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Abstract: 

Quantum cascade laser spectroscopy was used to detect the presence of 
residues of highly energetic materials (HEMs) on cotton fibers. The 
discrimination of the vibrational signals of HEMs from a highly mid-infrared 
(MIR) absorbing medium was achieved by a simple and fast spectral 
evaluation using the classical least squares (CLS) algorithm without 
preparation of standards. CLS focuses on minimizing the differences 
between spectral features of real spectra acquired by direct MIR 
spectroscopy and the spectral features of calculated spectra modeled from 
linear combinations of the spectra of the neat components: HEMs and the 
cotton fibers, and the bias. HEMs samples in several combinations with 
cotton fibers were used to validate the methodology. Three (3) 
independent sets of experiments considering binary, ternary, and 
quaternary combinations of components, including cotton, TNT, RDX, and 
PETN, were performed. The models parameters obtained from linear 
combinations of the calculated spectra were used to perform discrimination 
analyses and to determine the sensitivity and selectivity of the studied HEM 
with respect to the substrates and to each other. However, the 
discrimination analysis was not necessary to achieve successful detection 
of HEMs samples on cotton substrates. The only requirement to achieve 
HEM detection (determine the presence or absence of HEM on a substrate) 
is that the library contains the spectra of all the HEMs and substrates or 
that the later be added in the field, on the fly. In addition, the extracted 
spectral signals of several amounts of RDX on cotton (> 0.02 mg) were 
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used to calculate the limit of detection (LOD) based on the spectral signal-
to-noise ratio (S/N). The calculated S/N values were obtained from the 
spectra for cotton dosed with several amounts of RDX deposited in 
decreasing mass order until the calculated S/N reached a value of 3. The 
LOD determined for RDX on cotton was 22 ± 6 µg. 
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  13 

Abstract 14 

Quantum cascade laser spectroscopy was used to detect the presence of residues of highly 15 

energetic materials (HEMs) on cotton fibers. The discrimination of the vibrational signals of 16 

HEMs from a highly mid-infrared (MIR) absorbing medium was achieved by a simple and 17 

fast spectral evaluation using the classical least squares (CLS) algorithm without 18 

preparation of standards. CLS focuses on minimizing the differences between spectral 19 

                                                           
∗ Authors for correspondence: samuel.hernandez3@upr.edu, leonardo.pacheco@upr.edu 
 

 

Page 2 of 53

https://mc.manuscriptcentral.com/asp

Applied Spectroscopy

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

2 

 

features of real spectra acquired by direct MIR spectroscopy and the spectral features of 20 

calculated spectra modeled from linear combinations of the spectra of the neat components: 21 

HEMs and the cotton fibers, and the bias. HEMs samples in several combinations with 22 

cotton fibers were used to validate the methodology. Three (3) independent sets of 23 

experiments considering binary, ternary, and quaternary combinations of components, 24 

including cotton, TNT, RDX, and PETN, were performed. The models parameters obtained 25 

from linear combinations of the calculated spectra were used to perform discrimination 26 

analyses and to determine the sensitivity and selectivity of the studied HEM with respect to 27 

the substrates and to each other. However, the discrimination analysis was not necessary to 28 

achieve successful detection of HEMs samples on cotton substrates. The only requirement 29 

to achieve HEM detection (determine the presence or absence of HEM on a substrate) is 30 

that the library contains the spectra of all the HEMs and substrates or that the later be 31 

added in the field, on the fly. In addition, the extracted spectral signals of several amounts of 32 

RDX on cotton (> 0.02 mg) were used to calculate the limit of detection (LOD) based on the 33 

spectral signal-to-noise ratio (S/N). The calculated S/N values were obtained from the 34 

spectra for cotton dosed with several amounts of RDX deposited in decreasing mass order 35 

until the calculated S/N reached a value of 3. The LOD determined for RDX on cotton was 36 

22 ± 6 µg. 37 

 38 

Keywords 39 

Quantum cascade laser (QCL) spectroscopy, explosives detection, classical least squares 40 

(CLS), cotton fabrics, discriminant analysis (DA), highly energetic materials (HEMs) 41 
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Introduction 42 

Remote sensing of chemical residues on substrates using active mode remote infrared 43 

spectroscopy (RIRS)1-5 depends on various parameters, among which the most important 44 

are the excitation energy, the source type, the range (operator to target distance), and the 45 

angle between the source, target, and detector6-10. Other important factors to consider 46 

include the reflectivity of the substrates, the surface concentration of the target chemicals, 47 

and the optical power of the source. When going into more phenomenological details, 48 

attention must be given to surface roughness, effective cross-sectional scattering, optical 49 

properties of samples and substrates, such as refraction index and extinction coefficient, 50 

and finally the RIRS operational mode used for the measurements: specular or diffuse 51 

reflection, transmission, and transflection. In the present study, highly energetic materials 52 

(HEMs) were deposited onto cotton fiber substrates, which are considered non-ideal 53 

substrates because of their low reflectivity and, in principle, have the potential to hinder the 54 

characteristic HEM MIR bands required for sensing, detection, and subsequent 55 

classification and discrimination studies by RIRS. Hence, a large number of transflected or 56 

reflected/scattered photons are required to obtain an optimal signal in the back reflection 57 

setup, such as those generated by an MIR laser source such as a quantum cascade laser 58 

