target weight and the 
minimum total priority, respectively, for the current set of valid k-hopper subsets. 

The parameter θ is updated at each packaging iteration. The idea is that selecting a  
k-hopper subset with a high aggregate priority becomes more important as the current 
maximum hopper priority approaches the maximum allowed priority Pmax. The θ value is 
defined as: 

max

1
max 1i H i

θ
P P∈

=
− +

 (2) 

So, during the first iterations, the value of θ will remain relatively small and, therefore, 
the objective of minimising the difference to target packet weight will be assigned a 
higher importance. As packages production progresses and the maximum hopper priority 
approaches Pmax, θ will increase and so will the importance of the priority objective 
increase. 

The combination of hoppers that minimises the distance to the ideal point is known to 
be an efficient or non-dominated solution (Marler, 2009), which means that there is no 
other valid k-hopper subset that is at least as good with respect to (at least) one of the 
objectives (weight or priority) and strictly better with respect to the other objective 
(Ehrgott, 2005). 

3.2 How to fill the hoppers 

In this paper, we consider the general case where each hopper i is filled with a different 
average quantity of food μi (instead of a common value μ). The degree of variability 
among the average hopper weights μ1 … μn is believed to be related to the final package 
variability. Here, we evaluate the case where groups of hoppers share the same μi value, 
as this has been shown to be an efficient strategy for reducing package variability 
(Barreiro et al., 1998; Keraita and Kim, 2007; Pulido-Rojano and García-Díaz, 2016). 

To set the average amounts of product supplied to the weighing hoppers, we use 
shifts in the mean amount, given by the parameter δ. The parameter ensures that different 
average amounts are supplied to different hoppers. The purpose of introducing these 
deliberate shifts is to study the effect of changing the way the hoppers are filled. 

As a strategy for setting the average amounts of product supplied to the  
hoppers, we propose to divide the n weighing hoppers into three subgroups 

( )3
1 2 3 1
, , and with jj

n n n n n
=

=∑  and supply different average amounts of product to 

each subgroup (μ1, μ2 and μ3 respectively) (Pulido-Rojano and García-Díaz, 2016). The 
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average amounts supplied to each subgroup will depend on δ, as follows: μ1 = μ – δσ,  
μ2 = μ and μ3 = μ + δσ, respectively. Thus, shifts in the product supply will occur when  
δ > 0, while if δ = 0 then all the hoppers will be filled at the same rate, namely μj = μ, i.e., 
μ1 = μ2 = μ3 = T / k. In our case, the values of μ1, μ2 and μ3 will also depend on μ = T / k 
and σ = γμ. Once the μj values have been set, we can calculate the σj values as follows:  
σj = γμj. So far, no research has tested this filling strategy in a bi-objective approach. 
Authors as García-Díaz et al. (2017) tested a filling strategy for five subgroups. 

The proportionality coefficient γ is used to calculate the standard deviations σj of the 
weights supplied to each hopper and is considered to be an input to the packaging 
process. In our numerical experiments, we will use the values given in Beretta and 
Semeraro (2012) for two specific products: ‘ravioli’ (a type of dried pasta) with γ = 0.331 
and ‘fusilli’ (a type of fresh pasta) with γ = 0.123. 

As an example of calculating the μj and σj values, suppose T = 250 g, k = 5,  
σ = 16.55 g (for γ = 0.331, i.e., the ravioli) and δ = 2.0. In addition, suppose the total 
number of hoppers n = 16, with n1 = 5, n2 = 6 and n3 = 5. Then, the μj values would be as 
follows: μ1 = 250/5 – 2.0(16.55) = 16.90 g, μ2 = 250/5 = 50 g, and μ3 = 250/5  
+ 2.0(16.55) = 83.10 g. In this case, the σj values would be σ1 = γμ1 = 0.331 • 16.90  
= 5.59 g, σ2 = γμ2 = 0.331 • 50 = 16.55 g and σ3 = γμ3 = 0.331 • 83.10 = 27.51 g. 

