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Abstract. The segmentation of the human body organ called liver is a highly challenging 

problem due to the noise, artifacts and the low contrast exhibited by the anatomical structures 

located around the liver and that are present in digital images, generated by any modality of 

medical images. The main modalities are: ultrasound, nuclear emission, magnetic resonance 

and the gold standard called multi-slice computed tomography. In this paper, with the objective 

of to address this problem, we consider multi-slice computed tomography images and we 

propose an automatic strategy based on two phases. In the first phase, a digital filtering bank is 

used for diminishing the noise effect and the artifacts impact in the quality of images. In the 

second phase, called liver detection, we use a smart operator based on least squares support 

vector machines for generating both the morphology and the volume of liver. The application 

of this strategy allows generating the morphology of the liver in a precise and efficient manner 

as it was demonstrated by the metrics used to assess its performance. These results are very 

important in clinical-surgical processes where both the shape and volume of liver are vital for 

monitoring some liver diseases that can affect the normal liver physiology. 

1. Introduction 

The liver is an organ located below the diaphragm and on the abdomen right side. It is the largest solid 

organ of the human body [1]. It has a particular vascularization; the blood arrives to the liver in two 

ways: the hepatic artery and the hepatic portal vein. This blood leaves the liver through the hepatic 

veins, tributaries of the inferior vena cava. Its main functions are: a) extracting the essential digestion 

nutrients (such as carbohydrates, lipids and proteins), b) secreting bile, c) it stores energy in the form 

of sugar that the body can use, d) it filters and eliminates the toxins coming from what we consume 

such as alcohol and medicines, for example [1]. 

In this investigation, we chose multi-slice computed tomography (MSCT) modality to generate the 

liver morphology and to obtain the liver volume, which is a very important parameter in surgical 

routine called liver transplantation [2-4]. 

Some researchers have addressed the issue of liver and tumor segmentation. In this sense, Kim et 

al. [5] developed a method based on fusion images for segmenting hepatocellular carcinoma on MSCT 

images. The segmentation method reached a maximum sensitivity of 97.7%. Muthuswamy et al. [6] 

present an automatic computational scheme for liver contour segmentation, considering MSCT 

images. This scheme uses a strategy based on thresholding technique, bilateral filters, fuzzy-C means 
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clustering technique and label connected component and optimization algorithms. They report a 

maximum Dice score (Ds) of 0.9318. This result is very precise due to the Ds is a metric with values 

among 0 and 1; being the best results values near to 1. 

Finally, Tacher et al. [7], proposes a region growing and radial base functions algorithm for 

automatic liver-tumor segmentation reporting an average Ds of 0.74. 

In our paper, we use MSCT images and propose a computational strategy, based on the application 

of a filter bank and segmentation techniques, for liver automatic segmentation. The importance of this 

kind of research is the possibility of generate automatic strategies for detecting and monitoring 

efficiently some pathologies linked to human liver. 

2. Materials and methods 

2.1. Dataset 

One three-dimensional (3D) MSCT liver dataset was used and it was supplied by the Instituto de 

BioIngeniería y Diagnóstico S.A., Venezuela. The 3D image size is 512x512x100 voxels. 

Additionally, liver manual segmentation (ground truth) generated by a hepatologist, is available. 

2.2. Proposed computational strategy 

Figure 1 shows a block diagram of the automatic computational strategy (ACS), proposed in this 

paper, for segmenting the liver. 

 

 
Figure 1. Block Diagram of the proposed strategy (ACS) for liver segmentation. 

 

2.2.1. Pre-processing. The filters showed in Figure 1, are described at next. 

 Median filter (MF). The median filter uses the median statistical definition for smoothing 

information and it is required in contexts where the borders preservation is crucial. In this 

sense, MF has an observation window typically odd and it considers window sizes reported in 

[8]. 

 Saturation filter: A saturated image (Is) is obtained using the arithmetic addition of Io and Im 

[9]. 

 Gradient magnitude filter (GMF). In this work, an approach based on finite differences was 

used for GMF computational implementation [9]. This filter generates a smoothed version, 

called IGM, calculating the three-dimensional gradient magnitude of IS, using the mathematical 

model given by Equation (1). 
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The computational cost (time of calculations) of the continuous model for GMF, given by the 

Equation (1), is very expensive. By this reason an approach based on central finite differences is used, 

in this paper, for modelling computationally the GMF [10]. 
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2.2.2. Segmentation. This stage involves two steps: liver contour detection and a filler algorithm. 