(QCL), as demonstrated by Faist et al.11 Other important properties of QCL-based MIR 59 

spectrometers are based on the typically small footprint of these devices. Among these 60 

properties are field portability, high optical power, room-temperature operation9, low energy 61 

consumption, long-term power stability, and the ability to fine-tune the output frequency,12 62 

making QCLs useful for many spectroscopic applications, such as remote sensing of 63 

environmental gases and pollutants in the atmosphere13, and for critical applications in 64 
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defense and security.14-19 The relatively high optical power of at least six (6) orders of 65 

magnitude larger than globar sources (from electrically heated silicon carbide rods) has 66 

proven its technological capability for developing a set of varied applications.8, 20-34  67 

Quantitative and qualitative spectroscopic analyses have been greatly improved using 68 

robust statistical methods. Multivariate analysis methods permit the inclusion of multiple 69 

spectral components (wavelengths/wavenumbers), various numbers of samples, very 70 

complex data sets contaminated with spectral noise, and spectral overlapping, from which it 71 

is possible to predict the sample analyte identities and their concentrations. The diverse 72 

multivariate methods available for such tasks, such as partial least squares regression 73 

(PLS), PLS coupled with discriminant analysis (PLS-DA), principal component analysis 74 

(PCA), and principal component regression (PCR), have surpassed the 50-year lifetime of 75 

classical least squares (CLS), which originated as a univariate analysis method but 76 

gradually developed into a multivariate regression algorithm. Moreover, the implementation 77 

of CLS-based methods in remote multispectral sensing for image generation from satellite 78 

data served to demonstrate that the simplicity of CLS algorithm can be used in diverse 79 

applications in a modern approach.35 Although in general, it is not straightforward to 80 

evaluate the superiority of any given method over another one when analyzing a particular 81 

data set, Figueroa-Navedo et al. have recently shown how to establish such comparisons 82 

between several multivariate analyses algorithms.36 In their case, the comparisons were 83 

based on using laser induced thermal emission (LITE) data of high explosives in a remote 84 

sensed scenario.  85 

CLS is a well-known regression method that uses the Beer-Bouguer-Lambert linear 86 

relation dependence between the absorbance of a chemical species and its molar 87 
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concentration and is directly applicable to quantitative spectral analyses. The highest goal of 88 

CLS analysis is achieved when a broad spectrum of intensities for several components in a 89 

mixture is included in the analysis. This requirement is one of the greatest limitations of 90 

CLS: complete knowledge of the individual components in the matrix analyzed is required. 91 

Thus, spectra of the mixtures and the spectrum of each neat component are needed to 92 

estimate the spectral fraction for each component that is in the composition of the mixture. 93 

This is true only when neat components are involved. However, CLS can be considered as 94 

the transition state or as a bridge between univariate and multivariate analysis. Accordingly, 95 

in CLS, the response at any wavenumber can be considered as a linear combination of the 96 

responses of each component that is assumed to be in the mixture. The method also 97 

estimates the proportion of each spectrum component in the mixture spectra by minimizing 98 

the sum of the squares of the errors. In most of the cases, this spectral proportion is equal 99 

to or linearly proportional to the real proportion in the mixture. Following this approach, a 100 

CLS analysis is presented and discussed. 101 

In the study, binary, ternary, and quaternary mixtures were generated by four (4) 102 

components in the calibration set: three (3) for the HEMs utilized and one (1) for the cotton 103 

substrates. A simple implementation of CLS analysis was used for the detection and 104 

discrimination analysis of the target HEMs by remote sensing with QCL spectroscopy. The 105 

CLS methodology and analysis introduces a statistical experimental design based on 106 

reference spectra obtained from the pure components included in the mixtures, establishing 107 

a simple technique for data visualization and model interpretation. In comparison, PLS-DA-108 

based calibration models require the development of independent models for each surface, 109 

substrate, or type of fabric and are unsuitable for real remote sensing applications. Using 110 
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the proposed method, in-field actualization of the substrates can be performed, and only the 111 

spectra of neat HEMs and surfaces/substrates need be included as part of the 112 

spectroscopic library. 113 

 114 

Experimental 115 

Reagents and Materials  116 

The HEMs used in this work were 2,4,6-trinitrotoluene (TNT), pentaerythritol tetranitrate 117 

(PETN), and cyclotrimethylenetrinitramine (RDX). PETN and RDX were synthesized directly 118 

in the laboratory. TNT was purchased from Chem Service (West Chester, PA, USA). Cotton 119 

fabric (blue jeans) samples were used as non-reflective, matte substrates. 120 

 121 

Sample Preparation 122 

The HEMs samples were deposited onto the cotton fiber substrates by direct transfer. Two 123 

(2) procedures were evaluated for HEMs deposition. In the first procedure, the desired total 124 

amount of HEM or HEMs mix was transferred to a glass Petri dish, and the fabric sample 125 

was gently rubbed against the bottom of the Petri dish to transfer the HEMs by thumbprint 126 

pressure, this produced a stain on the fabric. The area covered by the HEM was 127 

approximately 2.2 × 1.7 cm2. This area was larger than the laser spot area (2x4 mm2). This 128 

guarantees the total area of the substrate investigated was populated with HEMs samples.  129 

In the second deposition procedure, small amounts (particles) of the samples were 130 

transferred to a stainless-steel applicator tip (∼ 1 mm2 tip area) by pressing against a deposit 131 

of HEM or mixture of HEMs, followed by direct deposition by pressing with the applicator 132 
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onto the cotton fabric samples. The area covered by the HEM was approximately 0.8 mm2. 133 