3.3 Packaging algorithms 

In this section, we introduce the proposed package production algorithms. These 
procedures, both single-objective and bi-objective, are performed for each package in 
order to find the k-hopper subset H ′  for which the total weight W is as close to the target 
weight T as possible (either above or below). As previously discussed, manufacturers 
could adapt this packaging algorithm for implementation in the control unit software of 
multihead weighers. 

3.3.1 Single-objective packaging algorithm 

• Input: 
 o n: Total number of hoppers (n > 0). 
 o k: Number of hoppers involved in each packaging operation (2 ≤ k < n). 
 o T: Target weight (T > 0). 
 o n1, …, n3: Number of hoppers in each hopper subgroup 

( )3

1
0, 1, ..., 3; .j j

j
n j n n

=
≥ ∀ = =∑  

 o σ: Standard deviation of the weights supplied to each hopper (σ > 0). 
 o δ: Shift in the mean weights supplied to hoppers in subgroups 1 and 3 compared with 

subgroup 2 (δ > 0). 
 o Q: Total number of packages to be produced (Q ≥ 1). 

• Step 1. Initialisation. 
 o Assign each hopper to a subgroup, such that the number of hoppers in subgroup j is nj, 

for all. 
 o Calculate the average weights to supply to each hopper subgroup: μ1 = μ – δσ, μ2 = μ and 

μ3 = μ + δσ. 
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 o Initialise the contents of each hopper: xi = 0, ∀i = 1, …, n. 
 o Initialise the number of packages produced so far: q = 0. 

• Step 2. New packaging operation. Initialise min
min1 , .z H ′= +∞ = ∅  

• Step 3. Refill all empty hoppers. For each hopper i in subgroup j for which xi = 0, let xi = a 
random value chosen from the distribution N(μj, σ = γμj). 

• Step 4. Evaluate all valid subsets to calculate zmin
1 .  For all k-hopper subsets H ′  such that 

obey 2i
i H

T x Z kσ
′∈

− ≤∑ α  proceed as follows. 

 o Calculate 1 .i
i H

z T X
′∈

= −∑  (i.e., the difference from the target weight) 

 o If min
1 1 ,z z<  then min

11z z=  and min .H H′ ′=  

• Step 5. Check that the set of valid subsets is not empty. If min
1z = +∞  (i.e., there are no 

valid subsets) then all hoppers must be emptied and refilled. If so, let xi = 0 for each hopper i, 
then go to Step 2. Otherwise, continue to Step 6. 

• Step 6. Select the k-hopper combination that minimises 
′∈

−∑ i
i H

T x .  Return minH ′   

[as the hopper subset for creating the (q + 1)th package]. Then, for each hopper i in min ,H ′   
let xi = 0 (as it has been emptied to create the package). 

• Step 7. Update the number of packages produced and check whether the process is 
complete. Let q = q + 1. If q < Q then go to Step 2. Otherwise, END. 

3.3.2 Bi-objective packaging algorithm 

• Input: 
 o n: Total number of hoppers (n > 0). 
 o k: Number of hoppers involved in each packaging operation (2 ≤ k < n). 
 o T: Target weight (T > 0). 
 o n1, …n3: Number of hoppers in each hopper subgroup 

( )3

1
0, 1, ..., 3; .j j

j
n j n n

=
≥ ∀ = =∑  

 o σ: Standard deviation of the weights supplied to each hopper (σ > 0). 
 o δ: Shift in the mean weights supplied to hoppers in subgroups 1 and 3 compared with 

subgroup 2 (δ > 0). 
 o Pmax: Maximum allowed priority (number of iterations without being chosen) for any 

hopper (Pmax ≥ 1). 
 o Q: Total number of packages to be produced (Q ≥ 1). 