These steps are presented at next. 

 Least square support vector machine (LSSVM). A LSSVM is used in order to obtain all 

contours that contain the liver. The specialized literature, view for example reference [11], 

establish that the LSSVM ought to be trained with 30% of total images and it must be 

validated with 70% of total images. In this sense, the total images that belong to the database, 

used in this paper, is split considering 30 axial view images for training stage (training images 

set) and 70 axial view images for validation (validation image set). Then the following 

processes are applied: 

o Training stage: Using the value proposed in [8], in this paper, we consider circles, 

with radius 10 pixels, are used to cover the information both liver contours and no-

contours of liver, presents in the training images set. The training examples are 

labelled input vectors which components are statistics features such as: media, 

median, variance and standard deviation of the densitometric information included in 

training circles. The LSSVM hyper-parameters (σ and γ) are tuned until the LSSVM’s 

performance reaches the minimum relative error (Re). This error is computed 

considering the matching between automatic and manual circles localization based on 

theirs centers. 

o Validation stage: At the beginning, 70 images unseen during the training are presented 

in the input of trained LSSVM in order to detect the circles centers that represent the 

liver contours. Then, a B-spline algorithm traces the contour edges considering these 

centers. 

 Filler algorithm (FA). A FA is used in order to generate the put white information inside of 

liver contours detected with trained LSSVM. 

During the tuning process, the liver segmented is compared with the ground truth traced by 

hepatologist. The Ds is used in order to estimate the matching between these structures [12]. 

3. Results 

A maximum Ds of 0.92 is obtained from the tuning, which generated the optimal parameters for 

LSSVM hyper-parameters (σ = 1.00 and γ = 0.50). For this Ds, the size of median neighborhood was 

(5x5x5), it represents the optimal value for ns parameter in this research which was obtained 

heuristically. 

Figure 2 shows axials views of a liver original image and the images linked to digital processing 

developed with the ACS. Notice the excellent visual performance developed by the pre-processing 

techniques over the liver MSCT images.  

 

   

   
Figure 2. Axials views about effect of the ACS over liver dataset. First row: Original image (Left), 

Median Filter (center) and Satured image (Right). Last row: Gradient image (Left), Markers (center) 

and Final contour (Right). 
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Figure 3 shows 3D view of liver morphology generated using reconstruction technique. This kind of 

results is relevant because the automatic technique, proposed in this paper, is able to generate the liver 

morphology which is necessary for liver quantification. 

 

 
Figure 3. Liver 3D representation generated by clustering 

of liver contours detected with LSSVM. 

 

Finally, Table 1 shows the volume values considering its automatic segmentation. 

 

Table 1. Clinical parameters associated with segmented liver. 
 Liver 

Volume (cm3) 1634.45 

 

Using the 3D liver representation is possible to realize the liver volume quantification. Simply, the 

liver voxels number is multiplied by the voxels dimensions for calculating the liver volume. In the 

clinic context, this volume is an important parameter for performing the liver transplantation in 

humans. 

In this section, it is necessary pointed that the Ds is a metric with values between 0 and 1. This 

metric is better when its value is closest to 1 [12]. In a medical image segmentation context, this 

means that the manual segmentation and the automatic one matching when the Ds is 1 and they no 

matching at all when the Ds is zero. In this sense, normally, values of Ds over 0.75 are good accepted, 

in the medical routine. 

According to the results of this paper, the maximum Ds value obtained for the liver segmentation 

was 0.9200. This value is comparable with 0.9318 that was the Ds obtained in [6]. So, we can say that 

the ACS, developed in this research, had a good performance segmenting liver. 

4. Conclusions 

In this paper, a novel automatic strategy for liver segmentation was developed using an adequate 

group of pre-processing techniques (filters bank) and a smart operator, based on LSSVM. The 

considered bank of filters (median, satured and gradient magnitude filters) let us address the noise and 

the artifacts problems, present in MSCT images; whereas the LSSVM had a good performance with 

the low contrast problem doing possible precise 3D liver segmentation. 

In this research, manual and automatic liver segmentation were compared and as results the Ds 

value obtained suggests that the ACS developed has a good performance when the liver segmentation 

is performed. The liver segmentation is a crucial step in a surgical procedure called liver transplant 

because this kind of segmentation allows obtaining liver volume and considering this volume, and 
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others parameters, the specialized personal in the medical context can decided which patients can 

receive this organ via transplantation.  

It is planned, for the future, to use the ACS in the segmentation of an important number of liver 

datasets. 
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