This area was much smaller than laser spot area. Thus, the laser was aimed at the samples 134 

in such a way that the particles were located within laser spot. The fabric was weighed 135 

before and after deposition to determine the exact amount of HEM deposited. The weighing 136 

was performed on two (2) calibrated scales for appropriate measurement precision. In the 137 

first mass determination, a scale with an accuracy of ± 0.1 mg was used for depositions 138 

from 0.1 to 3 mg. In the second procedure, a lower mass scale with a precision of ± 0.01 139 

mg, a quartz balance from a thermal gravimetric analyzer (TGA) was used for the smallest 140 

amounts of particle deposition (< 0.1 mg). For the two weightings mentioned above, the 141 

fabric was weighed before and after of transferring the HEMs samples. 142 

 143 

Instrumentation 144 

A MIR pre-dispersive spectrometer (model LaserScan™ Block Engineering, Marlborough, 145 

MA, USA) was used for the spectroscopic measurements. This system was equipped with 146 

three (3) synchronized, tunable MIR lasers (tuning ranges: 990 to 1111 cm-1, 1111 to 1178 147 

cm-1, and 1178 to 1600 cm-1). Each diode was scanned for approximately 0.5 s each for a 148 

total scan time of 1.5 s per single, non-co-added run. The average power typically varied 149 

from 0.5 to 10 mW across the 600 cm-1 tuning range. The other laser parameters were 150 

100:1 transverse electromagnetic (TEM) polarization and a beam divergence of < 2.5 mrad 151 

on the x-axis and < 5 mrad on the y-axis. The instrument was equipped with a 3 in. diameter 152 

ZnSe lens, which was used to focus the MIR beam onto the sample and to collect the 153 

reflected MIR light and focus it onto the thermoelectrically cooled internal mercury-cadmium-154 

telluride (MCT) detector. The measurement mode was diffuse reflectance in back reflection 155 
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(180°) with an experimental setup similar to Galan-Freyle, et al.36 (Supplementary Materials 156 

section). The wavenumber accuracy and precision were 0.5 cm-1 and 0.2 cm-1, respectively. 157 

The best operating working distance from the target was 15 ± 3 cm. Each MIR source 158 

produced an elliptical laser spot with dimensions of approximately 4 mm x 2 mm at the 159 

working distance of 15 cm due to beam divergence differences in the x-y plane.  160 

A Q-500 TGA (TA Instruments - Waters L.L.C., New Castle, DE, USA) was used for the 161 

gravimetric measurements, with an accuracy of ± 10 ng and a working temperature range of 162 

20 to 1000 °C. The weighing process was conducted isothermally for each sample at 25 °C 163 

for 5 min to achieve a thermal stabilization during weighting. This process was carried out 164 

before and after of transferring the HEMs samples. 165 

 166 

Statistical Model 167 

All spectra were converted to Thermo-Galactic SPC format (Thermo-Fisher Scientific, Inc., 168 

Waltham, MA, USA) and analyzed using a CLS model developed with customized 169 

commands in MatlabTM (The MathWorks, Inc., Natick, MA, USA; see Supplementary 170 

Materials). Acquired spectra were converted to Thermo-Galactic SPC format (Thermo-171 

Fisher Scientific, Inc., Waltham, MA, USA) and partial least squares (PLS) loadings for PLS-172 

discriminant analysis (PLS-DA) using PLS Toolbox v. 8.1 (Eigenvector Research, Inc. 173 

Manson, WA, USA) to generate the matrices for the analyses. Additional statistical analyses 174 

were performed using StatgraphicsTM Centurion XV software, version 15.2.05. (Statpoint 175 

Technologies, Inc. Warrenton, VA, USA). The proposed linear model, based on CLS, can be 176 

represented by the following equation: 177 
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� �ϕ� , ����� = ��
 + ���ϕ�
��� + ⋯+ ���ϕ�
���         (1) 178 

where ���� , ����� represents the ith normalized intensity of the spectrum [from –Log(R)], 179 

calculated from a mixture of several components	
��; ϕ�
��� is the normalized intensity at 180 

each wavenumber (��) of the net spectrum belonging to the j component and ��� is a 181 

parameter that indicates the fraction or proportion of the net spectrum of a certain 182 

component in the spectrum of the mixture. The model assumes that there are no binding 183 

interactions among the components in the mixture, which implies that the intensity 184 

contributions are additive. The ��� parameters can be calculated by finding the minimum of 185 

the square of the difference between the real spectra (RS) and the calculated spectra (CS) 186 

as follows:  187 

�� = �� − ����� , �����             (2) 188 

The minimum value of the sum of the squares of �� (residual) with respect to 	���, illustrated 189 

above, can be found by equating to zero the first order partial derivatives with respect to	��� 190 

and finding the 	��� values. Because the model contains “n” parameters, this generates n 191 

partial derivative equations as follows: 192 

���
���

= −2∑ ��
�"�#$�,����%

����
= 0,									� = 1,2,⋯ , (�           (3) 193 

It is possible to extract the signals of interest for each component of the mixture from the 194 

model. For example, if the component of interest is 1, the extracted spectrum (ψ$) is: 195 

)*�
+%� = �� − ��
 − ��,�,
��� − ⋯− �����
���          (4) 196 
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Results and Discussion 197 

Reference spectra of HEMs and cotton were acquired by diffuse reflectance using the QCL 198 

spectrometer. Roughened gold substrates were used as background reference for 199 

reflectance measurements. Reflectance units were converted to the negative of the 200 

logarithm of reflectance. The sample spectra of cotton with the corresponding dosing 201 

amounts of HEMs were acquired in the same form (Figure 1). The normalization was 202 

performed using standard normal variate (SNV) as a preprocessing step. SNV was applied 203 

to the full spectral region of the analyses to eliminate the baseline drift caused by MIR 204 

scattering due to the difference in particle size, the topology of the fabric, and inherent scale 205 

of the spectra. 206 

 207 

Binary Models 208 

Three models of classes were generated: binary class models which consisted exclusively 209 

of the combination of cotton substrates and each one of the HEMs. In this case, Eq. 1 210 

reduces to: 211 

�-.//.0123 = ��
 + ��-.//.0ϕ-.//.0
��� + ��456ϕ456
���        (5) 212 

Twenty (20) samples containing various amounts of HEMs ranging from 0.1 to 3 mg were 213 

deposited on cotton substrates and the parameters ��456 were calculated from five (5) 214 

replicates. A probability distribution was estimated (additional information included in 215 