• Step 1. Initialisation. 
 o Assign each hopper to a subgroup, so that the number of hoppers in subgroup j is nj,  

for all. 
 o Calculate the average weights to supply to each hopper subgroup: μ1 = μ – δσ, μ2 = μ 

and μ3 = μ + δσ. 
 o Initialise the contents and priorities for each hopper: xi = 0, Pi = 0, ∀i = 1, …, n. 
 o Initialise the number of packages produced so far: q = 0. 
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• Step 2. New packaging operation. Initialise min max min max
1 1 2 2, , , ,z z z z= +∞ = −∞ = +∞ = −∞  

min min, .D H ′= +∞ = ∅  

• Step 3. Refill all empty hoppers and update priorities. For each hopper i in subgroup j for 
which xi = 0, let xi = a random value chosen from the distribution N(μj, σ = γμj). Then, for each 
hopper i, let Pi = Pi + 1. 

• Step 4. Empty any hopper that does not meet the priority constraint. For each hopper i 
such that Pi > Pmax, let xi = 0, Pi = 0. 

• Step 5. Evaluate of all valid subsets to calculate , , ,z z z z .min max min max
1 1 2 2  For each k-hopper 

subset H ′  such that does not contain a hopper i with Pi = 0 and obeys 

2 ,i
i H

T X Z kσ
′∈

− ≤∑ α  proceed as follows. 

 o Calculate 1 .i
i H

z T X
′∈

= −∑  (i.e., the difference from the target weight) 

 o Calculate 2 .i
i H

z P
′∈

=∑  (i.e., the sum of priorities) 

 o If min
1 1 ,z z<  then min

11 .z z=  

 o If max
1 1 ,z z>  then max

11 .z z=  

 o If min
2 2 ,z z<  then min

22 .z z=  

 o If max
2 2 ,z z>  then max

22 .z z=  

• Step 6. Check that the set of valid subsets is not empty. If min
1z = +∞  (i.e., there are no 

valid subsets) then all hoppers must be emptied and refilled. If so, let xi = 0, Pi = 0 for each 
hopper i, then go to Step 2. Otherwise, continue to Step 7. 

• Step 7. Calculate 
∈ +i H i

θ = ,
P Pmax

1
max 1−

 where H is the set of all hoppers. This sets the 

relative importance of the priority objective, and is recalculated before each packaging 
operation. 

• Step 8. Evaluate all valid subsets again, and select the one that minimises the 
performance function D. For each k-hopper subset H ′  that does not contain a hopper i with 
Pi = 0 and obeys 2 ,i

i H
T X Z kσ

′∈
− ≤∑ α  proceed as follows. 

 o Retrieve the z1 and z2 values that were calculated for H ′  at Step 5. 
 

o Calculate 
2 2min max

1 21 2
max min max min
1 1 2 2

(1 ) .z z z zD θ θ
z z z z

− −⎛ ⎞ ⎛ ⎞= − +⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠
 

 o If D < Dmin, then Dmin = D, min .H H′ ′=  

• Step 9. Select the k-hopper subset that minimises D. Return minH ′  as the hopper subset for 
creating the (q + 1)th package. For each hopper i in min ,H ′  let xi = 0, Pi = 0 (as it has been 
emptied to create the package). 

• Step 10. Update the number of packages produced and check whether the process is 
complete. Let q = q + 1. If q < Q then go to Step 2. Otherwise, END. 

In these enumerative (exhaustive) algorithms, every feasible solution (i.e., valid k-hopper 
subset) is evaluated at each iteration. In particular, the number of subsets to be evaluated 
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for each packaging operation is at most ! ( !( )!)
n

n k n k
k
⎛ ⎞

= −⎜ ⎟
⎝ ⎠

 (less for the bi-objective 

algorithm when hoppers are discarded at Step 4 due to the priority constraint). Although 
it is a simple strategy, it means our algorithms conduct exact (not heuristic) searches 
(Michalewicz and Fogel, 2004). 

Both algorithms consider the situation where all hoppers have to be emptied to avoid 
producing packages that would not meet the quality requirements in terms of weight. 
However, the emptied products could, for example, be taken and reused. In addition, we 
will calculate how often this happens, which we call the confidence level (DCL), as a 
performance measure. Figure 2 shows the application’s user interface for the bi-objective 
case and k = 3. 

Figure 2 Our application’s user interface, for the bi-objective case and k = 3 (see online version 
for colours) 

 

Source: Authors 

3.4 Mathematical optimisation 

Solutions to the packaging problem can be described in terms of binary vectors. For three 
groups, we have 1 1 2 2 3 3

1 1 1 2 1 3[ , ..., ], [ , ..., ] [ , ..., ],n n ny y y y y y y  where the value of each 
component indicates whether the corresponding weight was selected (1) or not (0). In 
terms of these vectors, the solutions to the bi-objective problem can be described as 
follows: 

11 1
0i

if weight i n has been chosen
y

otherwise
∈⎧

= ⎨
⎩

 

22 1
0l

if weight l n has been chosen
y

otherwise
∈⎧

= ⎨
⎩

 

33 1
0r

if weight r n has been chosen
y

otherwise
∈⎧

= ⎨
⎩
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Objective 1 Minimise z1. 

Objective 2 1 2 31 1 2 2 3 3
2 1 1 1

.
n n n

r ri i l li l r
Maximise z P y P y P y

= = =
= + +∑ ∑ ∑  

Subject to: 

1 0z ≥  (3) 

1 2 31 1 2 2 3 3
1 1 1 1

n n n
r ri i l li l r

z T x y x y x y
= = =

≥ − + +∑ ∑ ∑  (4) 

1 2 31 1 2 2 3 3
1 1 1 1

n n n
r ri i l li l r

z x y x y x y T
= = =

≥ + + −∑ ∑ ∑  (5) 

1 2 31 1 2 2 3 3
1 1 12

n n n
r ri i l li l r

T Z kσ x y x y x y
= = =

− ≤ + +∑ ∑ ∑α  (6) 

1 2 31 1 2 2 3 3
1 1 12

n n n
r ri i l li l r

T Z kσ x y x y x y
= = =

+ ≥ + +∑ ∑ ∑α  (7) 

1
maxi HP P′∈∀ ≤  (8) 

2
maxl HP P′∈∀ ≤  (9) 

3
maxr HP P′∈∀ ≤  (10) 

1
1{0,1}, 1, 2, ...,iy i n∈ =  (11) 

2
2{0,1}, 1, 2, ...,ly l n∈ =  (12) 

3
3{0, 1}, 1, 2, ...,ry r n∈ =  (13) 

Equations (3)–(5) ensure that z1 is non-negative. The confidence level constraint is 
represented by equations (6) and (7). Equations (8)–(10) ensure that the k-hopper subset 
selected to form H ′  does not exceed the maximum allowed priority. The binary 
constraints on the variables 1 2,i ly y  and 3

ry  are represented by equations (11)–(13). This 
model can be adapted for the single-objective approach by only considering the objective 
z1 and omitting the constraints expressed in equations (8)–(10). 

4 Results and analysis 

Here, we use a series of numerical experiments to demonstrate the effectiveness of our 
algorithms for reducing package weight variability, in terms of the most important 
performance parameters for the packaging process: the average weight μpackage and 
standard deviation σpackage of the packages produced, the number of hoppers emptied for 
package weight reasons (i.e., the DCL), the number of hoppers emptied for priority 
reasons at each iteration (which we call the HDP), and the average maximum priority for 
each hopper (which we call the AMP). 
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Table 1 Results for packaging parameters μpackage, σpackage, DCL (%), HDP and APM for  
Pmax: {10, 50, 100}, k: {2, 3, 4, 5, 6, 7, 8}, γ: {0.123, 0.331}, δ: {2.0} and n: {16} 
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The parameters for the first experiment were as followings: the total number of hoppers  
n = 16; the number of hoppers in each subset k: ranged from 2–8; the target weight T = 
250 g; the sizes of the hopper subgroups were n1 = 5, n2 = 6, and n3 = 5; the 
proportionality coefficients γ were 0.123 and 0.331; the shift value δ = 2.0; and the 
maximum allowed priorities Pmax were 10, 50, and 100. 