Supplemental Materials). A binary model for each HEM/cotton combination was generated. 216 

These models had high sensitivity and selectivity for the mass range of 0.1 to 3 mg, as 217 

illustrated in Table 1. The decision threshold (P) for the model was determined using the 218 
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predicted average value of  ��123 (7̅) for the cotton sample (blank) and the standard 219 

deviation (9�): 220 

: = 7̅ + 3.28 ⋅ 9�               (6) 221 

There is a 5% probability of random error. This is based on the definition of the detection 222 

limit.37 There will be a high probability that all the clean samples are below this threshold. 223 

This way, it is only necessary to have representative cotton spectra in the database to 224 

generate the discrimination. The model was compared with the discriminant analysis (DA). 225 

Results are shown in Table 1, where the value of βHEM was used to generate a model for 226 

discrimination. The difference between this model and the proposed model in this 227 

contribution is that it must be fed with a spectrum of cotton without HEMs (clean substrate) 228 

and the spectra of the neat HEMs. The spectra for the binary models for TNT, RDX, and 229 

PETN are shown in Figures 1(a) to 1(c). In each of these figures, the spectra with 230 

approximately 0.1 mg of HEM deposited on cotton are shown in blue. The predicted spectra 231 

from Equation (5) are shown in red. Reference spectra for the powder form HEM and cotton 232 

fiber substrates are shown in black and orange, respectively. The HEM/cotton spectra with 233 

the cotton spectra subtracted using the Eq. (5) are shown in green. 234 

The binary model that consisted only of the cotton spectrum and RDX spectrum is given 235 

as an example (the other models are discussed in the Supplementary Materials section). 236 

The relationship based on Eq. 5 is as follows: 237 

�-.//.0?@A = ��
 + ��-.//.0ϕ-.//.0
��� + ��?@Aϕ?@A
���        (7) 238 

Figure 2 illustrates the calculation of the probability for RDX in the mass range of 0.1 – 3 mg 239 

as a function of	��?@A . 240 
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Ternary Models 241 

The equation for ternary models with three (3) components, cotton, TNT, and RDX based on 242 

Eq. 1 is as follows: 243 

�-.//.0BCBD?@A = ��
 + ��-.//.0ϕ-.//.0
��� + ��BCBϕBCB
��� + ��?@Aϕ?@A
���     (8) 244 

Samples of 100% TNT from 0.1 to 3 mg, 100% RDX from 0.1 to 3 mg, and binary mixtures 245 

of 50% TNT/RDX with total mass ranging from 0.5 to 3 mg (134 samples), were deposited 246 

on cotton. The values of the parameters ��BCB and ��?@A were then calculated, and the 247 

distribution values for each sample were plotted from Eq. (6). Figure 3(a) shows that good 248 

discrimination of the binary samples was obtained. However, in ternary mixtures, a few 249 

samples were classified as binary mixtures composed of TNT/cotton. These samples 250 

coincided with the locations on the cotton surface where only small yellow TNT crystals 251 

were found when visually inspecting the samples. The sensitivity and specificity are also 252 

shown in Table 1. Decision thresholds for the models were determined using the predicted 253 

average values of �BCB and �?@A for the cotton samples plus the standard times 3.28. In 254 

Figure 3(a) the decision value thresholds are represented by green asterisks and the 255 

thresholds lines are represented by black dotted lines. This threshold was labelled “P” in 256 

Figure 3(a) to differentiate it from threshold of DA. This is shown for binary models in the 257 

Supplementary Materials section. 258 

 259 

Quaternary Model 260 

The quaternary model was composed of four (4) components based on Eq. 1: cotton, TNT, 261 

RDX, and PETN, was as follows: 262 
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�-.//.0BCBD?@ADE2BC =263 

��
 + ��-.//.0ϕ-.//.0
��� + ��BCBϕBCB
��� +264 

																																			��?@Aϕ?@A
��� + ��E2BCϕE2BC
���         (9) 265 

Samples of 100% TNT, 100% RDX, and 100% PETN ranging from 0.1 to 3 mg and samples 266 

with of mixtures of 50% TNT/RDX, 50% TNT/PETN, 50% PETN/RDX, and 33.3% 267 

TNT/PETN/RDX with total mass ranging from 0.5 to 3 mg were deposited on cotton fiber 268 

substrates (252 samples). The values of the parameters ��BCB, ��?@A, and ��E2BC for the 269 

mixtures were calculated along with their distribution plot for each sample from the 270 

calculated values following Eq. 9 (Figure 3(b)). The sensitivity and specificity are also shown 271 

in Table 1. Visualization of the separation of classes is not possible because 3D visualization 272 

is difficult. The sensitivity and specificity are also shown in Table 1 together with the 273 

comparison with DA. 274 

  275 

Tests with Other Substrates 276 

Five other substrates were investigated: white cotton (from a T-shirt), polyester, 65% 277 

polyester-35% cotton, 45% polyester-55% cotton, and 84% polyester-16% spandex. 278 

Spectra of neat substrates (HEM free) and spectra of substrates dosed with TNT were 279 

acquired and used for the study. Figure 4 shows the QCL spectra of TNT, polyester, and 280 

spandex used in models for other substrates. Three models were generated and tested. 281 

First, a binary model for TNT based on Eq. 5 was developed. This model was composed of 282 

a spectrum for blue jeans cotton and a TNT spectrum. The prediction of samples is shown in 283 

Table 2. All substrates contaminated with TNT were correctly predicted. However, the 284 
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samples consisting of neat polyester and spandex substrates (without TNT) were 285 

predicted as containing TNT, i.e. false positives (bold red). The  ��BCB values were high for all 286 

cases, except for the white cotton substrate samples, because the model already included a 287 

spectrum of cotton from another substrate (blue jeans). Low amounts of TNT (∼ 0.1 mg) 288 

predicted high ��BCB values. This is unreasonable because ��BCB values should have been 289 

low. However, this can be explained in the case of polyester and spandex polymers 290 

substrates since both have intense signals in the same spectral window as TNT (see Fig. 4). 291 

A second model was built with a spectrum of blue jeans cotton, a spectrum of polyester 292 

and a spectrum of neat TNT. When the spectrum of polyester was added to the model, all 293 

the samples with this substrate were correctly predicted with values of ��FGF	 near cero. 294 

Only the samples that contained spandex fiber were not correctly classified. Finally, a third 295 

model was generated by adding the spectrum of spandex to the second model. After this, 296 

all samples were correctly classified, and the samples with low amounts of TNT (∼ 0.1 mg) 297 

had a low ��FGF value (see Table 1). Thus, for classifications of samples using CLS and the 298 

protocol presented, it is important to include the spectra of all components of the substrate 299 

in the model under development to have a good prediction capability. For a practical 300 

identification of HEM on fabrics in defense and security applications, the database to be 301 

built must contain the neat spectrum the HEM as well as the spectra for the substrates 302 

fibers and other components. 303 

 304 

 305 

Page 15 of 53

https://mc.manuscriptcentral.com/asp

Applied Spectroscopy

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

15 

 

 306 

Discriminant analysis 307 

To be able to statistically evaluate the discrimination capabilities statistically of the ��� 308 

parameters in the quaternary mixtures and to obtain an improved visualization of the 309 

separation of classes, detailed discriminant analysis was performed using the ��� 	parameters 310 

as variables. Eight (8) groups were used for the discrimination: cotton fiber substrates, TNT, 311 

RDX, PETN, TNT-RDX, TNT-PETN, RDX-PETN, and TNT-RDX-PETN. Two (2) highly 312 

significant and statistically weighted discrimination functions were obtained. These functions 313 

contained nearly all the statistically relevant information because they contributed 95.3% of 314 

the discrimination capability of the model. As shown in Table 1, two functions with high 315 

eigenvalues values for the discrimination were highly significant (p < 0.0001). Per the 316 

canonical correlation coefficient, which represents the ability or effectiveness of the 317 

discrimination for new samples, the two (2) main functions (F1 and F2) showed excellent 318 

discrimination to determine group differences, with 93% and 87% confidence levels, 319 

respectively. A third function (F3), with a 56% capacity for determining group differences 320 

was less effective than functions F1 and F2 but was highly significant (p < 0.0001) in the 321 

discrimination model. The null hypothesis that the populations have identical discrimination 322 

means was tested by the Wilks lambda test. The small value of Wilks’ lambda indicates the 323 

acceptance of the null hypothesis. The statistical significance was evaluated by the χ2 p-324 

value (< 0.0001), as illustrated in Table 3. It is possible to determine to what extent the 325 

contribution of the grouping variable to the variance is explained by the predictor using 326 

Wilks’ lambda values. The first discriminant function (F1) had a very small Wilks’ Lambda 327 
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value (0.02), indicating that approximately one-fiftieth of the variance is not accounted for by 328 

group differences. For F2, the Wilks’ Lambda value was larger (0.16), indicating that 329 

approximately one-sixth of the variance is not explained by group differences. In addition, 330 

the Wilks’ Lambda value for F3 was even larger (0.68), indicating that approximately 331 

seventeen twenty-fifths of the variance was not explained by differences in-group 332 

classification. Figure 5 shows the discriminant plot using the two main functions, F1 and F2. 333 

These two principal functions have the capacity to classify the pure HEM components on 334 

the cotton fiber substrates as PETN, RDX, and TNT. Moreover, the ternary mixtures of 335 

TNT/PETN and TNT/RDX on cotton are located in the middle of the neat HEMs, providing 336 

good classification. However, the classification of the ternary mixtures of RDX-PETN/cotton 337 

and the quaternary mixtures of TNT-RDX-PETN/cotton could not be accomplished 338 

completely by the two main functions F1 and F2. A portion of the RDX-PETN mixtures 339 

deposited on cotton substrates were incorrectly classified as having 100% RDX. The same 340 

situation occurred for TNT-RDX-PETN mixtures on cotton. A possible explanation for the 341 

lack of discrimination of the RDX-PETN/cotton mixtures is that in some subintervals of the 342 

spectral range investigated (e.g., from approximately 1340 to 1402 cm-1), there is a lack of 343 

strong PETN absorbance bands, allowing the RDX absorbance signals in these intervals to 344 

stand out (see Figure 1(d)). Therefore, the classification was performed with respect to the 345 