Table 1 shows the results when these packaging process parameters were used on the 
evaluated approaches (single-objective and bi-objective). To show the effectiveness of 
our algorithms more clearly, results for a single-objective optimisation approach that does 
not divide the hoppers into subgroups are presented for comparison. It should also be 
emphasised that the results of our experiments are not compared with García-Díaz et al. 
(2017), because, as we have already highlighted, these authors assumed the σ values to 
each hopper and used different input values, leading to very different outcomes. 

The results show that, for the bi-objective approach, the σpackage values decreased and 
the APM values increased as the Pmax value increased. The σpackage values were only 
greater than the expected value kσ  for k = 2, regardless of the product type. 

For γ = 0.123, the AMP values decreased as k is increased, and the HDP was always 
zero, except for k = 2 and Pmax = 10. The optimal value of k was 7. 

For γ = 0.331, σpackage was minimised for k = 7 (for Pmax = 50 or 100) and k = 8  
(for Pmax = 10). There were also cases where increases in k and Pmax produced increases 
in the σpackage, HDP, and AMP values. Taken together, these results show that increases in 
γ can lead to hopper weights that are difficult to combine, affecting the variability of the 
process. 

When k = 2, the base line single-objective approach (where the hoppers were not 
divided into subgroups) produced the best σpackage results. In all other cases, however, our 
alternative approaches, with the right k, were able to improve process variability. 

In general, the best results were obtained by the single-objective approach with three 
hopper subgroups and k = 6 (for γ = 0.123) or k = 5 (for γ = 0.331). However, the highest 
AMP values were obtained by this approach with k = 2. In addition, using high k values 
(up to k = 8) did not guarantee the lowest σpackage values. Products were never emptied 
from hoppers due to the confidence level constraint for any of the approaches tested. 

5 Conclusions 

Optimisation allows us to discover the best alternatives for problems that can be 
modelled mathematically and is fundamental to improving the quality of industrial 
processes. In this paper, we have presented both a single-objective approach and a  
bi-objective approach to optimising the multihead weighing process. These approaches 
were expressed in terms of both mathematical models and algorithms. 

The single-objective approach aims to minimise the absolute difference between each 
real package weight and the target weight, while the bi-objective approach also aims to 
maximise the total priority of the chosen hopper subset. Both approaches aim to improve 
the quality of the packages produced by adjusting the way the weighing hoppers are filled 
and dividing them in subgroups. 

Bi-objective algorithm combines information about these two objectives, dynamically 
adjusting the relative weight or importance of each objective for each iteration 
(packaging operation). 
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We have also investigated the effectiveness of the solutions produced by our 
approaches, comparing them with a more traditional approach. Based on these results, we 
have concluded that dividing the hoppers into subgroups is effective even when there is a 
limit to how long each load can be allowed to remain in its hopper. The average highest 
observed priority (AMP) for the bi-objective algorithm was significantly lower than for 
the single-objective approach. However, we have found that products with a high 
coefficient of proportionality affect process variability and increase the average time 
loads spend in the hoppers. We also found that using large hopper subsets to create each 
package does not guarantee reduced variability. 

For the setup of the process and guarantee the least variability, we recommend in the 
single-objective approach dividing the hoppers in three subgroups with n1 = 5, n2 = 6,  
n3 = 5, δ = 2.0, Pmax = 100 and k = 6 (for γ = 0.123) or k = 5 (for γ 0.331). For the  
bi-objective approach, we recommend dividing the hoppers in three subgroups with  
n1 = 5, n2 = 6, n3 = 5, δ = 2.0, Pmax = 100 and k = 7 (for γ = 0.123) or Pmax = 10 and k = 8 
(for γ = 0.331). 

In future research, we propose to study further the reason for the increase in the 
σpackage, HDP, and AMP values when the γ, k and Pmax values increase. In addition, we 
propose to implement different multi-objective optimisation approach for this problem, 
considering different packaging algorithms and objectives of economic character 
(product packaging costs, cost of rejection and rework of the ‘non-conforming’ package). 
Likewise, we intend to study the relationships among all the factors that may influence 
the packaging process. 
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