RDX/cotton binary component rather than the ternary mixture. The same result is likely to 346 

occur in quaternary mixtures (see Supplementary Materials). Furthermore, with the 347 

consideration of F3 in the analysis and by plotting F1 vs. F3 and F2 vs. F3, improved 348 

classification was achieved for mixtures of RDX/PETN and TNT/RDX/PETN. In this case, 349 

the 50% RDX/PETN is located in the middle of the two pure components constituting the 350 
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mixture, and the mixtures of TNT/RDX/PETN are better distributed (see Supplementary 351 

Materials).  352 

To determine the sensitivity and selectivity values with respect to cotton, TNT, RDX, and 353 

PETN, a binary discriminant analysis (with and without) was performed of each material for 354 

the binary, ternary and quaternary models (see Table 1). For the binary models, the 355 

sensitivity and selectivity were exact (100%), whereas, for the ternary model, these 356 

parameters were good, except for TNT/RDX mixtures, which should have been classified as 357 

containing only RDX and TNT but were ultimately classified as containing TNT only or as 358 

containing RDX only. This could be attributed to a lack of sample homogeneity. Similar 359 

results were obtained for the quaternary model. 360 

The 	��� values are considered linear proportions of the spectral components in the 361 

prediction but no linear behavior is present. However, they are proportional to the 362 

concentration of jth   component and this is not affected in the detection. The spectra of 363 

mixtures are spectra for the amounts of HEM on surface sampled. The intensity of the 364 

signals of the HEM depend on the area that the analyte covers on the surface which in turn 365 

depends on the amount deposited and on the form in which the material was transferred 366 

onto the surface. In the case of HEM formulations (two HEMs 50% each; three HEMs 367 

33.33% each), when the samples are deposited on the fibers, it is possible to have some 368 

fibers with more amount of one component than of the others, because it is not possible 369 

have a homogenous mixture of the materials. This leads to the situation that some parts of 370 

the spectra for the formulations is predicted containing only one material in a binary 371 

formulation of HEMs or one or two material in a ternary formulation of HEMs.   372 

 373 
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 374 

Limits of detection (LODs) 375 

The limit of detection (LOD) for RDX was determined from measurements of several spectra 376 

at low analyte amounts (< 0.1 mg). The characteristic RDX MIR vibrational signatures stood 377 

out when applying Eq. 4 to the spectra. Figure 6(a) shows typical RDX spectra recorded for 378 

different masses on the cotton substrates. The reference spectrum of neat RDX (pellet) 379 

acquired in reflectance mode and converted to the negative of the logarithm of reflectance 380 

(solid black line), was used to identify the RDX characteristic bands and to emphasize the 381 

relative signal increase when more amount analyte was deposited on the cotton surfaces. 382 

New bands were observed at 1080, 1063, 1484, 1249 cm-1. This can be attributed to 383 

interactions of RDX with the cotton substrate. The signal-to-noise ratios (S/N) were 384 

calculated for the 1040 cm-1 and 1463 cm-1 bands at each of the nominal deposited RDX 385 

masses, as shown in Figure 4(b). The improvement of S/N is illustrated for the two RDX 386 

vibrational bands selected as a function of the mass deposited (µg). A S/N value of 3 was 387 

found for a mass of 22 ± 6 µg, which based on the IUPAC recommendation, corresponds to 388 

the LOD.  389 

The ��?@A parameter was plotted against the nominal RDX surface mass to find the 390 

relationship shown in Figure 4(c). The assumption of a linear dependence was rather poor 391 

(R2 = 0.80) in the range 20 to 100 µg. A power fit resulted in a significantly improved 392 

representation of the data (R2 = 0.94). If the range was further reduced from 20 to 75 µg, an 393 

improved linear dependence (R2 = 0.92) was found. The threshold value P is also illustrated 394 

in Figure 4(c). This was calculated from the values of the ��?@A parameters for 3 spectra of 395 
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the cotton substrates (used as blank), the value for the average 
7̅�and the value for the 396 

standard deviations 9� calculated my means of Eq. 6. The P value obtained for RDX (22 ± 6 397 

µg) coincides with the LOD, but in statistical jargon, they are the same or statistically equal. 398 

This can be well visualized in Figure 4(d), where S/N and ��?@A are plotted, a low linear 399 

dependence is observed. The S/N = 3 and the threshold P cross in the surface mass of 22 ± 400 

6 µg. 401 

 402 

Conclusions 403 

In this work, the detection capability of the CLS method for binary, ternary, and quaternary 404 

mixtures of HEMs deposited on non-MIR reflective (mate) substrates, such as cotton 405 

fabrics, was demonstrated. The reconceptualization of the least squares algorithm in 406 

combination with the remote sensing by QCL spectroscopy results in the development of an 407 

effective methodology for detection of HEMs and mixtures of HEMs on fabrics. In addition, if 408 

neat components spectra of the HEMs of interest (RDX, TNT, and PETN) are present in the 409 

calibration set (or spectroscopic library), it is possible to perform discrimination on any 410 

surface or substrate by updating the model with the spectra corresponding to the new 411 

surface/substrate where the detection would be conducted. Five other substrates: white 412 

cotton, polyester, 65% polyester 35% cotton, 45% polyester 55% cotton, and 84% polyester 413 

16% spandex neat (HEM free) and dosed with TNT were investigated. 414 

The CLS algorithm facilitates the discrimination process upon HEM detection and 415 

provides a better understanding and better control of the spectral visualization of vibrational 416 

signals of interest. There is, a priori, no linear dependence between the mixture spectrum 417 
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and the neat components spectra. Rather, with the methodology developed it is not possible 418 

to quantify the components but, this nonlinear relationship does not affect the detection. 419 
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CAPTIONS FOR TABLES AND FIGURES 547 

 548 

TABLES CAPTIONS 549 

 550 

Table 1. Sensitivity and specificity values for binary discriminant models 551 

 552 

 553 

Table 2. Prediction of  �BCB parameters for the three models developed 554 

 555 

 556 

Table 3. Statistical values for functions derived from β parameters for the DA for the 557 

quaternary mixture 558 

 559 

 560 

FIGURES CAPTIONS 561 

 562 

Figure 1. (a-c) Spectra of approximately 0.1 mg of HEMs (TNT, RDX, and PETN) deposited 563 

on cotton are shown as blue traces; predicted spectra from Equation (5) are shown as red 564 

traces; cotton spectra are shown in orange traces; subtraction of cotton spectra from 565 

HEM/cotton spectra calculated using Eq. 4 are shown as green traces; reference HEM 566 

spectra are shown as black traces. (d)  Comparison of reference spectra for individual HEM 567 

and a typical spectrum for the quaternary mixture: TNT-RDX-PETN/cotton. 568 

 569 
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Figure 2. Probability distribution for the ��?@A parameter for in the RDX/cotton binary mix. 570 

 571 

 572 

Figure 3. (a) �BCB and �?@A parameters samples distribution. (b) �BCB, �?@A, and �E2BC 573 

samples distribution parameters. 574 

 575 

 576 

Figure 4. QCL reflectance spectra of components used in the additional tests of the 577 

methodology proposed based on CLS: TNT, polyester and spandex. 578 

 579 

 580 

Figure 5. Plot of functions F1 and F2 used in the discriminant analysis. 581 

 582 

 583 

Figure 6. (a) Spectra of RDX particles at various surface masses on cotton substrates; (b) 584 

Plot of S/N vs. mass for two RDX signals; (c) Plot β parameter for RDX vs. masses; (d) Plot 585 

of S/N vs. β parameter for RDX. 586 
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FIGURE 1 
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FIGURE 2 
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FIGURE 3 
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FIGURE 4 
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FIGURE 5 
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FIGURE 6 
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  Model Discriminant Model 

  Sensitivity  Specificity Sensitivity  Specificity 

 
Binary Binary 

Cotton 100% 100% 100% 89% 

TNT 100% 100% 89% 100% 

Cotton 100% 100% 100% 85% 

RDX 100% 100% 85% 100% 

Cotton 100% 100% 100% 95% 

PETN 100% 100% 95% 100% 

  Ternary Ternary 

Cotton 100% 100% 100% 86% 

TNT 100% 97% 94% 100% 

RDX 99% 88% 91% 100% 

HEM 100% 100% 86% 100% 

 
Quaternary Quaternary 

Cotton 100% 100% 100% 88% 

TNT 89% 94% 86% 90% 

RDX 95% 84% 86% 100% 

PETN 99% 67% 86% 91% 

HEM 100% 100% 88% 100% 
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Sample 
Model 1 
(mg TNT) 

Model 2 
(mg TNT) 

Model 3 
(mg TNT) 

white cotton -0.05 ± 0.01 -0.07 ± 0.01 -0.06 ± 0.01 

polyester 0.15 ±0 .05 -0.01 ± 0.03 0.00 ± 0.02 

65% polyester 35% cotton 0.15 ± 0.03 -0.05 ± 0.03 -0.01 ± 0.03 

45% polyester 55% cotton 0.04 ± 0.04 -0.03 ± 0.03 -0.07 ± 0.03 

84% polyester 16% spandex 0.31 ± 0.03 0.17 ± 0.03 0 ± 0.03 

2 mg TNT 65% polyester 35% cotton 0.83 ± 0.04 0.78 ± 0.04 0.68 ± 0.05 

0.5 mg TNT 65% polyester 35% cotton 0.5 ± 0.1 0.4 ± 0.1 0.3 ± 0.1 

2 mg TNT 45% polyester 55% cotton 0.72 ± 0.08 0.67 ± 0.09 0.58 ± 0.09 

0.5 mg TNT 45% polyester 55% cotton 0.38 ± 0.02 0.31 ± 0.02 0.27 ± 0.03 

4 mg TNT on 84% polyester 16% spandex 0.9 ± 0.1 0.9 ± 0.1 0.9 ± 0.1 

2 mg TNT on 84% polyester 16% spandex 0.3 ± 0.1 0.3 ± 0.2 0.5 ± 0.2 

0.8 mg TNT on 84% polyester 16% spandex 0.3 ± 0.2 0.2 ± 0.2 0.3 ± 0.2 

0.5 mg TNT on 84% polyester 16% spandex 0.4 ± 0.1 0.3 ± 0.1 0.2 ± 0.2 

~0.1 mg TNT on 84% polyester 16% spandex 0.25 ± 0.01 0.12 ± 0.01 0.05 ± 0.01 
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Table 3. Statistical values for functions derived from β parameters for the DA for the 

quaternary mixture 

 

Discriminant 
functions 

1 2 3 

Eigenvalue 6.2 3.2 0.5 

Relative % 63% 32% 5% 

Canonical 
Correlation 

0.93 0.87 0.56 

Wilks Lambda 0.02 0.16 0.68 

Chi-squared 901.9 431.7 90.6 

p-value < 0.0001 < 0.0001 < 0.0001 
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FIGURES AND CAPTIONS 

 

 

Figure 1. (a-c) Spectra of approximately 0.1 mg of HEMs (TNT, RDX, and PETN) deposited 

on cotton are shown as blue traces; predicted spectra from Equation (5) are shown as red 

traces; cotton spectra are shown in orange traces; subtraction of cotton spectra from 

HEM/cotton spectra calculated using Eq. 4 are shown as green traces; reference HEM 

spectra are shown as black traces. (d)  Comparison of reference spectra for individual HEM 

and a typical spectrum for the quaternary mixture: TNT-RDX-PETN/cotton. 
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Figure 2. Probability distribution for the ����� parameter for in the RDX/cotton binary mix. 
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Figure 3. (a) ���� and ���� parameters samples distribution. (b) ����, ����, and ��	�� 

samples distribution parameters. 
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Figure 4. QCL reflectance spectra of components used in the additional tests of the 

methodology proposed based on CLS: TNT, polyester and spandex. 
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Figure 5. Plot of functions 1 and 2 used in the discriminant analysis. 
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Figure 6. (a) Spectra of RDX particles at various surface masses on cotton substrates; (b) 

Plot of S/N vs. mass for two RDX signals; (c) Plot β parameter for RDX vs. masses; (d) Plot 

of S/N vs. β parameter for RDX. 
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Discriminant 

functions 
1 2 3 

Eigenvalue 6.2 3.2 0.5 

Relative % 63% 32% 5% 

Canonical 
Correlation 

0.93 0.87 0.56 

Wilks Lambda 0.02 0.16 0.68 

Chi-squared 901.9 431.7 90.6 

p-value < 0.0001 < 0.0001 < 0.0001 
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Supplementary Materials 17 

 18 

1. Experimental setup used in the investigations 19 

 20 

Figure SM-1. Experimental setup used for the QCL based reflectance measurements. 21 

 22 
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Figure SM-2 shows the details of the weighting procedure using the quartz balance of a 23 

TGA system.  24 

      25 

 26 

Figure SM-2. (a) Photograph of cotton fabric from jean used in the experiment; (b) 27 

weighting in TGA balance. 28 

 29 

2. TNT Binary Model 30 

The binary models consisted only in spectra of cotton and cotton with TNT. The 31 

equation is as follows: 32 

�������
��� � 	
� � 	
������
���������� � 	
���
�������          (SM 1) 33 

 34 

(a) (b) 
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 35 

Figure SM-3. Probability distribution for β parameter of TNT. 36 

 37 

 38 

3. PETN Binary Model 39 

The binary models consisted only in cotton spectra and cotton with PETN. The equation 40 

is as follows: 41 

�������
���� � 	
� � 	
������
���������� � 	
����
��������          (SM 2) 42 

 43 
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 44 

Figure SM-4. Probability distribution for 	
���� parameter.  45 

 46 

 47 

4. Second Model: Three (3) components for testing: 48 

�������
������� � 	
� � 	
������
���������� � 	
���
������� � 	
���
�������   (SM 3) 49 

Various amounts from 0.1 to 3 mg (134 samples) of TNT, RDX, and a mixture of 50% 50 

TNT and RDX were deposited on cotton. The 	��� and 	��� parameters were 51 

calculated, and the distribution values for each sample was plotted from equation 4 (see 52 

Figure SM-4). 53 

 54 
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 55 

Figure SM-5. Samples distribution for 	
��� and 	
��� parameters. 56 

 57 

 58 

5. Third Model: Four (4) components for testing: 59 

�������
������������ �60 

	
� � 	
������
���������� � 	
���
������� �61 

																																																
���
������� � 	
����
��������             (SM 4) 62 

Several amount combinations from 0.1 to 3 mg (252 samples) of TNT, RDX, PETN, and 63 

a 50% mixture of TNT with RDX (TNT-RDX), 50% TNT with PETN (TNT-PETN), 50% 64 
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PETN with RDX (RDX-PETN), and a mixture of 33.3% of TNT, PETN, and RDX (TNT-65 

RDX-PETN) were deposited on the cotton substrates. The 	
���, 	
���, and 	
��� 66 

parameters values were calculated along with their distribution plots for each sample 67 

from the calculated values following Eq. SM 5 (see Figure SM 5). 68 

 69 

 70 

Figure SM-6. The 	
���, 	
���, and 	
���� parameters samples distribution. 71 

 72 

 73 

6. Spectra for each HEM and the quaternary mixture is illustrated in Figure SM-8 74 
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 75 

 76 

Figure SM-7. Comparison among HEM spectra and the quaternary mixture spectra. 77 

 78 

 79 

 80 

 81 

 82 

 83 

 84 

 85 
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7. Discriminant Functions Plots 86 

 87 

8. Figure SM-8. Plot of Discriminant Function 1 vs. 3. 88 

 89 

 90 

Figure SM-9. Discriminant Function 2 vs. 3. 91 
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9. Customized Matlab program to obtain the 	 parameter for the mixture spectra 92 

A = full(file matrix net component); % Loading of matrix of net component 93 

T=full(file mixture);% Loading of matrix of mixture spectra  94 

specwidth=size(A,2); % Number of wavenumber 95 

Ncom=size(A,1); % Number of components 96 

nummix=size(T,1); % Number of mixture 97 

i=1; 98 

X=zeros(Ncom,nummix);% X matrix of fraction for each component for each mixture 99 

mixp=zeros(nummix,specwidth); 100 

while(i<nummix+1) % Calculate the fraction 101 

  C= T(i,:)*A'; 102 

  B = A*A'; 103 

  p =C/B; 104 

  X(:,i) = p; 105 

  i=i+1; 106 

end 107 

%extract component signals of interest in this case 1 component 108 

for h= 1:nummix 109 

    mix=zeros(1,specwidth); 110 

      for j=2:Ncom 111 

         dumin=X(j,h).*A(j,:); 112 

         mix=mix+dumin; 113 

      end 114 

   mixp(h,:)=mix; 115 

end 116 

D=T-mixp; % extracted matrix 117 
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